1
|
Liang Y, Chen Y, Lin Y, Huang W, Qiu Q, Sun C, Yuan J, Xu N, Chen X, Xu F, Shang X, Deng Y, Liu Y, Tan F, He C, Li J, Deng Q, Zhang X, Guan H, Liang Y, Fang X, Jiang X, Han L, Huang L, Yang Z. The increased tendency for anemia in traditional Chinese medicine deficient body constitution is associated with the gut microbiome. Front Nutr 2024; 11:1359644. [PMID: 39360281 PMCID: PMC11445043 DOI: 10.3389/fnut.2024.1359644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Constitution is a valuable part of traditional Chinese medicine theory; it is defined as the internal foundation for the occurrence, development, transformation and outcome of diseases, and has its characteristic gut microbiota. Previous study showed that deficiency constitution was related to lower Hb counts. However, no research has examined how alterations in the gut microbiome induced by deficiency constitution may increase the tendency for anemia. Methods We used a multiomics strategy to identify and quantify taxonomies and compounds found under deficient constitution individuals and further explore the possible pathological factors that affect red blood cell indices. Results ① People with deficient constitution showed lower hemoglobin (Hb), more Firmicutes, less Bacteroidetes, and higher α diversity. ② We identified Escherichia coli, Clostridium bolteae, Ruminococcus gnavus, Streptococcus parasanguinis and Flavonifractor plautii as potential biomarkers of deficient constitution. ③ Slackia piriformis, Clostridium_sp_L2_50 and Bacteroides plebeius were enriched in balanced-constitution individuals, and Parabacteroides goldsteinii was the key bacterial marker of balanced constitution. ④ Flavonifractor plautii may be a protective factor against the tendency for anemia among deficient individuals. ⑤ Ruminococcus gnavus may be the shared microbe base of deficiency constitution-related the tendency for anemia. ⑥ The microorganism abundance of the anaerobic phenotype was lower in deficient constitution group. ⑦ Alterations in the microbiome of deficient-constitution individuals were associated with worse health status and a greater risk of anemia, involving intestinal barrier function, metabolism and immune responses, regulated by short-chain fatty acids and bile acid production. Conclusion The composition of the gut microbiome was altered in people with deficient constitution, which may explain their poor health status and tendency toward anemia.
Collapse
Affiliation(s)
- Yuanjun Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanzhao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinwei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chen Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiamin Yuan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ning Xu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Shang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yusheng Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmin Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunxiang He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiasheng Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinqin Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huahua Guan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yongzhu Liang
- Zhuhai Branch of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Xiaodong Fang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuanting Jiang
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Li Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Hsu YC, Su MH, Chen CY, Lin YF, Wang SH. Associations of Polygenic Risk for Depression, Traditional Chinese Medicine Constitution, and Depression: A Population-Based Study in Taiwan. Am J Med Genet B Neuropsychiatr Genet 2024:e33007. [PMID: 39257026 DOI: 10.1002/ajmg.b.33007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
To comprehensively investigate the risk factors associated with depression, traditional Chinese medicine constitution (TCMC) has been found to be related to depression. However, the underlying mechanism remains unclear. This study examined the association between the concept of unbalanced TCMCs and major depressive disorder (MDD), investigated the overlapping polygenic risks between unbalanced TCMC and MDD, and performed a mediation test to establish potential pathways. In total, 11,030 individuals were recruited from the Taiwan Biobank, and the polygenic risk score (PRS) for MDD for each participant was calculated using the data from the Psychiatric Genomics Consortium. Unbalanced TCMC were classified as yang-deficiency, yin-deficiency, and stasis. The MDD PRS was associated with yang-deficiency odds ratio [OR] per standard deviation increase in standardized (PRS = 1.07, p = 0.0080), yin-deficiency (OR = 1.07, p = 0.0030), and stasis constitution (OR = 1.06, p = 0.0331). Yang-deficiency (OR = 2.07, p < 0.0001) and stasis constitutions (OR = 1.65, p = 0.0015) were associated with an increased risk of MDD. A higher number of unbalanced constitutions was associated with MDD (p < 0.0001). The effect of MDD PRS on MDD was partly mediated by yang-deficiency (10.21%) and stasis (8.41%) constitutions. This study provides evidence for the shared polygenic risk mechanism underlying depression and TCMC and the potential mediating role of TCMC in the polygenic liability for MDD.
