1
|
Cai L, Chen Y, Xue H, Yang Y, Wang Y, Xu J, Zhu C, He L, Xiao Y. Effect and pharmacological mechanism of Salvia miltiorrhiza and its characteristic extracts on diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117354. [PMID: 38380573 DOI: 10.1016/j.jep.2023.117354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a severe diabetic microvascular complication with an increasing prevalence rate and lack of effective treatment. Traditional Chinese medicine has been proven to have favorable efficacy on DN, especially Salvia miltiorrhiza Bunge (SM), one of the most critical and conventional herbs in the treatment. Over the past decades, studies have demonstrated that SM is a potential treatment for DN, and the exploration of the underlying mechanism has also received much attention. AIM OF THIS REVIEW This review aims to systematically study the efficacy and pharmacological mechanism of SM in the treatment of DN to understand its therapeutic potential more comprehensively. MATERIALS AND METHODS Relevant information was sourced from Google Scholar, PubMed, Web of Science, and CNKI databases. RESULTS Several clinical trials and systematic reviews have indicated that SM has definite benefits on the kidneys of diabetic patients. And many laboratory studies have further revealed that SM and its characteristic extracts, mainly including salvianolic acids and tanshinones, can exhibit pharmacological activity against DN by the regulation of metabolism, renal hemodynamic, oxidative stress, inflammation, fibrosis, autophagy, et cetera, and several involved signaling pathways, thereby preventing various renal cells from abnormal changes in DN, including endothelial cells, podocytes, epithelial cells, and mesangial cells. CONCLUSION As a potential drug for the treatment of DN, SM has multi-component, multi-target, and multi-pathway pharmacological effects. This work will not only verify the satisfactory curative effect of SM in the treatment of DN but also provide helpful insights for the development of new anti-DN drugs and the application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Luqi Cai
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yu Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Huizhong Xue
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yimeng Yang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yuqi Wang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Junhe Xu
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Chunyan Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Long He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yonghua Xiao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
2
|
Protective effect and possible mechanisms of Salvia miltiorrhiza Bge. for the treatment of diabetic nephropathy: A systematic review and meta-analysis of animal studies. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
3
|
Zheng Y, Zhou X, Wang C, Zhang J, Chang D, Liu W, Zhu M, Zhuang S, Shi H, Wang X, Chen Y, Cheng Z, Lin Y, Nan L, Sun Y, Min L, Liu J, Chen J, Zhang J, Huang M. Effect of Tanshinone IIA on Gut Microbiome in Diabetes-Induced Cognitive Impairment. Front Pharmacol 2022; 13:890444. [PMID: 35899118 PMCID: PMC9309808 DOI: 10.3389/fphar.2022.890444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
Diabetes-induced cognitive impairment (DCI) presents a major public health risk among the aging population. Previous clinical attempts on known therapeutic targets for DCI, such as depleted insulin secretion, insulin resistance, and hyperglycaemia have delivered poor patient outcomes. However, recent evidence has demonstrated that the gut microbiome plays an important role in DCI by modulating cognitive function through the gut–brain crosstalk. The bioactive compound tanshinone IIA (TAN) has shown to improve cognitive and memory function in diabetes mellitus models, though the pharmacological actions are not fully understood. This study aims to investigate the effect and underlying mechanism of TAN in attenuating DCI in relation to regulating the gut microbiome. Metagenomic sequencing analyses were performed on a group of control rats, rats with diabetes induced by a high-fat/high-glucose diet (HFD) and streptozotocin (STZ) (model group) and TAN-treated diabetic rats (TAN group). Cognitive and memory function were assessed by the Morris water maze test, histopathological assessment of brain tissues, and immunoblotting of neurological biomarkers. The fasting blood glucose (FBG) level was monitored throughout the experiments. The levels of serum lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunoassays to reflect the circulatory inflammation level. The morphology of the colon barrier was observed by histopathological staining. Our study confirmed that TAN reduced the FBG level and improved the cognitive and memory function against HFD- and STZ-induced diabetes. TAN protected the endothelial tight junction in the hippocampus and colon, regulated neuronal biomarkers, and lowered the serum levels of LPS and TNF-α. TAN corrected the reduced abundance of Bacteroidetes in diabetic rats. At the species level, TAN regulated the abundance of B. dorei, Lachnoclostridium sp. YL32 and Clostridiodes difficile. TAN modulated the lipid metabolism and biosynthesis of fatty acids in related pathways as the main functional components. TAN significantly restored the reduced levels of isobutyric acid and butyric acid. Our results supported the use of TAN as a promising therapeutic agent for DCI, in which the underlying mechanism may be associated with gut microbiome regulation.
