1
|
Wang X, Ding F, Jia T, Li F, Ding X, Deng R, Lin K, Yang Y, Wu W, Xia D, Chen G. Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nat Commun 2024; 15:2157. [PMID: 38461161 PMCID: PMC10924867 DOI: 10.1038/s41467-024-46541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies (η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fangwei Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tao Jia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiping Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ruibin Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yulin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Debin Xia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
2
|
Extraction of Spectral Information from Hyperspectral Data and Application of Hyperspectral Imaging for Food and Agricultural Products. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1817-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
3
|
Abstract
Near infrared spectroscopy (NIRS) utilizes intrinsic optical absorption signals of blood, water, and lipid concentration available in the NIR window (600–1000 nm) as well as a developing array of extrinsic organic compounds to detect and localize cancer. This paper reviews optical cancer detection made possible through high tumor-tissue signal-to-noise ratio (SNR) and providing biochemical and physiological data in addition to those obtained via other methods. NIRS detects cancers in vivo through a combination of blood volume and oxygenation from measurements of oxy- and deoxy-hemoglobin giving signals of tumor angiogenesis and hypermetabolism. The Chance lab tends towards CW breast cancer systems using manually scannable detectors with calibrated low pressure tissue contact. These systems calculate angiogenesis and hypermetabolism by using a pair of wavelengths and referencing the mirror image position of the contralateral breast to achieve high ROC/AUC. Time domain and frequency domain spectroscopy were also used to study similar intrinsic breast tumor characteristics such as high blood volume. Other NIRS metrics are water-fat ratio and the optical scattering coefficient. An extrinsic FDA approved dye, ICG, has been used to measure blood pooling with extravasation, similar to Gadolinium in MRI. A key future development in NIRS will be new Molecular Beacons targeting cancers and fluorescing in the NIR window to enhance in vivo tumor-tissue ratios and to afford biochemical specificity with the potential for effective photodynamic anti-cancer therapies.
Collapse
Affiliation(s)
- S Nioka
- University of Pennsylvania, Department of Biochemistry and Biophysics, 250 Anatomy-Chemistry Bldg., Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
4
|
Omer T, Intes X, Hahn J. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging. PLoS One 2015; 10:e0144421. [PMID: 26658308 PMCID: PMC4686107 DOI: 10.1371/journal.pone.0144421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022] Open
Abstract
Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.
Collapse
Affiliation(s)
- Travis Omer
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bagnasco L, Zotti M, Sitta N, Oliveri P. A PCA-based hyperspectral approach to detect infections by mycophilic fungi on dried porcini mushrooms (boletus edulis and allied species). Talanta 2015; 144:1225-30. [DOI: 10.1016/j.talanta.2015.07.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/19/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
|
6
|
Chen SJ, Sinsuebphon N, Intes X. Assessment of Gate Width Size on Lifetime-Based Förster Resonance Energy Transfer Parameter Estimation. PHOTONICS 2015; 2:1027-1042. [PMID: 26557647 PMCID: PMC4636205 DOI: 10.3390/photonics2041027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Förster Resonance Energy Transfer (FRET) enables the observation of interactions at the nanoscale level through the use of fluorescence optical imaging techniques. In FRET, fluorescence lifetime imaging can be used to quantify the fluorescence lifetime changes of the donor molecule, which are associated with proximity between acceptor and donor molecules. Among the FRET parameters derived from fluorescence lifetime imaging, the percentage of donor that interacts with the acceptor (in proximity) can be estimated via model-based fitting. However, estimation of the lifetime parameters can be affected by the acquisition parameters such as the temporal characteristics of the imaging system. Herein, we investigate the effect of various gate widths on the accuracy of estimation of FRET parameters with focus on the near-infrared spectral window. Experiments were performed in silico, in vitro, and in vivo with gate width sizes ranging from 300 ps to 1000 ps in intervals of 100 ps. For all cases, the FRET parameters were retrieved accurately and the imaging acquisition time was decreased three-fold. These results indicate that increasing the gate width up to 1000 ps still allows for accurate quantification of FRET interactions even in the case of short lifetimes such as those encountered with near-infrared FRET pairs.