Collapse
Affiliation(s)
- Yu-Cheng Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- College of Public Health, China Medical University, Taichung, Taiwan
| | - Mei-Hsin Su
- College of Public Health, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Virginia Institute for Psychiatric Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Shen R, Li Z, Wang H, Wang Y, Li X, Yang Q, Fu Y, Li M, Gao LN. Chinese Materia Medica in Treating Depression: The Role of Intestinal Microenvironment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1927-1955. [PMID: 37930334 DOI: 10.1142/s0192415x23500854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Depression is a highly heterogeneous mental illness. Drug treatment is currently the main therapeutic strategy used in the clinic, but its efficacy is limited by the modulation of a single target, slow onset, and side effects. The gut-brain axis is of increasing interest because intestinal microenvironment disorders increase susceptibility to depression. In turn, depression affects intestinal microenvironment homeostasis by altering intestinal tissue structure, flora abundance and metabolism, hormone secretion, neurotransmitter transmission, and immune balance. Depression falls into the category of "stagnation syndrome" according to Traditional Chinese Medicine (TCM), which further specifies that "the heart governs the spirit and is exterior-interior with the small intestine". However, the exact mechanisms of the means by which the disordered intestinal microenvironment affects depression are still unclear. Here, we present an overview of how the Chinese materia medica (CMM) protects against depression by repairing intestinal microenvironment homeostasis. We review the past five years of research progress in classical antidepressant TCM formulae and single CMMs on regulating the intestinal microenvironment for the treatment of depression. We then analyze and clarify the multitarget functions of CMM in repairing intestinal homeostasis and aim to provide a new theoretical basis for CMM clinical application in the treatment of depression.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Zhipeng Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Yongchao Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Xiaofang Li
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
- Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, P. R. China
| |
Collapse
|
4
|
Qin J, Ling X, Wang Q, Huang Z, Guo B, Zhang C, Meng M, Feng S, Guo Y, Zheng H, Liang Y, Su Z. Integrated Gut Microbiota and Urine Metabolite Analyses of T2DM with NAFLD Rat Model. Appl Biochem Biotechnol 2023; 195:6478-6494. [PMID: 36870027 DOI: 10.1007/s12010-023-04419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Globally 80% type 2 diabetes mellitus (T2DM) patients suffer nonalcoholic fatty liver disease (NAFLD). The interplay of gut microbiota and endogenous metabolic networks has not yet been reported in the setting of T2DM with NAFLD. As such, this study utilized 16S rRNA gene sequencing to assess the changes in intestinal flora and nuclear magnetic resonance spectroscopy (1H NMR) to identify potential metabolites in a T2DM with NAFLD rat model. Spearman correlation analysis was performed to explore the relationship between gut microbiota and metabolites. Results revealed that among T2DM with NAFLD rats, diversity indexes of intestinal microbiota were distinctly decreased while levels of 18 bacterial genera within the intestinal tract were significantly altered. In addition, levels of eight metabolites mainly involved in the synthesis and degradation of ketone bodies, the TCA cycle, and butanoate metabolism were altered. Correlation analysis revealed that gut bacteria such as Blautia, Ruminococcus torques group, Allobaculum, and Lachnoclostridium strongly associate with 3-hydroxybutyrate, acetone, acetoacetate, 2-oxoglutarate, citrate, creatinine, hippurate, and allantoin. Our findings can provide a basis for future development of targeted treatments.
Collapse
Affiliation(s)
- Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xue Ling
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Zheng Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Chi Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Mingwei Meng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shisui Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, People's Republic of China
| | - Hua Zheng
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, 530021, China.
