1
|
Pan Y, Ma T, Chen D, Wang Y, Peng Y, Lu T, Yin X, Li H, Zhang G, Wang X. Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang inhibits the progression of triple negative breast cancer though the activation inhibition of NF-κB triggered by CAFs-derived IL6. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118656. [PMID: 39121924 DOI: 10.1016/j.jep.2024.118656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment options for triple-negative breast cancer (TNBC) are limited. Traditional Chinese Medicine (TCM) plays an important role in the treatment of TNBC. The herb pair Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang (SH) is commonly used in clinical practice for its anti-tumor properties. It has been proven to have good therapeutic effects on tumor-related diseases, but the underlying molecular mechanisms are not yet fully explained. AIM OF STUDY Through bioinformatics, it was validated that IL6, primarily derived from cancer-associated fibroblasts (CAFs), is associated with poor prognosis. Additionally, cell and animal experiments confirmed that SH inhibits tumor proliferation, migration, and growth in an orthotopic tumor model by suppressing the IL6/NF-κB pathway. MATERIALS AND METHODS GEO, TCGA and HPA databases were used to analyze the prognostic value of CAFs and IL6, then IL6 resource was detected. After the bioinformatics, the influence of CAFs and CAFs-derived IL6 on TNBC was verified by experiments both in vitro and in vivo. Cell clone formation assay, wound-Healing assay, and Transwell assay were used to detect the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vitro. TNBC model in mice was used to prove the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vivo. The biological pathway of NF-κB was explored by western blotting through detecting unique molecules. RESULTS Bioinformatics analysis revealed that higher proportion of CAFs and elevated level of IL6 were significantly associated with poor prognosis in TNBC. At the same time, IL6 was proved predominantly derived from CAFs. After the indication of bioinformatics, experiments in vitro demonstrated that both CAFs and IL6 could enhance the clone formation and migration ability of MDA-MD-231 cells (231), furthermore, the promotion of CAFs was related with the level of IL6. Based on these data, mechanism was detected that CAFs-derived IL6 enhancement was closely related to the activation of NF-κB signaling pathway, while the activation can be reduced by SH. In the end, the promotion of CAFs/CAFs-derived IL6/NF-κB and the efficacy of SH inhibition were both confirmed by experiments in vivo. CONCLUSIONS Bioinformatics data indicates that higher proportion of CAFs and higher level of CAFs-derived IL6 are significantly related to poorer survival of TNBC. CAFs and CAFs-derived IL6 were proved to promote the progression of TNBC both in vitro and in vivo, and the process of which was significantly related to the activation of NF-κB. SH inhibited the progress of TNBC, which was proved to be closely related to CAFs/CAFs-derived IL6/NF-κB.
Collapse
Affiliation(s)
- Yuancan Pan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Tingting Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Dong Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yue Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Peng
- Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Taicheng Lu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaohui Yin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Haiming Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
2
|
Su Q, Pan J, Wang C, Zhang M, Cui H, Zhao X. Curcumin and Baicalin Co-Loaded Nanoliposomes for Synergistic Treatment of Non-Small Cell Lung Cancer. Pharmaceutics 2024; 16:973. [PMID: 39204318 PMCID: PMC11359521 DOI: 10.3390/pharmaceutics16080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Currently, the treatment of patients with advanced non-small cell lung cancer (NSCLC) mainly relies on traditional chemotherapeutic drugs; however, most of them have limited therapeutic effects and high toxicity. Some natural products with good therapeutic efficacy and low toxicity and side effects are limited in clinical application due to their low solubility and bioavailability. In this study, a nanoliposome drug-carrying system (Lip-Cur/Ba) was developed for the co-delivery of curcumin (Cur) and baicalin (Ba) using the thin-film hydration method. In vitro experiments demonstrated that Lip-Cur/Ba had a strong killing effect on A549 cells, and the inhibitory effect of Lip-Cur/Ba on A549 cells was enhanced by 67.8% and 51.9% relative to that of the single-carrier system, which could reduce the use of a single-drug dose (Lip-Cur and Lip-Ba), delay the release rate of the drug and improve the bioavailability. In vivo experiments demonstrated the antitumor activity of Lip-Cur/Ba by intravitreal injection in BALB/c mice, and there were no obvious toxic side effects. This study provides a new idea for curcumin and baicalin to be used in the co-treatment of NSCLC by constructing a new vector.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (J.P.); (C.W.); (M.Z.); (H.C.)
| |
Collapse
|
3
|
Bernasinska-Slomczewska J, Hikisz P, Pieniazek A, Koceva-Chyla A. Baicalin and Baicalein Enhance Cytotoxicity, Proapoptotic Activity, and Genotoxicity of Doxorubicin and Docetaxel in MCF-7 Breast Cancer Cells. Molecules 2024; 29:2503. [PMID: 38893380 PMCID: PMC11173533 DOI: 10.3390/molecules29112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is a major health concern and the leading cause of death among women worldwide. Standard treatment often involves surgery, radiotherapy, and chemotherapy, but these come with side effects and limitations. Researchers are exploring natural compounds like baicalin and baicalein, derived from the Scutellaria baicalensis plant, as potential complementary therapies. This study investigated the effects of baicalin and baicalein on the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel, commonly used chemotherapeutic drugs for breast cancer. The analysis included breast cancer cells (MCF-7) and human endothelial cells (HUVEC-ST), to assess potential effects on healthy tissues. We have found that baicalin and baicalein demonstrated cytotoxicity towards both cell lines, with more potent effects observed in baicalein. Both flavonoids, baicalin (167 µmol/L) and baicalein (95 µmol/L), synergistically enhanced the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel in breast cancer cells. In comparison, their effects on endothelial cells were mixed and depended on concentration and time. The results suggest that baicalin and baicalein might be promising complementary agents to improve the efficacy of doxorubicin and docetaxel anticancer activity. However, further research is needed to validate their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Joanna Bernasinska-Slomczewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Aneta Koceva-Chyla
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland;
| |
Collapse
|
4
|
Mian S, Christenhusz MJM, Leitch IJ. The genome sequence of the Lesser Skullcap, Scutellaria minor Huds., 1762 (Lamiaceae). Wellcome Open Res 2024; 9:165. [PMID: 39206280 PMCID: PMC11350328 DOI: 10.12688/wellcomeopenres.21164.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 09/04/2024] Open
Abstract
We present a genome assembly from an individual Scutellaria minor (Tracheophyta; Magnoliopsida; Lamiales; Lamiaceae). The genome sequence is 341.8 megabases in span. Most of the assembly is scaffolded into 14 chromosomal pseudomolecules. The mitochondrial and plastid genome assemblies have lengths of 376.64 kilobases and 152.59 kilobases in length, respectively.
Collapse
Affiliation(s)
- Sahr Mian
- Royal Botanic Gardens Kew, Richmond, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang R, Wang C, Lu L, Yuan F, He F. Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives. Pharmacol Res 2024; 199:107032. [PMID: 38061594 DOI: 10.1016/j.phrs.2023.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Cancer is a leading cause of death worldwide. The burden of cancer incidence and mortality is increasing rapidly. New approaches to cancer prevention and treatment are urgently needed. Natural products are reliable and powerful sources for anticancer drug discovery. Baicalin and baicalein, two major flavones isolated from Scutellaria baicalensis Georgi, a multi-purpose traditional medicinal plant in China, exhibit anticancer activities against multiple cancers. Of note, these phytochemicals exhibit extremely low toxicity to normal cells. Besides their cytotoxic and cytostatic activities toward diverse tumor cells, recent studies demonstrated that baicalin and baicalein modulate a variety of tumor stromal cells and extracellular matrix (ECM) in the tumor microenvironment (TME), which is essential for tumorigenesis, cancer progression and metastasis. In this review, we summarize the therapeutic potential and the mechanism of action of baicalin and baicalein in the regulation of tumor microenvironmental immune cells, endothelial cells, fibroblasts, and ECM that reshape the TME and cancer signaling, leading to inhibition of tumor angiogenesis, progression, and metastasis. In addition, we discuss the biotransformation pathways of baicalin and baicalein, related therapeutic challenges and the future research directions to improve their bioavailability and clinical anticancer applications. Recent advances of baicalin and baicalein warrant their continued study as important natural ways for cancer interception and therapy.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyan Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lianheng Lu
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Feng He
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Dong Md S, Xu Md P, Yang Md P, Jiao Md J, Cheng Md PhD CS, Chen Md PhD L. "Huanglianjiedu Decoction" Against Pancreatic Adenocarcinoma Proliferation of by Downregulating the PI3K/AKT/mTOR and MAPK/ERK1/2 Signaling Pathways. J Evid Based Integr Med 2024; 29:2515690X241291381. [PMID: 39410848 PMCID: PMC11489918 DOI: 10.1177/2515690x241291381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Huanglianjiedu decoction (HLJDD) is a classical Traditional Chinese Medicine (TCM) prescription with thousand years of clinical use against various malignancies, including pancreatic adenocarcinoma (PAAD). However, its potential bioactive component and molecular mechanism remains unclear. AIMS This study is to inspect the HLJDD mechanisms of action against PAAD via integrated computational and pharmacochemistry strategy, in vivo and in vitro experiments to validate associated targets and pathways. METHODS A PAAD xenograft model was established by subcutaneous injecting Panc02 cells into C57BL/6 mice. Ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) was engaged to determine constituents of HLJDD and assessed for pharmacokinetic scheme using the TCM Systems Pharmacology Platform (TCM-SP). Differentially expressed genes (DEGs) of PAAD was retrieved from the transcriptome dataset GSE43795, followed by recognizing overlapping targets the oncogenes and target genes of PAAD and HLJDD, respectively. Putative signaling pathways of HLJDD in treating PAAD were enriched using KEGG and GO analyses. The anti-PAAD effects of HLJDD was assessed in vivo and in vitro, besides, the potential mechanism was validated using immunoblotting and immunohistochemical assays. RESULTS HLJDD significantly suppressed the growth of transplanted PAAD tumors, constrained PAAD progression, and induced apoptosis and S-phase arrest. Seventy-five active components meeting the drug-likeness criteria and 278 target genes of HLJDD were identified. KEGG analysis indicated that the top three enriched pathways were cancer, AGE-RAGE signaling, and IL-17 signaling pathways. Disease enrichment analysis highlighted immune, pharmacological, and cancer-related diseases as the top three categories. A total of 47 potential target genes were identified. Immunoblotting revealed that HLJDD inhibited PI3K and MAPK-related signaling pathways, while immunohistochemical staining confirmed that HLJDD suppressed the expression of phosphorylated MAPK and ERK1/2. CONCLUSION HLJDD inhibited PAAD in vitro and in vivo via the modulation of multiple mechanisms, including regulation of PI3K/AKT/mTOR and MAPK/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Shu Dong Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Panling Xu Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Peiwen Yang Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juying Jiao Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chien-Shan Cheng Md PhD
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Lianyu Chen Md PhD
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zheng Y, Yang K, Shen J, Chen X, He C, Xiao P. Huangqin Tea Total Flavonoids-Gut Microbiota Interactions: Based on Metabolome and Microbiome Analysis. Foods 2023; 12:4410. [PMID: 38137214 PMCID: PMC10742805 DOI: 10.3390/foods12244410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Huangqin tea (HQT), a Non-Camellia Tea derived from the aerial parts of Scutellaria baicalensis, is widely used in the north of China. The intervention effects of HQT on intestinal inflammation and tumors have been found recently, but the active ingredient and mechanism of action remain unclear. This study aimed to investigate the interactions between the potential flavonoid active components and gut microbiota through culture experiments in vitro combined with HPLC-UV, UPLC-QTOF-MS, and 16S rDNA sequencing technology. The results showed that the HQT total flavonoids were mainly composed of isocarthamidin-7-O-β-D-glucuronide, carthamidin-7-O-β-D-glucuronide, scutellarin, and others, which interact closely with gut microbiota. After 48 h, the primary flavonoid glycosides transformed into corresponding aglycones with varying degrees of deglycosylation. The composition of the intestinal microbiota was changed significantly. The beneficial bacteria, such as Enterococcus and Parabacteroides, were promoted, while the harmful bacteria, such as Shigella, were inhibited. The functional prediction results have indicated notable regulatory effects exerted by total flavonoids and scutellarin on various pathways, including purine metabolism and aminoacyl-tRNA biosynthesis, among others, to play a role in the intervention of inflammation and tumor-related diseases. These findings provided valuable insights for further in-depth research and investigation of the active ingredients, metabolic processes, and mechanisms of HQT.