Collapse
Affiliation(s)
| | | | - Xavier Intes
- Author to whom correspondence should be addressed; ; Tel.: +1-518-276-6964
| |
Collapse
|
7
|
Omer T, Zhao L, Intes X, Hahn J. Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:086023. [PMID: 25166472 PMCID: PMC4147194 DOI: 10.1117/1.jbo.19.8.086023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging (FLIM) aims at quantifying the exponential decay rate of fluorophores to yield lifetime maps over the imaged sample. When combined with Förster resonance energy transfer (FRET), the technique can be used to indirectly sense interactions at the nanoscale such as protein–protein interactions, protein–DNA interactions, and protein conformational changes. In the case of FLIM-FRET, the fluorescence intensity decays are fitted to a biexponential model in order to estimate the lifetime and fractional amplitude coefficients of each component of the population of the donor fluorophore (quenched and nonquenched). Numerous time data points, also called temporal or time gates, are typically employed for accurately estimating the model parameters, leading to lengthy acquisition times and significant computational demands. This work investigates the effect of the number and location of time gates on model parameter estimation accuracy. A detailed model of a FLIM-FRET imaging system is used for the investigation, and the simulation outcomes are validated with in vitro and in vivo experimental data. In all cases investigated, it is found that 10 equally spaced time gates allow robust estimation of model-based parameters with accuracy similar to that of full temporal datasets (90 gates).
Collapse
Affiliation(s)
- Travis Omer
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180, United States
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180, United States
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180, United States
| | - Juergen Hahn
- Rensselaer Polytechnic Institute, Departments of Biomedical Engineering and Chemical & Biological Engineering, 110 8th Street, Troy, New York 12180, United States
- Address all correspondence to: Juergen Hahn, E-mail:
| |
Collapse
|
8
|
Roxin Á, MacDonald TD, Zheng G. Synthesis and characterization of a new natural product analog, 132-173-bacteriochlorophyllone a. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424613501058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here we show the facile synthesis of 132-173-bacteriochlorophyllone a (12), with a distinct seven-membered exocyclic F-ring formed by 132-173-cyclization of bacteriopheophorbide a(16). This is the latest reported bacteriochlorin with such an exocyclic F-ring since 1975 (132-173 cyclobacteriopheophorbide a-enol, 11), and is an analog of previously described natural exocyclic F-ring-containing porphyrins (1–4) and chlorins (5–10). The structure of 12 was confirmed using a combination of 1D 1 H NMR, 2D COSY 1 H NMR, Jmod 13 C NMR and HRMS analysis. The biological activity of 12 was explored, and we found that this compound does not possess strong antioxidant activity like its natural product counterparts, but is a capable photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Áron Roxin
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto ON, M5S 3M2, Canada
- Princess Margaret Cancer Center, UHN, 610 University Avenue, Toronto ON, M5T 2M9, Canada
| | - Thomas D. MacDonald
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto ON, M5S 3M2, Canada
- Princess Margaret Cancer Center, UHN, 610 University Avenue, Toronto ON, M5T 2M9, Canada
| | - Gang Zheng
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto ON, M5S 3M2, Canada
- Princess Margaret Cancer Center, UHN, 610 University Avenue, Toronto ON, M5T 2M9, Canada
| |
Collapse
|
9
|
Mohammadi Moghaddam T, Razavi SMA, Taghizadeh M. Applications of hyperspectral imaging in grains and nuts quality and safety assessment: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2013. [DOI: 10.1007/s11694-013-9148-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kosec M, Bürmen M, Tomaževič D, Pernuš F, Likar B. Automated model-based calibration of short-wavelength infrared (SWIR) imaging spectrographs. APPLIED SPECTROSCOPY 2012; 66:1128-1135. [PMID: 23031695 DOI: 10.1366/12-06618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Among the variety of available hyperspectral imaging systems, the line-scan technique stands out for its short acquisition time and good signal-to-noise ratio. However, due to imperfections in the camera lens and, in particular, optical components of the imaging spectrograph, the acquired images are spatially and spectrally distorted, which can significantly degrade the accuracy of the subsequent hyperspectral image analysis. In this work, we propose and evaluate an automated method for correction of spatial and spectral distortions introduced by a line-scan hyperspectral imaging system operating in the short wavelength infrared (SWIR) spectral range from 1000 nm to 2500 nm. The proposed method is based on non-rigid registration of the distorted and reference images corresponding to two passive calibration objects. The results of the validation show that the proposed method is accurate, efficient, and applicable for calibration of line-scan hyperspectral imaging systems. Moreover, the design of the method and of the calibration objects allows integration with systems operating in diffuse reflectance or transmittance modes.