- Guangxi Engineering Research Center for Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization, Nanning, 530021, China.
- Guangxi Health Commission Key Laboratory of Basic Research On Antigeriatric Drugs, Nanning, 530021, China.
| |
Collapse
|
5
|
Feng H, Qiu S, Hong X, Ma S, Hou Z, Zhu K, Guo M, Wang C, Huang Y. Impact of Different Traditional Chinese Medicine Constitutions on the Clinical Outcomes of COVID-19 Patients Infected with SARS-CoV-2 Omicron Variant: A Retrospective Observational Study. Infect Drug Resist 2023; 16:6333-6344. [PMID: 37780533 PMCID: PMC10540866 DOI: 10.2147/idr.s424176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose Traditional Chinese Medicine (TCM) constitution and disease occurrence, development, and prognosis are interrelated. This study aimed to investigate the association between TCM constitution and the time to negative nucleic acid test results in patients with coronavirus disease 2019 (COVID-19) infected with the SARS-CoV-2 Omicron variant. Patients and Methods We identified COVID-19 patients (≥18 years) infected with the SARS-CoV-2 Omicron variant and collected clinical data, including clinical symptoms, time to negative nucleic acid test results, and TCM constitution. Linear and logistic regression analyses explored the relationship between TCM constitution and the time to negative nucleic acid test results in patients with the COVID-19 Omicron variant. Results We included 486 patients with COVID-19, with a mean age of 40.2 years; 321 (66.0%) men and 165 (34.0%) women. Balanced constitution accounted for 43.8%, and unbalanced constitution accounted for 56.2%. Chi-square test showed that different TCM constitutions had significant differences in the influence of clinical symptoms of COVID-19 patients (P < 0.01). After controlling for various factors, multiple linear regression analysis revealed that an unbalanced constitution was significantly positively correlated with time to negative nucleic acid test results (P < 0.05). After controlling for various factors, logistic regression analysis revealed that an unbalanced constitution was closely related to the 7-day nucleic acid test conversion rate (odds ratio (OR): 0.53, 95% confidence interval (CI): 0.36-0.80, P < 0.05). After dividing the unbalanced constitution into deficiency constitution and non-deficiency constitution, the non-deficiency constitution was closely associated with the 7-day nucleic acid test conversion rate (OR = 0.45, 95% CI: 0.28-0.74, P < 0.05). Further analysis revealed that damp-heat constitution in the non-deficiency constitution was associated with the 7-day nucleic acid test conversion rate (OR = 0.33, 95% CI: 0.18-0.60, P < 0.05). Conclusion In patients with COVID-19, an unbalanced constitution is associated with a longer time to negative nucleic acid test results and lower 7-day nucleic acid test conversion rates.
Collapse
Affiliation(s)
- Hui Feng
- Department of Traditional Chinese Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Shanhu Qiu
- Department of General Practice, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xiang Hong
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, People’s Republic of China
| | - Shaolei Ma
- Department of Emergency and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Zhenghua Hou
- Department of Psychosomatics & Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Kongbo Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Ming Guo
- Department of Traditional Chinese Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Changsong Wang
- Department of Traditional Chinese Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yingzi Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Zhao H, Ren Q, Wang HY, Zong Y, Zhao W, Wang Y, Qu M, Wang J. Alterations in gut microbiota and urine metabolomics in infants with yin-deficiency constitution aged 0–2 years. Heliyon 2023; 9:e14684. [PMID: 37064462 PMCID: PMC10102239 DOI: 10.1016/j.heliyon.2023.e14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Background Based on the constitution theroy, infants are classified into balanced constitution (BC) and unbalanced constitution. Yin-deficiency constitution (YINDC) is a common type of unbalanced constitutions in Chinese infants. An infant's gut microbiota directly affects the child's health and has long-term effects on the maturation of the immune and endocrine systems throughout life. However, the gut microbiota of infants with YINDC remains unknown. Herein, we aimed to evaluate the intestinal flora profiles and urinary metabolites in infant with YINDC, find biomarkers to identify YINDC, and promote our understanding of infant constitution classification. Methods Constitutional Medicine Questionnaires were used to assess the infants' constitution types. 