Collapse
Affiliation(s)
- Yanfang Zheng
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Chenxiang Wang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jialin Zhang
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Wenjing Liu
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - MingXing Zhu
- College of Traditional Chinese, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Shuting Zhuang
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Hong Shi
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Xiaoning Wang
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Yong Chen
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Zaixing Cheng
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanxiang Lin
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihong Nan
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yibin Sun
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li Min
- College of Traditional Chinese, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Jin Liu
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianyu Chen
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Jianyu Chen, ; Jieping Zhang, ; Mingqing Huang,
| | - Jieping Zhang
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
- *Correspondence: Jianyu Chen, ; Jieping Zhang, ; Mingqing Huang,
| | - Mingqing Huang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Jianyu Chen, ; Jieping Zhang, ; Mingqing Huang,
| |
Collapse
|
4
|
Xu H, Jiang Y, Yu K, Zhang X, Shi Y. Effect of Ginsenoside Rh1 on Proliferation, Apoptosis, and Oxidative Stress in Vascular Endothelial Cells by Regulation of the Nuclear Erythroid 2-related Factor-2/Heme Oxygenase-1 Signaling Pathway. J Cardiovasc Pharmacol 2022; 79:335-341. [PMID: 34369898 PMCID: PMC8893129 DOI: 10.1097/fjc.0000000000001121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT This study aimed to investigate the role of ginsenoside Rh1 in regulating the proliferation, apoptosis, and oxidative stress in oxidized low-density lipoprotein (ox-LDL)-treated human vascular endothelial cells (VECs) and the underlying mechanisms. VECs were treated with ox-LDL to generate an in vitro atherosclerosis model. The effect of ginsenoside Rh1 on cell viability and proliferation was examined by MTT and colony formation assays, respectively, and cell apoptosis was determined by flow cytometry and transferase dUTP nick end-labeling assay. The levels of reactive oxygen species, malondialdehyde, and superoxide dismutase activity were detected using biological assays. Finally, the effect of ginsenoside Rh1 on the levels of BAX and BCL-2 and the nuclear erythroid 2-related factor-2/heme oxygenase (HO)-1 signaling pathway was determined by quantitative real-time polymerase chain reaction and western blot assays. Treatment with ginsenoside Rh1 significantly increased the proliferation and decreased the apoptosis of ox-LDL-treated VECs in a dose-dependent manner. Moreover, ginsenoside Rh1 also relieved oxidative stress in ox-LDL-treated VECs by activating the Nrf2/HO-1 signaling pathway. Thus, ginsenoside Rh1 affects the proliferation, apoptosis, and oxidative stress in ox-LDL-treated VECs by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Hai Xu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Yicheng Jiang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Kun Yu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Xiwen Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Yafei Shi
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| |
Collapse
|
5
|
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting Plant-Based Therapies for Chronic Kidney Disease. J Evid Based Integr Med 2022; 27:2515690X221079688. [PMID: 35243916 PMCID: PMC8902019 DOI: 10.1177/2515690x221079688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,IHBI, Queensland Univ of Technology, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
| | | | - Helen G Healy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
6
|
Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling. Antioxidants (Basel) 2021; 10:antiox10020258. [PMID: 33562389 PMCID: PMC7915495 DOI: 10.3390/antiox10020258] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) intertwined with cardiovascular disease has become a major health problem. Oxidative stress (OS) plays an important role in the pathophysiology of CKD. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) antioxidant system plays a critical role in kidney protection by regulating antioxidants during OS. Heme oxygenase-1 (HO-1), one of the targets of Nrf2-ARE, plays an important role in regulating OS and is protective in a variety of human and animal models of kidney disease. Thus, activation of Nrf2-HO-1 signaling may offer a potential approach to the design of novel therapeutic agents for kidney diseases. In this review, we have discussed the association between OS and the pathogenesis of CKD. We propose Nrf2-HO-1 signaling-mediated cell survival systems be explored as pharmacological targets for the treatment of CKD and have reviewed the literature on the beneficial effects of small molecule natural products that may provide protection against CKD.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
| | - Ee Hyun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- Correspondence: ; Tel.: +82-2-3277-4075
| |
Collapse
|
7
|