Collapse
Affiliation(s)
- Yaping Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Kailin Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Jie Shen
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China;
| | - Xiangdong Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| |
Collapse
|
8
|
Feng Y, Zhu P, Wu D, Deng W. A Network Pharmacology Prediction and Molecular Docking-Based Strategy to Explore the Potential Pharmacological Mechanism of Astragalus membranaceus for Glioma. Int J Mol Sci 2023; 24:16306. [PMID: 38003496 PMCID: PMC10671347 DOI: 10.3390/ijms242216306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Glioma treatment in traditional Chinese medicine has a lengthy history. Astragalus membranaceus, a traditional Chinese herb that is frequently utilized in therapeutic practice, is a component of many Traditional Chinese Medicine formulas that have been documented to have anti-glioma properties. Uncertainty persists regarding the molecular mechanism behind the therapeutic effects. Based on results from network pharmacology and molecular docking, we thoroughly identified the molecular pathways of Astragalus membranaceus' anti-glioma activities in this study. According to the findings of the enrichment analysis, 14 active compounds and 343 targets were eliminated from the screening process. These targets were mainly found in the pathways in cancer, neuroactive ligand-receptor interaction, protein phosphorylation, inflammatory response, positive regulation of phosphorylation, and inflammatory mediator regulation of Transient Receptor Potential (TRP) channels. The results of molecular docking showed that the active substances isoflavanone and 1,7-Dihydroxy-3,9-dimethoxy pterocarpene have strong binding affinities for the respective targets ESR2 and PTGS2. In accordance with the findings of our investigation, Astragalus membranaceus active compounds exhibit a multicomponent and multitarget synergistic therapeutic impact on glioma by actively targeting several targets in various pathways. Additionally, we propose that 1,7-Dihydroxy-3,9-dimethoxy pterocarpene and isoflavanone may be the main active ingredients in the therapy of glioma.
Collapse
Affiliation(s)
- Yu Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China;
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China;
| | - Peng Zhu
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China;
| | - Dong Wu
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China;
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China;
| |
Collapse
|
9
|
Huang B, Yin Z, Zhou F, Su J. Functional anti-bone tumor biomaterial scaffold: construction and application. J Mater Chem B 2023; 11:8565-8585. [PMID: 37415547 DOI: 10.1039/d3tb00925d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Bone tumors, including primary bone tumors and bone metastases, have been plagued by poor prognosis for decades. Although most tumor tissue is removed, clinicians are still confronted with the dilemma of eliminating residual cancer cells and regenerating defective bone tissue after surgery. Therefore, functional biomaterial scaffolds are considered to be the ideal candidates to bridge defective tissues and restrain cancer recurrence. Through functionalized structural modifications or coupled therapeutic agents, they provide sufficient mechanical strength and osteoinductive effects while eliminating cancer cells. Numerous novel approaches such as photodynamic, photothermal, drug-conjugated, and immune adjuvant-assisted therapies have exhibited remarkable efficacy against tumors while exhibiting low immunogenicity. This review summarizes the progress of research on biomaterial scaffolds based on different functionalization strategies in bone tumors. We also discuss the feasibility and advantages of the combined application of multiple functionalization strategies. Finally, potential obstacles to the clinical translation of anti-tumor bone bioscaffolds are highlighted. This review will provide valuable references for future advanced biomaterial scaffold design and clinical bone tumor therapy.
Collapse
Affiliation(s)
- Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
10
|
Mathomes RT, Koulas SM, Tsialtas I, Stravodimos G, Welsby PJ, Psarra AMG, Stasik I, Leonidas DD, Hayes JM. Multidisciplinary docking, kinetics and X-ray crystallography studies of baicalein acting as a glycogen phosphorylase inhibitor and determination of its' potential against glioblastoma in cellular models. Chem Biol Interact 2023; 382:110568. [PMID: 37277066 DOI: 10.1016/j.cbi.2023.110568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Glycogen phosphorylase (GP) is the rate-determining enzyme in the glycogenolysis pathway. Glioblastoma (GBM) is amongst the most aggressive cancers of the central nervous system. The role of GP and glycogen metabolism in the context of cancer cell metabolic reprogramming is recognised, so that GP inhibitors may have potential treatment benefits. Here, baicalein (5,6,7-trihydroxyflavone) is studied as a GP inhibitor, and for its effects on glycogenolysis and GBM at the cellular level. The compound is revealed as a potent GP inhibitor against human brain GPa (Ki = 32.54 μM), human liver GPa (Ki = 8.77 μM) and rabbit muscle GPb (Ki = 5.66 μM) isoforms. It is also an effective inhibitor of glycogenolysis (IC50 = 119.6 μM), measured in HepG2 cells. Most significantly, baicalein demonstrated anti-cancer potential through concentration- and time-dependent decrease in cell viability for three GBM cell-lines (U-251 MG, U-87 MG, T98-G) with IC50 values of ∼20-55 μM (48- and 72-h). Its effectiveness against T98-G suggests potential against GBM with resistance to temozolomide (the first-line therapy) due to a positive O6-methylguanine-DNA methyltransferase (MGMT) status. The solved X-ray structure of rabbit muscle GP-baicalein complex will facilitate structure-based design of GP inhibitors. Further exploration of baicalein and other GP inhibitors with different isoform specificities against GBM is suggested.
Collapse
Affiliation(s)
- Rachel T Mathomes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Symeon M Koulas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Philip J Welsby
- Department of Postgraduate Medical Education, Edge Hill University, Ormskirk, L39 4QP, United Kingdom
| | - Anna-Maria G Psarra
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Izabela Stasik
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Demetres D Leonidas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Joseph M Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| |
Collapse
|
11
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Seo HW, Ha TY, Ko G, Jang A, Choi JW, Lee DH, Chang KA. Scutellaria baicalensis Attenuated Neurological Impairment by Regulating Programmed Cell Death Pathway in Ischemic Stroke Mice. Cells 2023; 12:2133. [PMID: 37681864 PMCID: PMC10486384 DOI: 10.3390/cells12172133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Stroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear. Scutellaria baicalensis, an herbal component known for its anti-inflammatory and antioxidant properties, has traditionally been used to treat brain disorders. This study investigated the therapeutic effects of the Scutellaria baicalensis extraction (SB) during the acute stage of ischemic stroke using photothrombotic (PTB)-induced and transient middle cerebral artery occlusion (tMCAO) model mice. We found that SB mitigated ischemic brain injury, as evidenced by a significant reduction in the modified neurological severity score in the acute stage of PTB and both the acute and chronic stages of tMCAO. Furthermore, we elucidated the regulatory role of SB in the necroptosis and pyroptosis pathways during the acute stage of stroke, underscoring its protective effects. Behavioral assessments demonstrated the effectiveness of SB in ameliorating motor dysfunction and cognitive impairment compared to the group receiving the vehicle. Our findings highlight the potential of SB as a promising therapeutic candidate for stroke. SB was found to help modulate the programmed cell death pathways, promote neuroprotection, and facilitate functional recovery.