Collapse
Affiliation(s)
- Matjaž Kosec
- Sensum, Computer Vision Systems, Tehnološki park 21, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
11
|
Wei PR, Cheng SH, Liao WN, Kao KC, Weng CF, Lee CH. Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16447g] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Williams MPA, Ethirajan M, Ohkubo K, Chen P, Pera P, Morgan J, White WH, Shibata M, Fukuzumi S, Kadish KM, Pandey RK. Synthesis, photophysical, electrochemical, tumor-imaging, and phototherapeutic properties of purpurinimide-N-substituted cyanine dyes joined with variable lengths of linkers. Bioconjug Chem 2011; 22:2283-95. [PMID: 21985310 PMCID: PMC3229926 DOI: 10.1021/bc200345p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpurinimide methyl esters, bearing variable lengths of N-substitutions, were conjugated individually to a cyanine dye with a carboxylic acid functionality. The results obtained from in vitro and in vivo studies showed a significant impact of the linkers joining the phototherapeutic and fluorescence imaging moieties. The photosensitizer-fluorophore conjugate with a PEG linker showed the highest uptake in the liver, whereas the conjugate linked with two carbon units showed excellent tumor-imaging and PDT efficacy at 24 h postinjection. Whole body imaging and biodistribution studies at variable time points portrayed enhanced fluorescent uptake of the conjugates in the tumor compared to that in the skin. Interestingly, the conjugate with the shortest linker and the one joining with two carbon units showed faster clearance from normal organs, e.g., the liver, kidney, spleen, and lung, compared to that in tumors. Both imaging and PDT efficacy of the conjugates were performed in BALB/c mice bearing Colon26 tumors. Compared to the others, the short linker conjugate showed poor tumor fluorescent properties and as a corollary does not exhibit the dual functionality of the photosensitizer-fluorophore conjugate. For this reason, it was not evaluated for in vivo PDT efficacy. However, in Colon26 tumor cells (in vitro), the short linker was highly effective. Among the conjugates with variable linkers, the rate of energy transfer from the purpurinimide moiety to the cyanine moiety increased with deceasing linker length, as examined by femtosecond laser flash photolysis measurements. No electron transfer from the purpurinimide moiety to the singlet excited state of the cyanine moiety or from the singlet excited state of the cyanine moiety to the purpurinimide moiety occurred as indicated by a comparison of transient absorption spectra with spectra of the one-electron oxidized and one-electron reduced species of the conjugate obtained by spectroelectrochemical measurements.
Collapse
Affiliation(s)
- Michael P A Williams
- PDT Center, Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu TWB, Chen J, Zheng G. Peptide-based molecular beacons for cancer imaging and therapy. Amino Acids 2010; 41:1123-34. [DOI: 10.1007/s00726-010-0499-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/25/2010] [Indexed: 11/28/2022]
|
14
|
Zhao J, Chen Q, Cai J, Ouyang Q. Automated tea quality classification by hyperspectral imaging. APPLIED OPTICS 2009; 48:3557-3564. [PMID: 19571909 DOI: 10.1364/ao.48.003557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A hyperspectral imaging technique was attempted to classify green tea. Five grades of green tea samples were attempted. A hyperspectral imaging system was developed for data acquisition of tea samples. Principal component analysis was performed on the hyperspectral data to determine three optimal band images. Texture analysis was conducted on each optimal band image to extract characteristic variables. A support vector machine (SVM) was used to construct the classification model. The classification rates were 98% and 95% in the training and prediction sets, respectively. The SVM algorithm shows excellent performance in classification results in contrast with other pattern recognitions classifiers. Overall results show that the hyperspectral imaging technique coupled with a SVM classifier can be efficiently utilized to classify green tea.