Chen YH, Chen WC, Liu PL, Chen HY. Astragalus polysaccharides and astragaloside IV ameliorates cyclophosphamide-induced mouse model of overactive bladder. Taiwan J Obstet Gynecol 2020; 59:248-255. [PMID: 32127146 DOI: 10.1016/j.tjog.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Previous studies have shown that Astragalus polysaccharides (APS) and Astragaloside IV (AS-IV) protect against inflammation-related cell damage and exhibit immune enhancement. Since urothelial injury may result in an overactive bladder (OAB), the aim of this study was to investigate the efficacy of APS and AS-IV on urothelial injury in an experimental animal model. MATERIALS AND METHODS The effects of APS and AS-IV on the proliferation and migration of primary human urothelial cells (HUCs) or primary human fibroblast cells (HFCs) were assessed using an in vitro wounding model and colorimetric thiazolyl blue assays. Sixty virgin female mice were randomized into five groups: group 1-saline-injected plus treatment with H2O, group 2-cyclophosphamide (CYP) plus treatment with H2O, group 3-CYP plus treatment with solifenacin succinate (SS; 10 mg/kg), group 4-CYP plus treatment with AS-IV (100 mg/kg), and group 5-CYP plus treatment with APS (100 mg/kg). Cystometry assessment was conducted and cell junction-associated protein zonula occludens-2 (ZO-2) expression was measured. Voiding interval values (time between voids) were assessed in mice under anesthesia. Lastly, immunohistochemistry analysis was used to confirm the location and level, respectively, of ZO-2 expression. RESULTS APS and AS-IV did not influence the cell viability but increased migration in HFCs compared with the controls. The OAB mice showed significantly lower voiding interval values. Voiding interval values were significantly higher in the CYP plus treatment with APS (100 mg/kg) and AS-IV (100 mg/kg) groups than in the CYP-induced OAB group. Additionally, the expression of ZO-2, a tight junction protein, was increased in the CYP plus treatment APS (100 mg/kg) and AS-IV (100 mg/kg) groups compared with the CYP-induced OAB group. CONCLUSION These findings suggest that APS and AS-IV modulate urothelial wound healing, which ameliorates urinary frequency of mice treated with CYP. APS or AS-IV may have the potential benefit of acting as urothelial wound healing modulators.
Collapse
Affiliation(s)
- Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Departments of Medical Research, Urology, and Obstetrics and Gynecology, China Medical University Hospital, Taichung, 40402, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Departments of Medical Research, Urology, and Obstetrics and Gynecology, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Departments of Medical Research, Urology, and Obstetrics and Gynecology, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
8
|
Zhang XW, Zhou M, An L, Zhang P, Li P, Chen J. Lipophilic Extract and Tanshinone IIA Derived from Salvia miltiorrhiza Attenuate Uric Acid Nephropathy through Suppressing Oxidative Stress-Activated MAPK Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1455-1473. [DOI: 10.1142/s0192415x20500718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Uric acid nephropathy (UAN) is caused by excessive uric acid, which results in the damage of renal tissue via urate crystals deposition in the kidneys. The roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza) have been clinically used in many prescriptions to treat uric acid-induced renal damage. This study investigates the uricosuric and nephroprotective effects of the ethyl acetate extract of S. miltiorrhiza (EASM) and tanshinone IIA (a major component of S. miltiorrhiza, Tan-IIA) on UAN and explores the underlying molecular mechanism. Both EASM and Tan-IIA significantly decreased serum uric acid (SUA), serum creatinine (SCR), urine uric acid (UUA), and increased urine creatinine (UCR), and blood urea nitrogen (BUN) levels in experimental UAN mice. In adenine and potassium oxonate-induced mice, EASM and Tan-IIA treatment alleviated renal dysfunction and downregulated the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Moreover, EASM treatment significantly prevented excessive reactive oxygen species (ROS) production in uric acid-induced HK-2 cells and suppressed the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). EASM also suppressed ROS-activated mitogen-activated protein kinases (MAPKs) in vivo and in vitro. These results suggest that both EASM and Tan-IIA demonstrated inhibitory effects on UAN through relieving NOX4-mediated oxidative stress and suppressing MAPK pathways activation.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mei Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lin An
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ping Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
9
|
Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res 2020; 35:223-245. [PMID: 32909364 DOI: 10.1002/ptr.6821] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a disease of serious concern faced by the health care industry today. Primary diabetes mellitus and its complications are still costly to manage with modern drugs. Extensive research on the screening of anti-diabetic agents in past decades established natural products as one of the major potential sources of drug discovery. However, only a few drugs of plant origin have been scientifically validated. Therefore, the development of new anti-diabetic drugs is of great demand. Hence, natural products could be explored as potential anti-diabetic drugs. Natural plants derived extracts and molecules like berberine, ginsenosides, curcumin, stevioside, gingerols, capsaicin, catechins, simple phenolic compounds, anthocyanins, resveratrol, genistein and hesperidin obtained from different species are used for curing diabetes and found to possess different action mechanisms. In this review, the importance of medicinal plants and their active constituents for anti-diabetic agents are described. The present study also emphasized the importance of diabetes control, reduction in its complications and use of the anti-diabetic agents. The detailed action mechanism of these extracts/compounds for their activities are also described. However, the anti-diabetic drugs from plant origin require scientific validation through animal and clinical studies to exploit in terms of modern commercial medicines.