47 infants with 21 cases of YINDC and 26 cases of BC were included, and a cross-sectional sampling of stool and urine was conducted. Fecal microbiota was characterized using 16S rRNA sequencing, and urinary metabolomics was profiled using UPLC-Q-TOF/MS method. YINDC markers with high accuracy were identified using receiver operating characteristic (ROC) analysis. Results The diversity and composition of intestinal flora and urinary metabolites differed significantly between the YINDC and BC groups. A total of 13 obviously different genera and 55 altered metabolites were identified. Stool microbiome shifts were associated with urine metabolite changes. A combined marker comprising two genera may have a high potential to identify YINDC with an AUC of 0.845. Conclusions Infants with YINDC had a unique gut microbiota and metabolomic profile resulting in a constitutional microclassification. The altered gut microbiome in YINDC may account for the higher risk of cardiovascular diseases. Metabolomic analysis of urine showed that metabolic pathways, including histidine metabolism, proximal tubule bicarbonate reclamation, arginine biosynthesis, and steroid hormone biosynthesis, were altered in infants with YINDC. Additionally, the combined bacterial biomarker had the ability to identify YINDC. Identifying YINDC in infancy and intervening at an early stage is crucial for preventing cardiovascular diseases.
Collapse
|
7
|
Xu HM, Xie SW, Liu TY, Zhou X, Feng ZZ, He X. Microbiota alteration of Chinese young male adults with high-status negative cognitive processing bias. Front Microbiol 2023; 14:989162. [PMID: 36937259 PMCID: PMC10015002 DOI: 10.3389/fmicb.2023.989162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/16/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Evidence suggests that negative cognitive processing bias (NCPB) is a significant risk factor for depression. The microbiota-gut-brain axis has been proven to be a contributing factor to cognitive health and disease. However, the connection between microbiota and NCPB remains unknown. This study mainly sought to explore the key microbiota involved in NCPB and the possible pathways through which NCPB affects depressive symptoms. Methods Data in our studies were collected from 735 Chinese young adults through a cross-sectional survey. Fecal samples were collected from 35 young adults with different levels of NCPB (18 individuals were recruited as the high-status NCPB group, and another 17 individuals were matched as the low-status NCPB group) and 60 with different degrees of depressive symptoms (27 individuals were recruited into the depressive symptom group, as D group, and 33 individuals were matched into the control group, as C group) and analyzed by the 16S ribosomal RNA sequencing technique. Results As a result, the level of NCPB correlated with the degree of depressive symptoms as well as anxiety symptoms and sleep quality (p < 0.01). The β-diversity of microbiota in young adults was proven to be significantly different between the high-status NCPB and the low-status NCPB groups. There were several significantly increased bacteria taxa, including Dorea, Christensenellaceae, Christe -senellaceae_R_7_group, Ruminococcaceae_NK4A214_group, Eggerthellaceae, Family-XIII, Family_XIII_AD3011_group, Faecalibaculum, and Oscillibacter. They were mainly involved in pathways including short-chain fatty acid (SCFA) metabolism. Among these variable bacteria taxa, Faecalibaculum was found associated with both NCPB and depressive symptoms. Furthermore, five pathways turned out to be significantly altered in both the high-status NCPB group and the depressive symptom group, including butanoate metabolism, glyoxylate and dicarboxylate metabolism, propanoate metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, valine, leucine, and isoleucine degradation. These pathways were related to SCFA metabolism. Discussion Fecal microbiota is altered in Chinese young male adults with high status NCPB and may be involved in the biochemical progress that influences depressive symptoms.