Collapse
Affiliation(s)
- Ho-won Seo
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Tae-Young Ha
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
| | - Geon Ko
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Aram Jang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ji-Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea;
| | - Dong-hun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Keun-A Chang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
13
|
Yuan J, Khan SU, Yan J, Lu J, Yang C, Tong Q. Baicalin enhances the efficacy of 5-Fluorouracil in gastric cancer by promoting ROS-mediated ferroptosis. Biomed Pharmacother 2023; 164:114986. [PMID: 37295251 DOI: 10.1016/j.biopha.2023.114986] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND 5-Fluorouracil (5-Fu) is one of the most commonly used chemotherapy drugs for gastric cancer (GC). But the increase of drug resistance makes the prognosis of patients worse. Studies have shown that Baicalin can not only inhibit various cancers but also increase the sensitivity of cancers to chemotherapy. However, how Baicalin works in chemotherapeutic resistance of GC are unclear. METHODS CCK8 (Cell Counting Kit 8) was used to detect the IC50 (half maximal inhibitory concentration) of Baicalin and 5-Fu. Proliferation, migration, and invasion of GC were tested through colony formation assay and transwell assay. Fluorescent probes detected intracellular reactive oxygen species (ROS). RNA-seq (RNA sequencing) detected differentially expressed genes and pathways, and qPCR (Quantitative Real-time PCR) tested the expression of ferroptosis-related genes. RESULTS The combination of Baicalin and 5-Fu inhibited GC progression and increased intracellular ROS levels. Both the inhibition of malignant phenotype of gastric cancer cells and the generation of intracellular ROS caused by Baicalin could be saved by the inhibitor of ferroptosis-Ferrostatin-1 (Fer-1). Heat map of enriched differentially expressed genes identified by RNA-seq included four ferroptosis-related genes, and subsequent GO (Gene Ontology) analysis suggested an association between the ferroptosis pathway and Baicalin treatment. The changes in expression of ferroptosis-related genes were validated by qPCR, and the result confirmed that the combination of Baicalin and 5-Fu promoted ferroptosis in GC. CONCLUSIONS Baicalin inhibits GC and enhances 5-Fu by promoting ROS-related ferroptosis in GC.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad 22080, Pakistan
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiatong Lu
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chen Yang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
14
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
15
|
Wang R, Jia F, Zhao Z, Du L, Lu L, Xu D, He F. Dachaihu decoction inhibits hypernutrition-induced liver metastasis from colorectal cancer by maintaining the gut vascular barrier. CANCER PATHOGENESIS AND THERAPY 2023; 1:98-110. [PMID: 38328407 PMCID: PMC10846307 DOI: 10.1016/j.cpt.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 02/09/2024]
Abstract
Background Colorectal cancer (CRC) is the third most common malignancy and the second deadliest cancer worldwide. Metastasis to the liver, the most common metastatic site in CRC, is the leading cause of death in patients with CRC. Hyperlipidemia, which is common in patients with CRC, promotes CRC progression and metastasis. Hyperlipidemia is commonly observed in obese patients and is often induced by hypernutrition. The underlying mechanism of hypernutrition-induced hyperlipidemia in promoting CRC liver metastasis remains unclear, and there is an unmet need for effective and low-cost treatments for patients with CRC. Methods A mouse cecum orthotopic CRC model combined with high-fat diet (HFD) feeding, was established to mimic liver metastasis in CRC in obese patients. The effects of Dachaihu decoction (DCHD), a traditional herbal medicine used to treat inflammation and nonalcoholic fatty liver disease, and of the conventional prescription medicine obeticholic acid (OCA) were evaluated. HFD-induced obesity, hyperlipidemia, and CRC liver metastasis were assessed, along with the histology and pathology of the liver and intestine and the expression of metabolic genes in these tissues. The effects of DCHD and OCA on HFD-induced outcomes were evaluated, and human umbilical vein endothelial cells (HUVECs) treated with bile acids (BAs) and DCHD were used to study the underlying mechanisms in vitro. Results HFD-mediated obesity and hyperlipidemia promoted CRC metastasis, accompanied by disruption of the gut vascular barrier (GVB) and altered bile acid (BA) metabolism. DCHD decreased HFD-induced hyperlipidemia and liver metastasis in CRC, improving overall survival. Those effects of DCHD were equivalent to or better than those of OCA. DCHD regulated the expression of genes of BA metabolism and tight junctions (TJ) to prevent HFD-induced disruption of the GVB. In HUVECs, DCHD prevented the increases in intracellular Ca2+ and accumulation of reactive oxygen species induced by primary conjugated BAs, assisting in the maintenance of redox homeostasis and preventing the downregulation of TJ proteins, thereby maintaining the integrity of the endothelial barrier. Conclusions The data provide a link between hypernutrition and GVB disruption, which contributes to high liver metastasis in patients with CRC. DCHD may represent a novel therapy in CRC, and targeting abnormal lipid metabolism could be a promising therapeutic strategy for avoiding hypernutrition-associated CRC metastasis.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenguo Zhao
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liqing Du
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lianheng Lu
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Feng He
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Shen J, Yang Z, Wu X, Yao G, Hou M. Baicalein facilitates gastric cancer cell apoptosis by triggering endoplasmic reticulum stress via repression of the PI3K/AKT pathway. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:10. [PMID: 36815904 PMCID: PMC9924871 DOI: 10.1186/s13765-022-00759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Gastric cancer (GC) remains a prevailing threat to life. Baicalein exhibits anti-cancer properties. This study estimated the mechanism of baicalein in GC cell apoptosis by mediating endoplasmic reticulum stress (ERS) through the PI3K/AKT pathway. METHODS After treatment with different concentrations of baicalein, GC cell (HGC-27 and AGS) viability was detected by MTT assay. AGS cells more sensitive to baicalein treatment were selected as study subjects. The IC50 of baicalein on AGS cells was determined. Colony formation, cell cycle, and apoptosis were detected using crystal violet staining and flow cytometry. Levels of ERS-related and BTG3/PI3K/AKT pathway-related proteins were determined by Western blot. Intracellular Ca2+ level was measured using Fluo-3 AM fluorescence working solution. GC mouse models were established by subcutaneously injecting AGS cells into the right rib and were intragastrically administrated with baicalein. Tumor volume and weight were recorded. Expression of Ki67 in tumor tissues and positive expression of apoptotic cells were detected by immunohistochemistry and TUNEL staining. RESULTS Baicalein inhibited cell proliferation and induced G0/G1 arrest and apoptosis by regulating the cell cycle, and triggered ERS in GC cells. Baicalein impeded the PI3K/AKT pathway by activating BTG3, thereby triggering ERS and inducing apoptosis. BTG3 inhibition reversed baicalein-induced apoptosis and ERS. Baicalein regulated GC cells in a concentration-dependent manner. Moreover, in xenograft mice, baicalein prevented tumor growth, decreased Ki67-positive cells, activated BTG3, and inhibited the PI3K/AKT pathway, thus activating ERS and increasing apoptotic cells. CONCLUSION Baicalein facilitates GC cell apoptosis by triggering ERS via repression of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Junjie Shen
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Zhiwen Yang
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Xinlin Wu
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Guodong Yao
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Mingxing Hou
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1, Datong North Street, Huimin District, 010050 Hohhot, Inner Mongolia China
| |
Collapse
|
17
|
Skullcapflavone II, a novel NQO1 inhibitor, alleviates aristolochic acid I-induced liver and kidney injury in mice. Acta Pharmacol Sin 2023:10.1038/s41401-023-01052-3. [PMID: 36697978 PMCID: PMC9876410 DOI: 10.1038/s41401-023-01052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023] Open
Abstract
Aristolochic acid I (AAI) is a well established nephrotoxin and human carcinogen. Cytosolic NAD(P)H quinone oxidoreductase 1 (NQO1) plays an important role in the nitro reduction of aristolochic acids, leading to production of aristoloactam and AA-DNA adduct. Application of a potent NQO1 inhibitor dicoumarol is limited by its life-threatening side effect as an anticoagulant and the subsequent hemorrhagic complications. As traditional medicines containing AAI remain available in the market, novel NQO1 inhibitors are urgently needed to attenuate the toxicity of AAI exposure. In this study, we employed comprehensive 2D NQO1 biochromatography to screen candidate compounds that could bind with NQO1 protein. Four compounds, i.e., skullcapflavone II (SFII), oroxylin A, wogonin and tectochrysin were screened out from Scutellaria baicalensis. Among them, SFII was the most promising NQO1 inhibitor with a binding affinity (KD = 4.198 μmol/L) and inhibitory activity (IC50 = 2.87 μmol/L). In human normal liver cell line (L02) and human renal proximal tubular epithelial cell line (HK-2), SFII significantly alleviated AAI-induced DNA damage and apoptosis. In adult mice, oral administration of SFII dose-dependently ameliorated AAI-induced renal fibrosis and dysfunction. In infant mice, oral administration of SFII suppressed AAI-induced hepatocellular carcinoma initiation. Moreover, administration of SFII did not affect the coagulation function in short term in adult mice. In conclusion, SFII has been identified as a novel NQO1 inhibitor that might impede the risk of AAI to kidney and liver without obvious side effect.
Collapse
|
18
|
Limbach KE, Wen W, Xing Q, Yan J, Yim JH. Baicalein activates 5' adenosine monophosphate-activated protein kinase, inhibits the mammalian target of rapamycin, and exhibits antiproliferative effects in pancreatic neuroendocrine tumors in vitro and in vivo. Surgery 2023; 173:12-18. [PMID: 36207198 DOI: 10.1016/j.surg.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The mammalian target of rapamycin inhibition has been shown to prolong progression-free survival in patients with pancreatic neuroendocrine tumors. The natural compound baicalein indirectly inhibits the mammalian target of rapamycin, but it is unknown if baicalein exhibits such effects at physiologically achievable concentrations or exhibits synergy. METHODS Pancreatic neuroendocrine tumor cell lines were cultured with baicalein, everolimus, and/or a synthetic 5' adenosine monophosphate-activated protein kinase activating agent alone and in combination. Cell viability assays and immunoblotting were performed. Female severe combined immunodeficient-beige mice were injected with BON-1 cells and treated with baicalein and COH-SR4 solutions via oral gavage. Tumor volumes were compared at 30 days. RESULTS Immunoblotting revealed that treatment of baicalein induced 5' adenosine monophosphate-activated protein kinase activation and the mammalian target of rapamycin inhibition. Treatment with baicalein alone led to a significant decrease in the ratio of viable cells compared with controls at 72 hours at concentrations ≥5 μM (P = .021). The addition of COH-SR4 led to significantly greater effect on cell viability than with baicalein alone (P < .001, P < .001). The combination of baicalein with everolimus resulted in significantly lower cell viability than with everolimus alone (P = .005, P < .001). Tumor volume in vivo was significantly decreased with the combination of baicalein and COH-SR4 compared with controls (P = .003). CONCLUSION Baicalein exhibits antiproliferative effects against pancreatic neuroendocrine tumor cell lines at doses ≥5 μM and demonstrates synergy.
Collapse
Affiliation(s)
- Kristen E Limbach
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA
| | - Wei Wen
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA
| | - Quanhua Xing
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA
| | - Jin Yan
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA
| | - John H Yim
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA.
| |
Collapse
|
19
|
Gu Y, Zheng Q, Fan G, Liu R. Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int J Mol Sci 2022; 23:ijms231911042. [PMID: 36232344 PMCID: PMC9570317 DOI: 10.3390/ijms231911042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Despite encouraging progresses in the development of novel therapies, cancer remains the dominant cause of disease-related mortality and has become a leading economic and healthcare burden worldwide. Scutellariae radix (SR, Huangqin in Chinese) is a common herb used in traditional Chinese medicine, with a long history in treating a series of symptoms resulting from cancer, like dysregulated immune response and metabolic abnormalities. As major bioactive ingredients extracted from SR, flavonoids, including baicalein, wogonin, along with their glycosides (baicalin and wogonoside), represent promising pharmacological and anti-tumor activities and deserve extensive research attention. Emerging evidence has made great strides in elucidating the multi-targeting therapeutic mechanisms and key signaling pathways underlying the efficacious potential of flavonoids derived from SR in the field of cancer treatment. In this current review, we aim to summarize the pharmacological actions of flavonoids against various cancers in vivo and in vitro. Moreover, we also make a brief summarization of the endeavor in developing a drug delivery system or structural modification to enhance the bioavailability and biological activities of flavonoid monomers. Taken together, flavonoid components in SR have great potential to be developed as adjuvant or even primary therapies for the clinical management of cancers and have a promising prospect.