Collapse
Affiliation(s)
- Arun K Jugran
- Garhwal Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Srinagar, Uttarakhand, India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Gangtok, Sikkim, India
| | - Hari P Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| | - Ranbeer S Rawal
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| |
Collapse
|
10
|
Yu L, Qian J. Dihydrotanshinone I Alleviates Spinal Cord Injury via Suppressing Inflammatory Response, Oxidative Stress and Apoptosis in Rats. Med Sci Monit 2020; 26:e920738. [PMID: 32112706 PMCID: PMC7063851 DOI: 10.12659/msm.920738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Spinal cord injury (SCI) is a serious nervous system injury, causing extremely low quality of life and immensurable economic losses. However, there is few therapies that can effectively cure the injury. The goal of the present study was to explore the potential therapeutic effects of dihydrotanshinone I (DI) for SCI and the involving mechanism. Material/Methods A SCI rat model was structured to investigate the effects of DI on recovery of SCI. Tarlov’s scale was employed to assess the neuronal function and histopathological examination was carried out by hematoxylin and eosin staining. In addition, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS), total oxidant status (TOS) and total antioxidant status (TAS) levels were detected. Tunel assay and western blot analysis were performed to evaluate cell apoptosis. Furthermore, western blot assay was used to measure the protein expressions. Results The results demonstrated that the treatment of DI alleviated the pathological damage induced by SCI and promoted the neuronal functional recovery. DI suppressed TNF-α, IL-1β, IL-6, iNOS, and TOS levels while improved the TAS level. Moreover, increased cell apoptosis in SCI rats was inhibited by administration of DI. Most importantly, DI reserved the soaring of TLR4, MyD88, HMGB1, and NOX4 level after induction of SCI. Thus, the observation revealed that the HMGB1/TLR4/NOX4 pathway may be involved in the protective effects of DI on SCI. Conclusions In conclusion, the findings suggest that DI alleviates SCI by restraining secretion of inflammatory factors, and occurrence of oxidative stress and apoptosis in vivo. DI may be developed into an effective alternative therapy for SCI in clinic.
Collapse
Affiliation(s)
- Liuqian Yu
- Department of Orthopeadics, Dajiangdong Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jinfeng Qian
- Section IV, Department of Orthopaedics, Hospital of Marine Police Corps of the Chinese People's Armed Police Force, Jiaxing, Zhejiang, China (mainland)
| |
Collapse
|
11
|
Yu L, Qian J. WITHDRAWN: Dihydrotanshinone I alleviates spinal cord injury via suppressing inflammatory response, oxidative stress and apoptosis in rats. Pathol Res Pract 2019. [DOI: 10.1016/j.prp.2019.152771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, Wang L, Che Y, Zhao D, Mo F, Gao S, Zhang D. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152871. [PMID: 30851580 DOI: 10.1016/j.phymed.2019.152871] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Salvia miltiorrhiza (SM), one of the frequently used herbs in traditional Chinese medicine (TCM), has now attracted rising interests for a possible alternative in the management of diabetes. This review is aimed to providing a comprehensive perspective of SM in phytochemical constituents, pharmacological activities against diabetes and its complications, and safety. METHODS A comprehensive search of published literatures was conducted to locate original publications pertaining to SM and diabetes till the end of 2017 using PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science database. The main inquiry was used for the presence of the following keywords in various combinations in the titles and abstracts: Salvia miltiorrhiza, diabetes, obesity, phytochemistry, pharmacology, and safety. About 200 research papers and reviews were consulted. RESULTS SM exhibited anti-diabetic activities by treating macro- and micro-vascular diseases in preclinical experiments and clinical trials through an improvement of redox homeostasis and inhibition of apoptosis and inflammation via the regulation of Wnt/β-catenin, TSP-1/TGF-β1/STAT3, JNK/PI3K/Akt, kinin B2 receptor-Akt-GSK-3β, AMPKβ/PGC-1α/Sirt3, Akt/AMPK, TXNIP/NLRP3, TGF-β1/NF-κB, mineralocorticoid receptor/Na+/K+-ATPase, AGEs/RAGE, Nrf2/Keap1, CaMKKβ/AMPK, AMPK/ACC, IRS-1/PI3K signaling pathways, and modulation of K+-Ca2+ channels, as well as influence of VEGF, NOS, AGEs, PPAR expression and hIAPP aggregation. The antidiabetic effects of this herb may be related to its TCM characters of improving blood circulation and reliving blood stasis. The main ingredients of SM included salvianolic acids and diterpenoid tanshinones, which have been well studied in the diabetic animals. Acute and subacute toxicity studies supported the notion that SM is well tolerated. CONCLUSION SM may offer a new strategy for prevention and treatment of diabetes and its complications that stimulates extensive research into identifying potential anti-diabetic compounds and fractions as well as exploring the underlying mechanisms of this herb. Further scientific evidences are still required from well-designed preclinical experiments and clinical trials on its anti-diabetic effects and safety.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yiwen Che
