Zhu H, Yang Y, Duan Y, Zheng X, Lin Z, Zhou J. Nrf2/FSP1/CoQ10 axis-mediated ferroptosis is involved in sodium aescinate-induced nephrotoxicity.
Arch Biochem Biophys 2024;
759:110100. [PMID:
39033970 DOI:
10.1016/j.abb.2024.110100]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Sodium aescinate (SA), an active compound found in horse chestnut seeds, is widely used in clinical practice. Recently, the incidence of SA-induced adverse events, particularly renal impairment, has increased. Our previous work demonstrated that SA causes severe nephrotoxicity via nephrocyte ferroptosis; however, the underlying mechanism remains to be fully elucidated. In the current study, we investigated additional molecular pathways involved in SA-induced nephrotoxicity. Our results showed that SA inhibited cell viability, disrupted cellular membrane integrity, and enhanced reactive oxygen species (ROS), ferrous iron (Fe2+), and malondialdehyde (MDA) levels, as well as lipid peroxidation in rat proximal renal tubular epithelial cell line (NRK-52E) cells. SA also depleted coenzyme Q10 (CoQ10, ubiquinone) and nicotinamide adenine dinucleotide (NADH) and reduced ferroptosis suppressor protein 1 (FSP1) and polyprenyltransferase (coenzyme Q2, COQ2) activity, triggering lipid peroxidation and ROS accumulation in mouse kidneys and NRK-52E cells. The overexpression of COQ2, FSP1, or CoQ10 (ubiquinone) supplementation effectively attenuated SA-induced ferroptosis, whereas iFSP1 or 4-formylbenzoic acid (4-CBA) pretreatment exacerbated SA-induced nephrotoxicity. Additionally, SA decreased nuclear factor-erythroid-2-related factor 2 (Nrf2) levels and inhibited Nrf2 binding to the -1170/-1180 bp ARE site in FSP1 promoter, resulting in FSP1 suppression. Overexpression of Nrf2 or its agonist dimethyl fumarate (DMF) promoted FSP1 expression, thereby improving cellular antioxidant capacity and alleviating SA-induced ferroptosis. These results suggest that SA-triggers renal injury through oxidative stress and ferroptosis, driven by the suppression of the Nrf2/FSP1/CoQ10 axis.
Collapse