Collapse
|
20
|
Effects of Origanum vulgare and Scutellaria baicalensis on the Physiological Activity and Biochemical Parameters of the Blood in Rats on a High-Fat Diet. Sci Pharm 2022. [DOI: 10.3390/scipharm90030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pharmacological effects of medicinal plants play a primary role in the mild correction of body weight in humans and animals, reducing the accumulation of fat in their bodies during a state of obesity. Origanum vulgare L. and Scutellaria baicalensis Georgi are widely used as food additives and medicinal plants, but their comprehensive physiological evaluation in model animals in a state of obesity has not been carried out. In a 30-day laboratory experiment on male rats which had developed obesity through a hypercaloric diet, the effects of adding the dry crushed grass O. vulgare or dry crushed roots of S. baicalensis to their feed was evaluated. During the experiment, the rats fed with O. vulgare increased in body weight to only 105.5% of their initial weight, while the body weight of the control group increased to 111.5%, and that of animals fed on S. baicalensis increased to 124.0% of their initial body weight. The average daily increase in the rats’ body weight when O. vulgare was added to their diet decreased to 205 mg/day, and when S. baicalensis was added, on the contrary, it increased to 1417 mg/day, compared to 700 mg/day among the control group. Under the influence of O. vulgare, the lipid metabolism of the rats normalized: the atherogenic index decreased to 33.7%, compared with the values of the control group, due to an increase in the concentration of high-density lipoproteins from cholesterol. The concentration of triglycerides decreased, and the concentration of glucose decreased. The roots of S. baicalensis being added into the diet of rats increased the activity of alkaline phosphatase and decreased the concentration of urea. The atherogenic index also decreased (by up to 35.5% in the control group) and the concentration of high-density lipoprotein cholesterol increased, while the concentrations of triglycerides and glucose decreased. The physical activity of the rats showed a slight tendency to decrease when both O. vulgare and S. baicalensis were added to their diet. Both plant species contributed to a decrease in the emotional status of animals, which was most pronounced when the O. vulgare grass was added to the feed. The results of the study demonstrate the potential of the use of O. vulgare and S. baicalensis as herbal supplementations for the correction of hyperlipidemia and type-2 diabetes mellitus in overweight patients.
Collapse
|
21
|
Li T, Gao S, Han W, Gao Z, Wei Y, Wu G, Qiqiu W, Chen L, Feng Y, Yue S, Kuang H, Jiang X. Potential effects and mechanisms of Chinese herbal medicine in the treatment of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115275. [PMID: 35487447 DOI: 10.1016/j.jep.2022.115275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammatory dermatosis related to high morbidity and mortality. The incidence of psoriasis is increasing in recent decades. Some patients with psoriasis are anxious about the underlying side effects of synthetic drugs they are on. Therefore, they are eager to seek alternative and efficient therapy, such as Chinese herbal medicine (CHM). Researchers have found some CHM provides best source for the development of anti-psoriatic drugs because of their structural diversity and fewer adverse reactions. Some of CHM formulas or active constituents extracted from CHM have been rapidly developed into clinical drugs with good efficacy. At present, along with the CHM formulas, single CHM and its active components have been extensively accepted and utilized in the treatment of psoriasis, whose therapeutic mechanisms hitherto have not been thoroughly illustrated. AIM OF THE STUDY This review aimed to comprehensively summarize about the existing therapeutic mechanisms of CHM in the treatment of psoriasis and to provide a reference to develop future related studies in this field. MATERIALS AND METHODS Relevant literatures about how CHM treated psoriasis were acquired from published scientific studies (including PubMed, CNKI, Web of Science, Baidu Scholar, The Plant List, Elsevier and SciFinder). All plants appearing in the review have been included in The Plant List or Medicinal Plant Names Services (MPNS). RESULTS In this review, we collect numerous literatures about how CHM treats psoriasis via immune cells, signaling pathways and disease-related mediators and systematically elucidates potential mechanisms from the point of the suppression of oxidative stress, the inhibition of abnormal abnormal proliferation and differentiation, the inhibition of immune responses, and the suppression of angiogenesis. CONCLUSIONS Psoriasis is considered as a complicated disease caused by interaction among various mechanisms. The CHM formulas, single CHM and its active components have considerable positive reports about the treatment of psoriasis, which brings hope for a promising future of CHM in the clinical therapy of psoriasis. In the paper, we have concluded that the existing therapeutic mechanisms of CHM in the treatment of psoriasis.
Collapse
Affiliation(s)
- Tingting Li
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Si Gao
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Han
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No.4 Dong-qing Road, Huaxi District, Guiyang, 550025, China
| | - Zhenqiu Gao
- School of Pharmacy, Yancheng Teachers University, Xiwang Road, Tinghu District, Yancheng, 224007, China
| | - Yundong Wei
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Gang Wu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Qiqiu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Li Chen
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Yiping Feng
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Shijiao Yue
- Gangnan Castle Peak Psychiatric Hospital, Jiangnan Industrial Park District, Guigang, 537100, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Xudong Jiang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China.
| |
Collapse
|
22
|
Costine B, Zhang M, Chhajed S, Pearson B, Chen S, Nadakuduti SS. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties. Sci Rep 2022; 12:13201. [PMID: 35915209 PMCID: PMC9343603 DOI: 10.1038/s41598-022-17586-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Scutellaria baicalensis is a well-studied medicinal plant belonging to the Lamiaceae family, prized for the unique 4′-deoxyflavones produced in its roots. In this study, three native species to the Americas, S. lateriflora, S. arenicola, and S. integrifolia were identified by DNA barcoding, and phylogenetic relationships were established with other economically important Lamiaceae members. Furthermore, flavone profiles of native species were explored. 4′-deoxyflavones including baicalein, baicalin, wogonin, wogonoside, chrysin and 4′-hydroxyflavones, scutellarein, scutellarin, and apigenin, were quantified from leaves, stems, and roots. Qualitative, and quantitative differences were identified in their flavone profiles along with characteristic tissue-specific accumulation. 4′-deoxyflavones accumulated in relatively high concentrations in root tissues compared to aerial tissues in all species except S. lateriflora. Baicalin, the most abundant 4′-deoxyflavone detected, was localized in the roots of S. baicalensis and leaves of S. lateriflora, indicating differential accumulation patterns between the species. S. arenicola and S. integrifolia are phylogenetically closely related with similar flavone profiles and distribution patterns. Additionally, the S. arenicola leaf flavone profile was dominated by two major unknown peaks, identified using LC–MS/MS to most likely be luteolin-7-O-glucuronide and 5,7,2′-trihydroxy-6-methoxyflavone 7-O-glucuronide. Collectively, results presented in this study suggest an evolutionary divergence of flavonoid metabolic pathway in the Scutellaria genus of Lamiaceae.
Collapse
Affiliation(s)
- Blake Costine
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, USA
| | - Mengzi Zhang
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Shweta Chhajed
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Brian Pearson
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Satya Swathi Nadakuduti
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, USA. .,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Huang J, Zhou M, Zhang H, Fang Y, Chen G, Wen J, Liu L. Characterization of the mechanism of Scutellaria baicalensis on reversing radio-resistance in colorectal cancer. Transl Oncol 2022; 24:101488. [PMID: 35872478 PMCID: PMC9307497 DOI: 10.1016/j.tranon.2022.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/09/2022] Open
Abstract
Scutellaria baicalensis (SB) has been shown to improve the therapeutic effects of colorectal cancer (CRC) and perform well for reversing radio-resistance in different cancers. However, its potential function and mechanism related to radio-resistance in CRC has not been explored. A radio-resistant human CRC cell line (HCT116R) was applied. A network pharmacological analysis was performed to reveal the potential mechanism of SB for reversing radio-resistance in CRC, and computational pathological analysis was applied to indicate the clinicopathological significance of the key targets. Then, our hypothesis was further verified by molecular docking. The network pharmacology analysis showed that wogonin is the key compound of SB for reversing the radio-resistance of CRC. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the genes for SB that reverse radio-resistance in CRC are mainly involved in steroid hormone biosynthesis. An enrichment analysis pointed out that Sulfotransferase family 2B member 1 (SULT2B1) is a potentially vital gene. SULT2B1 was demonstrated as being highly expressed in CRC and upregulated in radio-resistant rectal tissues or cell lines. A CCK-8 and clone formation test showed that the viability and clone formation ability of HCT116R were significantly decreased by wogonin combined with radiotherapy, compared to radiotherapy alone. By contrast, flow cytometry revealed that the apoptosis of HCT116R was significantly increased when wogonin treatment combined with radiotherapy, compared with radiotherapy alone. Molecular docking verification indicated that SULT2B1 and wogonin have a good binding ability. Taken together, SULT2B1 may be the potential drug target in treating radio-resistant CRC. Wogonin may be the core compound of SB for reversing radio-resistance in CRC by targeting SULT2B1.
Collapse
Affiliation(s)
- Jinmei Huang
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| | - Ming Zhou
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Huan Zhang
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Yeying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Jiaying Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - LiMin Liu
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
24
|
Shah M, Mubin S, Hassan SSU, Tagde P, Ullah O, Rahman MH, Al-Harrasi A, Rehman NU, Murad W. Phytochemical Profiling and Bio-Potentiality of Genus Scutellaria: Biomedical Approach. Biomolecules 2022; 12:biom12070936. [PMID: 35883492 PMCID: PMC9313281 DOI: 10.3390/biom12070936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Scutellaria (Lamiaceae) comprises over 360 species. Based on its morphological structure of calyx, also known as Skullcap, it is herbaceous by habit and cosmopolitan by habitat. The species of Scutellaria are widely used in local communities as a natural remedy. The genus contributed over three hundred bioactive compounds mainly represented by flavonoids and phenols, chemical ingredients which serve as potential candidates for the therapy of various biological activities. Thus, the current review is an attempt to highlight the biological significance and its correlation to various isolated bioactive ingredients including flavonoids, terpenoids, phenols, alkaloids, and steroids. However, flavonoids were the dominant group observed. The findings of the Scutellaria reveal that due to its affluent basis of numerous chemical ingredients it has a diverse range of pharmacological potentials, such as antimicrobial, antioxidant, antifeedant, enzyme inhibition, anti-inflammatory, and analgesic significance. Currently, various bioactive ingredients have been investigated for various biological activities from the genus Scutellaria in vitro and in vivo. Furthermore, these data help us to highlight its biomedical application and to isolate the responsible compounds to produce innovative medications as an alternative to synthetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Syed Shams ul Hassan
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Obaid Ullah
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| |
Collapse
|
25
|
Qian XJ, Zhou HY, Liu Y, Dong JX, Tang WD, Zhao P, Tang HL, Jin YS. Synthesis of baicalein derivatives and evaluation of their antiviral activity against arboviruses. Bioorg Med Chem Lett 2022; 72:128863. [PMID: 35738350 DOI: 10.1016/j.bmcl.2022.128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
Natural plant-derived baicalein which is extracted from Chinese herb Scutellaria baicalensis Georgi belongs to the flavonoid compounds and possesses multiple pharmacological activities. In this study, we designed and synthesized new series of derivatives of baicalein (BE) through catalytic coupling reactions, and screened for their antiviral activity against arboviruses including Chikungunya virus (CHIKV), West Nile virus (WNV) or Zika virus (ZIKV). Our results revealed for the first time that BE and its derivatives had potent anti-CHIKV, anti-WNV and anti-ZIKV effects. And modification of 8 or 4' position could lead to obtain potent antiviral compounds against CHIKV, WNV and ZIKV with lower cytotoxicity. Among the baicalein derivatives, C3 and F3 showed the most potent antiviral activities against CHIKV, WNV and ZIKV, which were 5-10 times more potent than baicalein. Our findings will provide research basis for the development of baicalein derivatives as effective antiviral agents.