- The Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dandan Zhao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Mo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
13
|
Ooi BK, Chan KG, Goh BH, Yap WH. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2018; 9:1308. [PMID: 30498447 PMCID: PMC6249275 DOI: 10.3389/fphar.2018.01308] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/25/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are closely linked to cellular oxidative stress and inflammation. This may be resulted from the imbalance generation of reactive oxygen species and its role in promoting inflammation, thereby contributing to endothelial dysfunction and cardiovascular complications. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a significant role in regulating expression of antioxidant and cytoprotective enzymes in response to oxidative stress. Natural products have emerged as a potential source of bioactive compounds which have shown to protect against atherogenesis development by activating Nrf2 signaling. This review aims to provide a comprehensive summary of the published data on the function, regulation and activation of Nrf2 as well as the molecular mechanisms of natural products in regulating Nrf2 signaling. The beneficial effects of using natural bioactive compounds as a promising therapeutic approach for the prevention and treatment of CVDs are reviewed.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
14
|
Therapeutic Potential of Salviae Miltiorrhizae Radix et Rhizoma against Human Diseases Based on Activation of Nrf2-Mediated Antioxidant Defense System: Bioactive Constituents and Mechanism of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7309073. [PMID: 30050659 PMCID: PMC6040253 DOI: 10.1155/2018/7309073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress plays a central role in the pathogenesis of many human diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the intracellular antioxidant response and is an emerging target for the prevention and therapy of oxidative stress-related diseases. Salviae Miltiorrhizae Radix et Rhizoma (SMRR) is a traditional Chinese medicine (TCM) and is commonly used for the therapy of cardiac cerebral diseases. Cumulative evidences indicated that the extract of SMRR and its constituents, represented by lipophilic diterpenoid quinones and hydrophilic phenolic acids, were capable of activating Nrf2 and inhibiting oxidative stress. These bioactive constituents demonstrated a therapeutic potential against human diseases, exemplified by cardiovascular diseases, neurodegenerative diseases, diabetes, nephropathy, and inflammation, based on the induction of Nrf2-mediated antioxidant response and the inhibition of oxidative stress. In the present review, we introduced the SMRR and Nrf2 signaling pathway, summarized the constituents with an Nrf2-inducing effect isolated from SMRR, and discussed the molecular mechanism and pharmacological functions of the SMRR extract and its constituents.
Collapse
|
15
|
Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Front Physiol 2018; 9:105. [PMID: 29503620 PMCID: PMC5820314 DOI: 10.3389/fphys.2018.00105] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant worldwide healthcare problem. Regardless of the initial injury, renal fibrosis is the common final pathway leading to end stage renal disease. Although the underlying mechanisms are not fully defined, evidence indicates that besides inflammation, oxidative stress plays a crucial role in the etiology of renal fibrosis. Oxidative stress results from an imbalance between the production of free radicals that are often increased by inflammation and mitochondrial dysfunction, and reduced anti-oxidant defenses. Several studies have demonstrated that oxidative stress may occur secondary to activation of transforming growth factor β1 (TGF-β1) activity, consistent with its role to increase nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity. A number of other oxidative stress-related signal pathways have also been identified, such as nuclear factor erythroid-2 related factor 2 (Nrf2), the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway, and the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. Several antioxidant and renoprotective agents, including cysteamine bitartrate, epoxyeicosatrienoic acids (EETs), and cytoglobin (Cygb) have demonstrated ameliorative effects on renal fibrosis in preclinical or clinical studies. The mechanism of action of many traditional Chinese medicines used to treat renal disorders is based on their antioxidant properties, which could form the basis for new therapeutic approaches. This review focuses on the signaling pathways triggered by oxidative stress that lead to renal fibrosis and provides an update on the development of novel anti-oxidant therapies for CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|