Collapse
Affiliation(s)
- Hui-Min Xu
- Department of Medical Psychology, School of Psychology, Army Medical University, Chongqing, China
- Taiyuan Satellite Launch Center, Taiyuan, China
| | - Shen-Wei Xie
- Department of Medical Psychology, School of Psychology, Army Medical University, Chongqing, China
- The People’s Liberation Army (PLA) 953 Hospital, Army Medical University, Rìkazé, China
| | - Tian-Yao Liu
- Department of Medical Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Xia Zhou
- Daping Hospital, Army Medical University, Chongqing, China
| | - Zheng-Zhi Feng
- Department of Medical Psychology, School of Psychology, Army Medical University, Chongqing, China
- Zheng-Zhi Feng,
| | - Xie He
- Department of Medical Psychology, School of Psychology, Army Medical University, Chongqing, China
- *Correspondence: Xie He,
| |
Collapse
|
8
|
Liu L, Li H, Li P, Zhou R, Zhang Q, Liu T, Feng L. Chinese Medicine Enhancing Response Rates to Immunosuppressant PD-L1 Inhibitor and Improving the Quality of Life of Hepatocellular Carcinoma-Bearing Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e134216. [PMID: 38116545 PMCID: PMC10728846 DOI: 10.5812/ijpr-134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Accepted: 02/22/2023] [Indexed: 12/21/2023]
Abstract
Background Malignant tumors are a significant disease endangering human health. Chinese Medicine (CM) plays an important role in comprehensive and holistic tumor treatment. Objectives We aimed to investigate whether CM combined with the immunosuppressant PD-1/PD-L1 inhibitor has a good synergistic effect and can significantly improve response rates for the immunosuppressant. Methods We combined CM with immunosuppressant in treating six-week-old hepatocellular carcinoma-bearing mice and compared the outcomes of groups undergoing different interventions: blank group, control group, CM group, PD-L1 inhibitor group, and CM + PD-L1 inhibitor group, with ten mice in each group. The quality of life was evaluated along with the tumor inhibition effects and growth rates. Results CM significantly reduced tumor load and improved the quality of life of cancer-bearing mice. The survival rate was 81.8% in the control group, 100% in the CM group, 90.9% in the PD-L1 inhibitor group, and 100% in the combined group in the first week. The survival rate was 45.5% in the control group, 54.5% in the CM group, 81.8% in the PD-L1 inhibitor group, and 81.8% in the combined group in the second week. 38% mice in the CM+PD-L1 inhibitor group with smaller tumor size than the average of the control group, which was much higher than other treatment groups. CM also reduced the expression of JAK2 mRNA and STAT3 mRNA, although not significantly (P > 0.05), and reduced PD-L1 mRNA in tumor tissue compared to the control group (P < 0.05). Conclusions CM had a synergistic effect on PD-L1 inhibitors and increased response rates to PD-L1 inhibitor treatment.
Collapse
Affiliation(s)
- Lixing Liu
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Cancer Center, National Clinical Research Center for Cancer, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China
| | - Hao Li
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peijin Li
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhou
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qinglin Zhang
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Liu
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Feng
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Zhao H, Zong Y, Li W, Wang Y, Zhao W, Meng X, Yang F, Kong J, Zhao X, Wang J. Damp-heat constitution influences gut microbiota and urine metabolism of Chinese infants. Heliyon 2022; 9:e12424. [PMID: 36755610 PMCID: PMC9900481 DOI: 10.1016/j.heliyon.2022.e12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Background As an increasingly popular complementary and alternative approach for early detection and treatment of disease, traditional Chinese medicine constitution (TCMC) divides human beings into those with balanced constitution (BC) and unbalanced constitution, where damp-heat constitution (DHC) is one of the most unbalanced constitutions. Many studies have been carried out on the microscopic mechanism of constitution classification; however, most of these studies were conducted in adults and rarely in infants. Many diseases are closely related to intestinal microbiota, and metabolites produced by the interaction between microbiota and the body may impact constitution classification. Herein, we investigated the overall constitution distribution in Chinese infants, and analyzed the profiles of gut microbiota and urine metabolites of DHC to further promote the understanding of infants constitution classification. Methods General information was collected and TCMC was evaluated by Constitutional Medicine Questionnaires. 1315 questionnaires were received in a cross-sectional study to investigate the constitution composition in Chinese infants. A total of 56 infants, including 30 DHC and 26 BC, were randomly selected to analyze gut microbiota by 16S rRNA sequencing and urine metabolites by UPLC-Q-TOF/MS method. Results BC was the most common constitution in Chinese infants, DHC was the second common constitution. The gut microbiota and urine metabolites in the DHC group showed different composition compared to the BC group. Four differential genera and twenty differential metabolites were identified. In addition, the combined marker composed of four metabolites may have the high potential to discriminate DHC from BC with an AUC of 0.765. Conclusions The study revealed the systematic differences in the gut microbiota and urine metabolites between infants with DHC and BC. Moreover, the differential microbiota and metabolites may offer objective evidences for constitution classification.