Collapse
Affiliation(s)
- Xi-Jing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - He-Yang Zhou
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yan Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Jia-Xiao Dong
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wan-Da Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Hai-Lin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Yong-Sheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
26
|
Li X, Wei XF, Wu J, Yin ZQ, Wan LQ, Sun HY, An YL. Geochemical characteristics and growth suitability assessment of Scutellaria baicalensis Georgi in the Earth's critical zone of North China. JOURNAL OF MOUNTAIN SCIENCE 2022; 19:1245-1262. [PMID: 35601873 PMCID: PMC9106571 DOI: 10.1007/s11629-021-7015-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Geochemical differentiation of soils has a series of consequences on plant and places pressure on the ecological environment. The quantitative evaluation of element migration in the Earth's critical zone is a challenging task. In this study, two demonstration study areas of Scutellaria baicalensis Georgi were selected, and multiple chemical weathering indexes, chemical loss fraction, mass migration coefficients and biological enrichment coefficient method were used to assess the ecological and geochemical suitability. The results show that for the element of Fe, Zn, Se, Cu, Co, Ni, Mo and Ge, the degree of weathering and soil maturation, were greater in the rhyolitic tuff area than in the Plagioclase gneiss area. In both research sites, the heavy metal level of samples in Scutellaria baicalensis Georgi did not exceed the standard limits. The plagioclase gneiss region's surface soil environment was more alkaline, and the content of soil organic matter was lower, resulting in a higher bioenrichment intensity of Ge, Co, Cu, and Se elements in Scutellaria baicalensis Georgi than in the rhyolite-tuff area. The elements of Cd, Nb, Mo, Pb and As are considerably enriched in the soil of the plagioclase gneiss area but lost by leaching in the soil of the rhyolite tuff area, which is connected to the interplay of elemental abundance and human impact in the parent materials. This study provides a good example of how to assess growth suitability of Chinese medicinal materials in the Earth's critical zone.
Collapse
Affiliation(s)
- Xia Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875 China
- China Institute of Geo-Environment Monitoring, Beijing, 100081 China
| | - Xiao-feng Wei
- Beijing Institute of Geology for Mineral Resources, Beijing, 100012 China
| | - Jin Wu
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124 China
| | - Zhi-qiang Yin
- China Institute of Geo-Environment Monitoring, Beijing, 100081 China
| | - Li-qin Wan
- China Institute of Geo-Environment Monitoring, Beijing, 100081 China
| | - Hou-yun Sun
- School of Water Resources & Environment, China University of Geosciences, Beijing, 100083 China
| | - Yong-long An
- China Institute of Geo-Environment Monitoring, Beijing, 100081 China
| |
Collapse
|
27
|
The role of ALOX15B in heat stress-induced apoptosis of porcine sertoli cells. Theriogenology 2022; 185:6-15. [DOI: 10.1016/j.theriogenology.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/03/2023]
|
28
|
Targets and Potential Mechanism of Scutellaria baicalensis in Treatment of Primary Hepatocellular Carcinoma Based on Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:8762717. [PMID: 35190740 PMCID: PMC8858046 DOI: 10.1155/2022/8762717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 12/08/2022]
Abstract
Objective To analyze the target and potential mechanism of Scutellaria baicalensis (SB) in the treatment of HCC based on bioinformatics, so as to provide suggestions for the diagnosis, treatment, and drug development of hepatocellular carcinoma (HCC). Methods The regulated gene targets of SB were screened by gene expression pattern clustering and differential analysis of gene expression data of HepG2 cells treated with SB at 0 h, 1 h, 3 h, 6 h, 12 h, and 24 h. The module genes related to HCC were identified by the weighted gene coexpression network analysis (WGCNA). KEGG and GO enrichment were used to analyze the molecular function and structure of the module, and GSEA was used to evaluate the different functional pathways between normal people and patients with HCC. Then, the module gene was used for univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to build a prognostic model. The protein-protein interaction network (PPI) was used to analyze the core genes regulated by SB (CGRSB) of the module, and the survival curve revealed the CGRSB impact on patient survival. The CIBERSORT algorithm combined with correlation analysis to explore the relationship between CGRSB and immune infiltration. Finally, the single-cell sequencing technique was used to analyze the distribution of CGRSB at the cellular level. Results SB could regulate 903 genes, of which 234 were related to the occurrence of HCC. The prognosis model constructed by these genes has a good effect in evaluating the survival of patients. KEGG and GO enrichment analysis showed that the regulation of SB on HCC mainly focused on some cell proliferation, apoptosis, and immune-related functions. GSEA enrichment analysis showed that these functions are related to the occurrence of HCC. A total of 24 CGRSB were obtained after screening, of which 13 were significantly related to survival, and most of them were unfavorable factors for patient survival. The correlation analysis of gene expression showed that most of CGRSB was significantly correlated with T cells, macrophages, and other functions. The results of single-cell analysis showed that the distribution of CGRSB in macrophages was the most. Conclusion SB has high credibility in the treatment of HCC, such as CDK2, AURKB, RRM2, CENPE, ESR1, and PRIM2. These targets can be used as potential biomarkers for clinical diagnosis. The research also shows that the p53 signal pathway, MAPK signal pathway, apoptosis pathway, T cell receptor pathway, and macrophage-mediated tumor immunity play the most important role in the mechanism of SB in treating HCC.
Collapse
|
29
|
Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A, Kunnumakkara AB. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res 2022; 36:1854-1883. [DOI: 10.1002/ptr.7386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Varsha Rana
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Anupam Bishayee
- College of Osteopathic medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| |
Collapse
|
30
|
Mi X, Hu M, Dong M, Yang Z, Zhan X, Chang X, Lu J, Chen X. Folic Acid Decorated Zeolitic Imidazolate Framework (ZIF-8) Loaded with Baicalin as a Nano-Drug Delivery System for Breast Cancer Therapy. Int J Nanomedicine 2022; 16:8337-8352. [PMID: 34992370 PMCID: PMC8714011 DOI: 10.2147/ijn.s340764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background Baicalin (BAN) has attracted widespread attention due to its low-toxicity and efficient antitumor activity, but its poor water solubility and low bioavailability severely limit its clinical application. Development of a targeted drug delivery system is a good strategy to improve the antitumor activity of baicalin. Methods We prepared a BAN nano-drug delivery system PEG-FA@ZIF-8@BAN with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR). We characterized this system in terms of morphology, particle size, zeta-potential, infrared (IR), ultraviolet (UV), x-ray diffraction (XRD), and Brunel-Emmett-Teller (BET), and examined the in vitro cytotoxicity and cellular uptake properties of PEG-FA@ZIF-8@BAN using MCF-7 cells. Lastly, we established a 4T1 tumor-bearing mouse model and evaluated its in vivo anti-mammary cancer activity. Results The PEG-FA@ZIF-8@BAN nano-delivery system had good dispersion with a BAN loading efficiency of 41.45 ± 1.43%, hydrated particle size of 176 ± 8.1 nm, Zeta-potential of −23.83 ± 1.1 mV, and slow and massive drug release in an acidic environment (pH 5.0), whereas release was 11.03% in a neutral environment (pH 7.4). In vitro studies showed that PEG-FA@ZIF-8@BAN could significantly enhance the killing effect of BAN on MCF-7 cells, and the folic acid-mediated targeting could lead to better uptake of nanoparticles by tumor cells and thus better killing of cancer cells. In vivo studies also showed that PEG-FA@ZIF-8@BAN significantly increased the inhibition of the proliferation of solid breast cancer tumors (p < 0.01 or p < 0.001). Conclusion The PEG-FA@ZIF-8@BAN nano-drug delivery system significantly enhanced the anti-breast cancer effect of baicalin both in vivo and in vitro, providing a more promising drug delivery system for the clinical applications and tumor management.
Collapse
Affiliation(s)
- Xiao Mi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, People's Republic of China
| | - Meigeng Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, People's Republic of China
| | - Mingran Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, People's Republic of China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, People's Republic of China
| | - Xia Zhan
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Xinyue Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, People's Republic of China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, People's Republic of China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, People's Republic of China
| |
Collapse
|
31
|
Hsu PY, Chen JL, Kuo SL, Wang WL, Jan FW, Yang SH, Yang CY. San-Zhong-Kui-Jian-Tang Exerts Antitumor Effects Associated With Decreased Cell Proliferation and Metastasis by Targeting ERK and the Epithelial-Mesenchymal Transition Pathway in Oral Cavity Squamous Cell Carcinoma. Integr Cancer Ther 2022; 21:15347354221134921. [PMID: 36404765 PMCID: PMC9679344 DOI: 10.1177/15347354221134921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive cancer whose 5-year survival rate remains poor. San-Zhong-Kui-Jian-Tang (SZKJT), a Chinese herbal formula, has long been used in clinical practice as adjuvant therapy in cancers. However, its therapeutic effects and molecular mechanisms in OSCC remain unclear. METHODS We investigated the potential therapeutic effects and molecular mechanism of SZKJT in OSCC in tumor cell lines and in tumor xenograft mice and evaluated combined SZKJT and cisplatin treatment efficacy. In vitro-cultured OSCC cells were administered SZKJT at different doses or SZKJT plus cisplatin, and cell proliferation, colony formation assays, and cell cycle analysis were used to assess the effects on cancer cell proliferation and apoptosis. We also analyzed the effects of SZKJT on oral cancer cell line migration, the regulation of mitogen-activated protein kinase (MAPK) signaling, and epithelial-mesenchymal transition (EMT)-associated genes. The antitumor effects of SZKJT plus cisplatin were also tested in vivo using a tumor-bearing NOD/SCID mice model. RESULTS The results showed that SZKJT effectively inhibited OSCC cell proliferation, induced cell cycle S phase arrest, and induced cell apoptosis. SZKJT also inhibited cell migration by modulating the MAPK signaling and epithelial-mesenchymal transition (EMT) pathway. Further exploration suggested that SZKJT affects OSCC by modulating ERK pathway; downregulating vimentin, fibronectin, and Oct-4; and upregulating E-cadherin. In vivo, SZKJT significantly inhibited tumor growth, and SZKJT and cisplatin exerted synergistic antitumor effects in model animals. CONCLUSIONS SZKJT exerts antitumor effects in OSCC cells. Additionally, SZKJT and cisplatin exhibit synergy in OSCC treatment. These findings support the clinical usage of Chinese herbal formulas as adjuvant therapy with chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Pei-Yu Hsu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Liang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Li Kuo
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Ling Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fei-Wen Jan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sien-Hung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
32
|
Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:14-26. [PMID: 35656442 PMCID: PMC9118284 DOI: 10.22038/ijbms.2022.60380.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
The flavonoids, baicalin, and its aglycone baicalein possess multi-fold therapeutic properties and are mainly found in the roots of Oroxylum indicum (L.) Kurz and Scutellaria baicalensis Georgi. These flavonoids have been reported to possess various pharmacological properties, including antibacterial, antiviral, anticancer, anticonvulsant, anti-oxidant, hepatoprotective, and neuroprotective effects. The pharmacological properties of baicalin and baicalein are due to their abilities to scavenge reactive oxygen species (ROS) and interaction with various signaling molecules associated with apoptosis, inflammation, autophagy, cell cycle, mitochondrial dynamics, and cytoprotection. In this review, we summarized the molecular mechanisms underlying the chemopreventive and chemotherapeutic applications of baicalin and baicalein in the treatment of cancer and inflammatory diseases. In addition, the preventive effects of baicalin and baicalein on mitochondrial dynamics and functions were highlighted with a particular emphasis on their anti-oxidative and cytoprotective properties. The current review highlights could be useful for future prospective studies to further improve the pharmacological applications of baicalein and baicalin. These studies should define the threshold for optimal drug exposure, dose optimization and focus on therapeutic drug monitoring, objective disease markers, and baicalin/baicalein drug levels.