Collapse
Affiliation(s)
- Jiewen Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | | | | |
Collapse
|
15
|
Gowen A, O’Donnell C, Cullen P, Bell S. Recent applications of Chemical Imaging to pharmaceutical process monitoring and quality control. Eur J Pharm Biopharm 2008; 69:10-22. [DOI: 10.1016/j.ejpb.2007.10.013] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/02/2007] [Accepted: 10/15/2007] [Indexed: 11/25/2022]
|
16
|
Gowen AA, O’Donnell CP, Taghizadeh M, Gaston E, O’Gorman A, Cullen PJ, Frias JM, Esquerre C, Downey G. Hyperspectral imaging for the investigation of quality deterioration in sliced mushrooms (Agaricus bisporus) during storage. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11694-008-9042-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Kondepati VR, Heise HM, Backhaus J. Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy. Anal Bioanal Chem 2007; 390:125-39. [DOI: 10.1007/s00216-007-1651-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/22/2007] [Accepted: 09/21/2007] [Indexed: 11/29/2022]
|
18
|
|
19
|
Stefflova K, Li H, Chen J, Zheng G. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem 2007; 18:379-88. [PMID: 17298029 PMCID: PMC2535810 DOI: 10.1021/bc0602578] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed and synthesized a folate receptor-targeted, water-soluble, and pharmacomodulated photodynamic therapy (PDT) agent that selectively detects and destroys the targeted cancer cells while sparing normal tissue. This was achieved by minimizing the normal organ uptake (e.g., liver and spleen) and by discriminating between tumors with different levels of folate receptor (FR) expression. This construct (Pyro-peptide-Folate, PPF) is composed of three components: (1) pyropheophorbide a (Pyro) as an imaging and therapeutic agent, (2) peptide sequence as a stable linker and modulator improving the delivery efficiency, and (3) Folate as a homing molecule targeting FR-expressing cancer cells. We observed an enhanced accumulation of PPF in KB cancer cells (FR+) compared to HT 1080 cancer cells (FR-), resulting in a more effective post-PDT killing of KB cells over HT 1080 or normal CHO cells. The accumulation of PPF in KB cells can be up to 70% inhibited by an excess of free folic acid. The effect of Folate on preferential accumulation of PPF in KB tumors (KB vs HT 1080 tumors 2.5:1) was also confirmed in vivo. In contrast to that, no significant difference between the KB and HT 1080 tumor was observed in case of the untargeted probe (Pyro-peptide, PP), eliminating the potential influence of Pyro's own nonspecific affinity to cancer cells. More importantly, we found that incorporating a short peptide sequence considerably improved the delivery efficiency of the probe--a process we attributed to a possible peptide-based pharmacomodulation--as was demonstrated by a 50-fold reduction in PPF accumulation in liver and spleen when compared to a peptide-lacking probe (Pyro-K-Folate, PKF). This approach could potentially be generalized to improve the delivery efficiency of other targeted molecular imaging and photodynamic therapy agents.
Collapse
Affiliation(s)
- Klara Stefflova
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hui Li
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Juan Chen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Ontario Cancer Institute, University of Toronto, MaRS Center, TMDT 5-363, 101 College St., Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Ontario Cancer Institute, University of Toronto, MaRS Center, TMDT 5-363, 101 College St., Toronto, Ontario M5G 1L7, Canada
- Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research
- *To whom correspondence should be addressed: E-mail: . Phone: 1-416-581-7666. Fax: 1-416-581-7667
| |
Collapse
|
20
|
Cavaleiro JAS, Tomé JPC, Faustino MAF. Synthesis of Glycoporphyrins. HETEROCYCLES FROM CARBOHYDRATE PRECURSORS 2007. [DOI: 10.1007/7081_2007_056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|