Collapse
Affiliation(s)
- Haihong Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenle Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaqi Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Weibo Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianghe Meng
- Neurology Department, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Fan Yang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China
| | - Xiaoshan Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,Corresponding author.
| |
Collapse
|
10
|
Ding H, Wang Y, Li Z, Li Q, Liu H, Zhao J, Lu W, Wang J. Baogong decoction treats endometritis in mice by regulating uterine microbiota structure and metabolites. Microb Biotechnol 2022; 15:2786-2799. [PMID: 35932174 DOI: 10.1111/1751-7915.14127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022] Open
Abstract
Endometritis is persistent inflammation caused by bacteria, which can lead to infertility. Although traditional Chinese medicine (TCM) has been used to treat endometritis, the underlying mechanism is still unclear. Here, Baogong Decoction (BGD), a TCM compound, was used to treat mouse endometritis induced by Escherichia coli (E. coli), and then 16S rRNA sequencing and non-targeted metabolomics were used to investigate the change of uterine microbiota and metabolomes in serum and uterine after BGD treatment. Finally, the therapeutic effect of potential metabolites for treating mouse endometritis screened by combined omics analyses was verified using pathological model. The results showed that BGD treatment could effectively treat endometritis associated with the increasing relative abundance of Firmicutes, Bacteroides, Lactobacillus and Lactococcus, and the decreasing relative abundance of Cupriavidus and Proteobacteria. 133 and 130 metabolites were found to be potential biomarkers in serum and uterine tissue respectively. In serum and tissues, dehydroepiandrosterone (DHEA) and catechol were significantly increased in the BGD treatment versus the inflammation group. Results of combined omics analyses demonstrated that DHEA was positively correlated with changes in microbiota. Results of pathological model demonstrated that DHEA could cure endometritis effectively associated with the decreasing infiltration of inflammatory cells and expression of inflammatory factors in the uterus. In summary, our results demonstrated that BGD could cure endometritis in mice by modulating the structure of the uterine microbiota and its metabolites, in which DHEA may be one of the main components of the therapeutic effect of BGD.
Collapse
Affiliation(s)
- He Ding
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Youyuan Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qianqing Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Traditional Chinese Medicine Constitution Discrimination Model Based on Metabolomics and Random Forest Decision Tree Algorithm. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3490130. [PMID: 35615685 PMCID: PMC9126728 DOI: 10.1155/2022/3490130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Constitution refers to the comprehensive and relatively stable characteristics of the genetic or acquired morphological structure, physiological function, and psychological state in the process of human individual life. A special metabolomics data processing method is established to find the unique m/z value of each constitution. Combined with the random forest decision tree algorithm, the discrimination model of 9 constitutions in traditional Chinese medicine is constructed, and the model is verified and tested. The test results show that the classification accuracy of each constitution is higher than 80%, indicating that the model can well identify nine constitutions of traditional Chinese medicine. The classification accuracy is related to the difficulty of distinguishing between constitutions. In a word, this study provides a fast and accurate method to distinguish the constitution of traditional Chinese medicine, provides an objective representation for the classification and judgment of clinical constitution of traditional Chinese medicine, and provides a scientific basis for the modernization of traditional Chinese medicine.
Collapse
|