Collapse
Affiliation(s)
- Zhihua Hu
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Yurong Guan
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Xu
- Hubei Zhiying Medical Imaging Center, Radiology Department of Huanggang Hospital of Traditional Chinese Medicine, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
33
|
Baicalein Inhibits Metastatic Phenotypes in Nasopharyngeal Carcinoma Cells via a Focal Adhesion Protein Integrin β8. Pharmaceuticals (Basel) 2021; 15:ph15010005. [PMID: 35056061 PMCID: PMC8780671 DOI: 10.3390/ph15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Baicalein, a prominent flavonoid from the indigenous herbal plant Scutellaria baicalensis Georgi, possesses broad-spectrum anticancer activities. However, the biological effects of baicalein on nasopharyngeal carcinoma (NPC) and its underlying mechanisms remain unclarified. Thus, in this study, we examined the effects of baicalein on NPC cell lines and investigated the corresponding molecular mechanism through transcriptome profiling. In the study, four NPC cell lines were treated with various concentrations of baicalein at different time points. Cellular toxicity and proliferative inhibition of baicalein were examined by MTT assay. Metastatic phenotypes of NPC cells were investigated by wound healing, transwell, and adhesion assays. Additionally, microarray experiments were performed to determine the cellular pathways affected by baicalein. The expression and localization of the integrin β8 were validated by western immunoblotting and immunofluorescence. Our results revealed that baicalein exhibited its cytotoxicity and antiproliferative activity on all tested NPC cell lines. It also significantly inhibited metastatic phenotypes at sub-lethal concentrations. Transcriptomic analysis showed that baicalein significantly affected the focal adhesion pathway in NPC, where integrin β8 was greatly diminished. Thus, the present study results suggested that baicalein inhibits the metastatic phenotypes of NPC cells by modulating integrin β8, one of the major molecules in a focal adhesion pathway.
Collapse
|
34
|
Potential Mechanisms of Plant-Derived Natural Products in the Treatment of Cervical Cancer. Biomolecules 2021; 11:biom11101539. [PMID: 34680171 PMCID: PMC8533981 DOI: 10.3390/biom11101539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignancy globally; it seriously endangers women’s health because of its high morbidity and mortality. Conventional treatments are prone to drug resistance, recurrence and metastasis. Therefore, there is an urgent need to develop new drugs with high efficacy and low side effects to prevent and treat cervical cancer. In recent years, plant-derived natural products have been evaluated as potential anticancer drugs that preferentially kill tumor cells without severe adverse effects. A growing number of studies have shown that natural products can achieve practical anti-cervical-cancer effects through multiple mechanisms, including inhibition of tumor-cell proliferation, induction of apoptosis, suppression of angiogenesis and telomerase activity, enhancement of immunity and reversal of multidrug resistance. This paper reviews the therapeutic effects and mechanisms of plant-derived natural products on cervical cancer and provides references for developing anti-cervical-cancer drugs with high efficacy and low side effects.
Collapse
|
35
|
Wang L, Zhang J, Shan G, Liang J, Jin W, Li Y, Su F, Ba Y, Tian X, Sun X, Zhang D, Zhang W, Chen CL. Establishment of a Lung Cancer Discriminative Model Based on an Optimized Support Vector Machine Algorithm and Study of Key Targets of Wogonin in Lung Cancer. Front Pharmacol 2021; 12:728937. [PMID: 34630106 PMCID: PMC8493220 DOI: 10.3389/fphar.2021.728937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
An optimized support vector machine model was used to construct a lung cancer diagnosis model based on serological indicators, and a molecular regulation model of Wogonin, a component of Scutellaria baicalensis, was established. Serological indexes of patients were collected, the grid search method was used to identify the optimal penalty coefficient C and parameter g of the support vector machine model, and the benign and malignant auxiliary diagnosis model of isolated pulmonary nodules based on serological indicators was established. The regulatory network and key targets of Wogonin in lung cancer were analyzed by network pharmacology, and key targets were detected by western blot. The relationship between serological susceptibility genes and key targets of Wogonin was established, and the signaling pathway of Wogonin regulating lung cancer was constructed. After support vector machine parameter optimization (C = 90.597, g = 32), the accuracy of the model was 90.8333%, with nine false positives and two false negative cases. Ontology functional analysis of 67 common genes between Wogonin targets and lung cancer–related genes showed that the targets were associated with biological processes involved in peptidye-serine modification and regulation of protein kinase B signaling; cell components in the membrane raft and chromosomal region; and molecular function in protein serine/threonine kinase activity and heme binding. Kyoto Encyclopedia of Genes and Genomes analysis showed that the regulation pathways involved the PI3K-Akt signaling pathway, ERBB signaling pathway, and EGFR tyrosine kinase inhibitor resistance. In vitro analyses using lung cancer cells showed that Wogonin led to significantly increased levels of cleaved caspase-3 and Bad and significantly decreased Bcl-2 expression in a concentration-dependent manner. ErbB4 expression also significantly decreased in lung cancer cells after treatment with Wogonin. A regulatory network of Wogonin regulating lung cancer cell apoptosis was constructed, including the participation of serological susceptibility genes. There is a certain regulatory effect between the serological indexes that can be used in the diagnosis of lung cancer and the key targets of Chinese herbal medicine treatment of lung cancer, which provides a new idea for the diagnosis, treatment and prognosis of clinical lung cancer.
Collapse
Affiliation(s)
- Lin Wang
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Guoyong Shan
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Junting Liang
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenwen Jin
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Yingyue Li
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Fangchu Su
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Yanhua Ba
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xifeng Tian
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xiaoyan Sun
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Dayong Zhang
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Weihua Zhang
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Chuan Liang Chen
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Zhang Y, Yang Y, Ding L, Wang Z, Xiao Y, Xiao W. Emerging Applications of Metabolomics to Assess the Efficacy of Traditional Chinese Medicines for Treating Type 2 Diabetes Mellitus. Front Pharmacol 2021; 12:735410. [PMID: 34603052 PMCID: PMC8486080 DOI: 10.3389/fphar.2021.735410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a common and complex disease that can exacerbate the complications related to cardiovascular disease, and this is especially true for type 2 diabetes mellitus (T2DM). In addition to the standard pharmacological therapies, T2DM has also been treated with nonconventional regimens such as traditional Chinese medicine (TCM), e.g., herbal medicines and TCM prescriptions, although the mechanisms underlying the therapeutic benefits remain unclear. In this regard, many studies have used metabolomics technology to elucidate the basis for the efficacy of TCM for T2DM. Metabolomics has recently attracted much attention with regard to drug discovery and pharmacologically relevant natural products. In this review, we summarize the application of metabolomics to the assessment of TCM efficacy for treating T2DM. Increasing evidence suggests that the metabolic profile of an individual patient may reflect a specific type of T2DM syndrome, which may provide a new perspective for disease diagnosis. In addition, TCM has proved effective for countering the metabolic disorders related to T2DM, and this may constitute the basis for TCM efficacy. Therefore, further determining how TCM contributes to the reversal of metabolic disorders, such as using network pharmacology or by assessing the contribution of host–gut microbiota interactions, will also provide researchers with new potential targets for pharmacologic-based therapies.
Collapse
Affiliation(s)
- Yumeng Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbo Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
37
|
Li X, Liu H, Yang Z, Duan H, Wang Z, Cheng Z, Song Z, Wu X. Study on the interaction of hyaluronidase with certain flavonoids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Xu J, Li S, Jiang L, Gao X, Liu W, Zhu X, Huang W, Zhao H, Wei Z, Wang K, Yang Z. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway. Int Immunopharmacol 2021; 100:108097. [PMID: 34521024 DOI: 10.1016/j.intimp.2021.108097] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
Zearalenone (ZEA) is a secondary metabolite produced by fungi such as Fusarium and Fusarium flavum, which is classified as a mycotoxin. Crops and feed in a humid surrounding are widely polluted by ZEA, which further endangering the healthful aquaculture of poultry and even human health. Up to now, prevention and cure of mycotoxicosis is still a crucial subject of poultry husbandry. Baicalin (BAI) is a flavonoid refined from dried roots of Scutellaria baicalensis possessing the function of hepatoprotective, anti-inflammatory, anti-oxidant, and anti-atherosclerotic efficacies.etc. But whether Baicalin also has a protective effect against ZEA intoxication is unclear. Therefore, the aim of this study was to establish a model of ZEA-induced toxic injury in chicks, and then to investigate the way in which Baicalin plays a protective role in the mechanism of ZEA-induced liver and kidney injury in chicks. The results exhibit that Baicalin could not only significantly decrease aspartate aminotransferase (AST) , alanine aminotransferase (ALT) and creatinine (Cre) levels in serum, but also ameliorate ZEA-induced pathologic changes of liver and kidney. Baicalin could also significantly regulate ZEA-induced the changes of catalase (CAT) , malondialdehyde (MDA) , total sulfhydryl group , except for glutathione peroxidase (GSH-px) , and inhibit the mRNA levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) , interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) with caspase-3 and caspase-11 in the caspase signaling pathway , meanwhile inhibit the cell apoptosis in immunohistochemistry. In summary, we successfully established a model of ZEA-induced liver injury in chicks, and confirm that Baicalin can reduce ZEA-induced liver and kidney injury in chicks. The mechanism of these effects is via inhibiting inflammation, oxidative stress and apoptosis, which also indicates the potential applicability of Baicalin for the prevention and treatment of ZEA-induced toxicity in chicks.
Collapse
Affiliation(s)
- Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Shurou Li
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Xinxin Gao
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Wenlong Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Haiguang Zhao
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China.
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China.
| |
Collapse
|
39
|
Liu C, Zhang L, Tan L, Liu Y, Tian W, Ma L. Immobilized Crosslinked Pectinase Preparation on Porous ZSM-5 Zeolites as Reusable Biocatalysts for Ultra-Efficient Hydrolysis of β-Glycosidic Bonds. Front Chem 2021; 9:677868. [PMID: 34458232 PMCID: PMC8385667 DOI: 10.3389/fchem.2021.677868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we immobilized pectinase preparation on porous zeolite ZSM-5 as an enzyme carrier. We realized this immobilized enzyme catalyst, pectinase preparation@ZSM-5, via a simple combined strategy involving the van der Waals adsorption of pectinase preparation followed by crosslinking of the adsorbed pectinase preparation with glutaraldehyde over ZSM-5. Conformal pectinase preparation coverage of various ZSM-5 supports was achieved for the as-prepared pectinase preparation@ZSM-5. The porous pectinase preparation@ZSM-5 catalyst exhibited ultra-efficient biocatalytic activity for hydrolyzing the β-glycosidic bonds in the model substrate 4-nitrophenyl β-D-glucopyranoside, with a broad operating temperature range, high thermal stability, and excellent reusability. The relative activity of pectinase preparation@ZSM-5 at a high temperature (70 °C) was nine times higher than that of free pectinase preparation. Using thermal inactivation kinetic analysis based on the Arrhenius law, pectinase preparation@ZSM-5 showed higher activation energy for denaturation (315 kJ mol−1) and a longer half-life (62 min−1) than free pectinase preparation. Moreover, a Michaelis–Menten enzyme kinetic analysis indicated a higher maximal reaction velocity for pectinase preparation@ZSM-5 (0.22 µmol mg−1 min−1). This enhanced reactivity was attributed to the microstructure of the immobilized pectinase preparation@ZSM-5, which offered a heterogeneous reaction system that decreased the substrate–pectinase preparation binding affinity and modulated the kinetic characteristics of the enzyme. Additionally, pectinase preparation@ZSM-5 showed the best ethanol tolerance among all the reported pectinase preparation-immobilized catalysts, and an activity 247% higher than that of free pectinase preparation at a 10% (v/v) ethanol concentration was measured. Furthermore, pectinase preparation@ZSM-5 exhibited potential for practical engineering applications, promoting the hydrolysis of β-glycosidic bonds in baicalin to convert it into baicalein. This was achieved with a 98% conversion rate, i.e., 320% higher than that of the free enzyme.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Liming Zhang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Li Tan
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Yueping Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lanqing Ma
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
40
|
Tu Y, Wu Q, He J, Xu J, Yu S, Wang Q, Cheng Y, Yang Q, Xu S, Cao Y. Exploring the Potential Molecular Mechanism of Scutellaria baicalensis Georgi in the Treatment of Gastric Cancer Based on Network Pharmacological Analysis and Molecular Docking Technology. Front Pharmacol 2021; 12:697704. [PMID: 34421596 PMCID: PMC8378178 DOI: 10.3389/fphar.2021.697704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the molecular mechanism of Scutellaria baicalensis Georgi in treating gastric cancer by network pharmacological analysis and molecular docking. Methods: Taking Scutellaria baicalensis Georgi as the object, the active components and corresponding potential drug targets in Scutellaria baicalensis Georgi were obtained from the database of TCM Pharmacological System Analysis Platform (TCMSP). GeneCards/OMIM/DrugBank and other databases were used to collect gastric cancer-related genes, and the obtained genes were intersected with drug targets to obtain the target genes of Scutellaria baicalensis Georgi on gastric cancer. Furthermore, the interaction network of Scutellaria baicalensis Georgi-active ingredients-target-gastric cancer-related genes was constructed. Protein–protein interaction analysis and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on target genes. The PubChem website was used to screen the compounds corresponding to the target genes, and the target protein and 3D structure pdb format files were obtained from the PDB database. Finally, the molecular docking calculation was performed by the AutoDock Vina program. The in vivo cell experiments on the effect of Scutellaria baicalensis on proliferation and migration of gastric cancer cells were used to determine the therapeutic effect of Scutellaria baicalensis on gastric cancer, and the two genes ESR1 and FOS are the key targets of Scutellaria baicalensis on gastric cancer. Results: A total of 10 gastric cancer-related target genes were screened out, and Scutellaria baicalensis Georgi contained 10 active compounds targeting 10 gene sites. There are 30 effective compounds in Scutellaria baicalensis Georgi targeted to treat gastric cancer, and there are 91 corresponding targeting gene sites, involving a total of 10 pathways. The results of molecular docking show that ESR1, FOS, and Scutellaria baicalensis Georgi have good binding free energy and docking fraction. The docking fraction of FOS is −4.200 and the binding free energy is −27.893 kcal/mol. The docking fraction of ESR1 is −5.833 and the binding free energy is −30.001 kcal/mol. The effect of Scutellaria baicalensis Georgi on gastric cancer was verified by in vitro cell experiments and Western blotting. Conclusion:Scutellaria baicalensis Georgi can target and regulate multiple signal pathways by acting on ESR1 and FOS gene loci, thus having a potential therapeutic effect on gastric cancer.
Collapse
Affiliation(s)
- Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quanli Wu
- School of Public Health, Nanchang University, Nanchang, China
| | - Jiarui He
- School of Public Health, Nanchang University, Nanchang, China
| | - Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shasha Yu
- Department of Basic Disciplines, Jiangxi Health Vocational College, Nanchang, China
| | - Qingfei Wang
- Leping Hospital of Traditional Chinese Medicine, Jiangxi Province, Jingdezhen, China
| | - Yunqi Cheng
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qijun Yang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Shan Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Lang X, Chen Z, Yang X, Yan Q, Xu M, Liu W, He Q, Zhang Y, Cheng W, Zhao W. Scutellarein induces apoptosis and inhibits proliferation, migration, and invasion in ovarian cancer via inhibition of EZH2/FOXO1 signaling. J Biochem Mol Toxicol 2021; 35:e22870. [PMID: 34350670 DOI: 10.1002/jbt.22870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023]
Abstract
Scutellarein, a flavone found in the perennial herb Scutellaria baicalensis, has antitumorigenic activity in multiple human cancers. However, whether scutellarein can attenuate ovarian cancer (OC) is unclear. This study investigated the effects of scutellarein in OC. In vitro cell viability was assessed using MTT assay whereas proliferation was assessed using 5-ethynyl-2'-deoxyuridine and colony formation assays. Cell apoptosis was detected by an Annexin V-fluorescein isothiocyanate/propidium iodide assay. Wound-healing and Transwell assays were used to determine cell migration and invasion. The differential expression of enhancer of zeste homolog 2 (EZH2) and forkhead box protein O1 (FOXO1) was measured by Quantitative real-time PCR and western blot analysis. We found that scutellarein inhibited viability, migration, invasion of A2780 and SKOV-3 cells, and reduced the expression of EZH2 in OC cells. In addition, FOXO1 was downregulated in OC tissues and cells and negatively regulated by EZH2. Also, scutellarein inhibited tumor growth and metastasis in vivo. In conclusion, scutellarein alleviates OC by the regulation of EZH2/FOXO1 signaling.
Collapse
Affiliation(s)
- Xiao Lang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zheng Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xingyu Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Qi Yan
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Manfei Xu
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Wei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Qin He
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Cheng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wenxia Zhao
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
42
|
Zhou W, Gao M, Liang C, Lin B, Wu Q, Chen R, Xiong X, Chen X, Wang S, Wu L, Wu Y, Li H, Fu X, Hong W. Systematic Understanding of the Mechanism of Baicalin against Gastric Cancer Using Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5521058. [PMID: 34337018 PMCID: PMC8315853 DOI: 10.1155/2021/5521058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the most common type of cancer. It is highly malignant and is characterized by rapid and uncontrolled growth. The antitumour activity of Baicalin was studied in multiple cancers. However, its mechanism of action has not been fully elucidated. We provided a systematic understanding of the mechanism of action of baicalin against GC using a transcriptome analysis of RNA-seq. METHODS Human GC cells (SGC-7901) were exposed to 200 μg/ml baicalin for 24 h. RNA-seq with a transcriptome, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify the antitumour effects of baicalin on SGC-7901 cells in vitro. A protein-protein interaction (PPI) network of differentially expressed genes (DEGs) was constructed. A competitive endogenous RNA (ceRNA) network was constructed and further analysed after validation using qRT-PCR. RESULTS A total of 68 lncRNAs, 20 miRNAs, and 1648 mRNAs were differentially expressed in baicalin-treated SGC-7901 GC cells. Three lncRNAs, 6 miRNAs, and 7 mRNAs were included in the ceRNA regulatory network. GO analysis revealed that the main DEGs were involved in the biological processes of the cell cycle and cell death. KEGG pathway analysis further suggested that the p53 signalling pathway was involved in the baicalin-induced antitumour effect on SGC-7901 cells. Further confirmation using qPCR indicated that baicalin induced an antitumour effect on SGC-7901 cells, which is consistent with the results of the sequencing data. CONCLUSIONS In summary, the mechanism of baicalin against GC involves multiple targets and signalling pathways. These results provide new insight into the antitumour mechanism of baicalin and help the development of new strategies to cure GC.
Collapse
Affiliation(s)
- Wenqu Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong, China
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua Wu
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ruikun Chen
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaoxiao Xiong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xing Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shijie Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liting Wu
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yiling Wu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiqing Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Ge PY, Qi YY, Qu SY, Zhao X, Ni SJ, Yao ZY, Guo R, Yang NY, Zhang QC, Zhu HX. Potential Mechanism of S. baicalensis on Lipid Metabolism Explored via Network Pharmacology and Untargeted Lipidomics. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1915-1930. [PMID: 33976541 PMCID: PMC8106469 DOI: 10.2147/dddt.s301679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
Background S. baicalensis, a traditional herb, has great potential in treating diseases associated with aberrant lipid metabolism, such as inflammation, hyperlipidemia, atherosclerosis and Alzheimer’s disease. Aim of the Study To elucidate the mechanism by which S. baicalensis modulates lipid metabolism and explore the medicinal effects of S. baicalensis at a holistic level. Materials and Methods The potential active ingredients of S. baicalensis and targets involved in regulating lipid metabolism were identified using a network pharmacology approach. Metabolomics was utilized to compare lipids that were altered after S. baicalensis treatment in order to identify significantly altered metabolites, and crucial targets and compounds were validated by molecular docking. Results Steroid biosynthesis, sphingolipid metabolism, the PPAR signaling pathway and glycerolipid metabolism were enriched and predicted to be potential pathways upon which S. baicalensis acts. Further metabolomics assays revealed 14 significantly different metabolites were identified as lipid metabolism-associated elements. After the pathway enrichment analysis of the metabolites, cholesterol metabolism and sphingolipid metabolism were identified as the most relevant pathways. Based on the results of the pathway analysis, sphingolipid and cholesterol biosynthesis and glycerophospholipid metabolism were regarded as key pathways in which S. baicalensis is involved to regulate lipid metabolism. Conclusion According to our metabolomics results, S. baicalensis may exert its therapeutic effects by regulating the cholesterol biosynthesis and sphingolipid metabolism pathways. Upon further analysis of the altered metabolites in certain pathways, agents downstream of squalene were significantly upregulated; however, the substrate of SQLE was surprisingly increased. By combining evidence from molecular docking, we speculated that baicalin, a major ingredient of S. baicalensis, may suppress cholesterol biosynthesis by inhibiting SQLE and LSS, which are important enzymes in the cholesterol biosynthesis pathway. In summary, this study provides new insights into the therapeutic effects of S. baicalensis on lipid metabolism using network pharmacology and lipidomics.
Collapse
Affiliation(s)
- Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
44
|
The Root Extract of Scutellaria baicalensis Induces Apoptosis in EGFR TKI-Resistant Human Lung Cancer Cells by Inactivation of STAT3. Int J Mol Sci 2021; 22:ijms22105181. [PMID: 34068421 PMCID: PMC8153615 DOI: 10.3390/ijms22105181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) is a major obstacle in managing lung cancer. The root of Scutellaria baicalensis (SB) traditionally used for fever clearance and detoxification possesses various bioactivities including anticancer effects. The purpose of this study was to investigate whether SB exhibited anticancer activity in EGFR TKI-resistant lung cancer cells and to explore the underlying mechanism. We used four types of human lung cancer cell lines, including H1299 (EGFR wildtype; EGFR TKI-resistant), H1975 (acquired TKI-resistant), PC9/ER (acquired erlotinib-resistant), and PC9/GR (acquired gefitinib-resistant) cells. The ethanol extract of SB (ESB) decreased cell viability and suppressed colony formation in the four cell lines. ESB stimulated nuclear fragmentation and the cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-3. Consistently, the proportion of sub-G1 phase cells and annexin V+ cells were significantly elevated by ESB, indicating that ESB induced apoptotic cell death in EGFR TKI-resistant cells. ESB dephosphorylated signal transducer and activator of transcription 3 (STAT3) and downregulated the target gene expression. The overexpression of constitutively active STAT3 reversed ESB-induced apoptosis, suggesting that ESB triggered apoptosis in EGFR TKI-resistant cells by inactivating STAT3. Taken together, we propose the potential use of SB as a novel therapeutic for lung cancer patients with EGFR TKI resistance.
Collapse
|
45
|
Li S, Cheng CS, Zhang C, Tang GY, Tan HY, Chen HY, Wang N, Lai AYK, Feng Y. Edible and Herbal Plants for the Prevention and Management of COVID-19. Front Pharmacol 2021; 12:656103. [PMID: 33995078 PMCID: PMC8113769 DOI: 10.3389/fphar.2021.656103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The outbreak of the pandemic coronavirus disease 2019 (COVID-19) has now become a global pandemic spreading throughout the world. Unfortunately, due to the high infectiousness of the novel β-coronavirus, it is very likely to become an ordinary epidemic. The development of dietary supplements and functional foods might provide a strategy for the prevention and management of COVID-19. Scope and Approach: A great diversity of potential edible and medicinal plants and/or natural compounds showed potential benefits in managing SARS, which may also combat COVID-19. Moreover, many plants and compounds have currently been proposed to be protective against COVID-19. This information is based on data-driven approaches and computational chemical biology techniques. In this study, we review promising candidates of edible and medicinal plants for the prevention and management of COVID-19. We primarily focus on analyzing their underlying mechanisms. We aim to identify dietary supplements and functional foods that assist in managing this epidemic. Key findings and Conclusion: We infer that acetoside, glyasperin, isorhamnetin, and several flavonoid compounds may prevent and/or be effective in managing COVID-19 by targeting the viral infection, reducing the host cytokine storm, regulating the immune response, and providing organ protection. These bioactive dietary components (used either alone or in combination) might assist in the development of dietary supplements or functional foods for managing COVID-19.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chien-Shan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hai-Yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Scutellaria baicalensis – a small plant with large pro-health biological activities. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Scutellaria baicalensis, known also as Huang-Qin is a traditional Chinese plant used in medicine for at least 2000 years. The plant is widely distributed in Japan, Korea, Mongolia and Russia, and is listed in Chinese Pharmacopoeia, European Pharmacopoeia and British Pharmacopoeia. The interest in Huang-Qin results from various biological activities which are primarily related to secondary plants metabolites consisting of flavonoids, phenolic compounds and terpenes. It is known that the compounds are active against numerous diseases and protect the organism against harmful pathogenic agents. Particular attention is paid to baicalein, wogonin and oroxylin A – which are characteristic secondary metabolites of the plant. In this paper, we focused on phytochemical analysis and selected biological activities used in periodontal and cardiovascular problems. The presented studies confirm the ability of Huang-Qin to scavenge free radicals, moreover, that it presents anti-bacterial, anti-inflammatory and enzyme inhibitory activities.
Collapse
|
47
|
Li M, Shang H, Wang T, Yang SQ, Li L. Huanglian decoction suppresses the growth of hepatocellular carcinoma cells by reducing CCNB1 expression. World J Gastroenterol 2021; 27:939-958. [PMID: 33776365 PMCID: PMC7968131 DOI: 10.3748/wjg.v27.i10.939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in human populations worldwide. Huanglian decoction is one of the most important Chinese medicine formulas, with the potential to treat cancer.
AIM To investigate the role and mechanism of Huanglian decoction on HCC cells.
METHODS To identify differentially expressed genes (DEGs), we downloaded gene expression profile data from The Cancer Genome Atlas Liver Hepatocellular Carcinoma and Gene Expression Omnibus (GSE45436) databases. We obtained phytochemicals of the four herbs of Huanglian decoction from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. We also established a regulatory network of DEGs and drug target genes and subsequently analyzed key genes using bioinformatics approaches. Furthermore, we conducted in vitro experiments to explore the effect of Huanglian decoction and to verify the predictions. In particular, the CCNB1 gene was knocked down to verify the primary target of this decoction. Through the identification of the expression levels of key proteins, we determined the primary mechanism of Huanglian decoction in HCC.
RESULTS Based on the results of the network pharmacological analysis, we revealed 5 bioactive compounds in Huanglian decoction that act on HCC. In addition, a protein-protein interaction network analysis of the target genes of these five compounds as well as expression and prognosis analyses were performed in tumors. CCNB1 was confirmed to be the primary gene that may be highly expressed in tumors and was significantly associated with a worse prognosis. We also noted that CCNB1 may serve as an independent prognostic indicator in HCC. Moreover, in vitro experiments demonstrated that Huanglian decoction significantly inhibited the growth, migration, and invasiveness of HCC cells and induced cell apoptosis and G2/M phase arrest. Further analysis showed that the decoction may inhibit the growth of HCC cells by downregulating the CCNB1 expression level. After Huanglian decoction treatment, the expression levels of Bax, caspase 3, caspase 9, p21 and p53 in HCC cells were increased, while the expression of CDK1 and CCNB1 was significantly decreased. The p53 signaling pathway was also found to play an important role in this process.
CONCLUSION Huanglian decoction has a significant inhibitory effect on HCC cells. CCNB1 is a potential therapeutic target in HCC. Further analysis showed that Huanglian decoction can inhibit HCC cell growth by downregulating the expression of CCNB1 to activate the p53 signaling pathway.
Collapse
Affiliation(s)
- Min Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Hua Shang
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Tao Wang
- Department of General Surgery, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Department of Pathology, University of Otago, Dunedin px806, New Zealand
| |
Collapse
|
48
|
Chen M, Xiao H, Chen B, Bian Z, Kwan HY. The advantages of using Scutellaria baicalensis and its flavonoids for the management of non-viral hepatocellular carcinoma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
49
|
Han P, Shang J, Chen DL, Li SY, Fan R, Li RH, Li HQ, Zhang SY, Shen DY. Baicalein mediates anticancer effect on cholangiocarcinoma through co-targeting the AKT/NF-κB and STAT3 signaling pathway. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Cai C, Wu Q, Hong H, He L, Liu Z, Gu Y, Zhang S, Wang Q, Fan X, Fang J. In silico identification of natural products from Traditional Chinese Medicine for cancer immunotherapy. Sci Rep 2021; 11:3332. [PMID: 33558586 PMCID: PMC7870934 DOI: 10.1038/s41598-021-82857-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Advances in immunotherapy have revolutionized treatments in many types of cancer. Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant application against cancer, is emerging as an important medical resource for developing innovative cancer treatments, including immunotherapy. In this study, we developed a quantitative and systems pharmacology-based framework to identify TCM-derived natural products for cancer immunotherapy. Specifically, we integrated 381 cancer immune response-related genes and a compound-target interaction network connecting 3273 proteins and 766 natural products from 66 cancer-related herbs based on literature-mining. Via systems pharmacology-based prediction, we uncovered 182 TCM-derived natural products having potential anti-tumor immune responses effect. Importantly, 32 of the 49 most promising natural products (success rate = 65.31%) are validated by multiple evidence, including published experimental data from clinical studies, in vitro and in vivo assays. We further identified the mechanism-of-action of TCM in cancer immunotherapy using network-based functional enrichment analysis. We showcased that three typical natural products (baicalin, wogonin, and oroxylin A) in Huangqin (Scutellaria baicalensis Georgi) potentially overcome resistance of known oncology agents by regulating tumor immunosuppressive microenvironments. In summary, this study offers a novel and effective systems pharmacology infrastructure for potential cancer immunotherapeutic development by exploiting the medical wealth of natural products in TCM.
Collapse
Affiliation(s)
- Chuipu Cai
- Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, 515000, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhihong Liu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Shijie Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xiude Fan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|