1
|
Dutt S, Kottaichamy AR, Dargily NC, Mukhopadhyay S, Nayak B, Devendrachari MC, Vinod CP, Nimbegondi Kotresh HM, Ottakam Thotiyl M. Switchable molecular electrocatalysis. Chem Sci 2024; 15:13262-13270. [PMID: 39183932 PMCID: PMC11339944 DOI: 10.1039/d4sc01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/04/2024] [Indexed: 08/27/2024] Open
Abstract
We demonstrate a switchable electrocatalysis mechanism modulated by hydrogen bonding interactions in ligand geometries. By manipulating these geometries, specific electrochemical processes at a single catalytic site can be selectively and precisely activated or deactivated. The α geometry enhances dioxygen electroreduction (ORR) while inhibiting protium redox processes, with the opposite effect seen in the β geometry. Intramolecular hydrogen bonding in the α geometry boosts electron density at the catalytic center, facilitating a shift of ORR to a 4-electron pathway. Conversely, the β geometry promotes a 2-electron ORR and facilitates electrocatalytic hydrogen evolution through an extensive proton charge assembly; offering a paradigm shift to conventional electrocatalytic principles. The expectations that ligand geometry induced electron density modulations in the catalytic metal centre would have a comparable impact on both ORR and HER has been questioned due to the contrasting reactivity exhibited by α-geometry and β-geometry molecules. This further emphasizes the complex and intriguing nature of the roles played by ligands in molecular electrocatalysis.
Collapse
Affiliation(s)
- Shifali Dutt
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Alagar Raja Kottaichamy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Neethu Christudas Dargily
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Sanchayita Mukhopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Bhojkumar Nayak
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | | | | | | | - Musthafa Ottakam Thotiyl
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
2
|
Kottaichamy AR, Nazrulla MA, Parmar M, Thimmappa R, Devendrachari MC, Vinod CP, Volokh M, Kotresh HMN, Shalom M, Thotiyl MO. Ligand Isomerization Driven Electrocatalytic Switching. Angew Chem Int Ed Engl 2024; 63:e202405664. [PMID: 38695160 DOI: 10.1002/anie.202405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 06/21/2024]
Abstract
The prevailing view about molecular catalysts is that the central metal ion is responsible for the reaction mechanism and selectivity, whereas the ligands mainly affect the reaction kinetics. Here, we question this paradigm and show that ligands have a dramatic influence on the selectivity of the product. We show how even a seemingly small change in ligand isomerization sharply alters the selectivity of the well-researched oxygen reduction reaction (ORR) Co phthalocyanine catalyst from an indirect 2e- to a direct 4e- pathway. Detailed analysis reveals that intramolecular hydrogen-bond interactions in the ligand activate the catalytic Co, directing the oxygen binding and thus deciding the final product. The resulting catalyst is the first example of a Co-based molecular catalyst catalyzing a direct 4e- ORR via ligand isomerization, for which it shows an activity close to the benchmark Pt in an actual H2-O2 fuel cell. The effect of the ligand isomerism is demonstrated with different central metal ions, thus highlighting the generalizability of the findings and their potential to open new possibilities in the design of molecular catalysts.
Collapse
Affiliation(s)
- Alagar Raja Kottaichamy
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | | | - Muskan Parmar
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ravikumar Thimmappa
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | | | | | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | | | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Musthafa Ottakam Thotiyl
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
3
|
Heppe N, Gallenkamp C, Snitkoff-Sol RZ, Paul SD, Segura-Salas N, Haak H, Moritz DC, Kaiser B, Jaegermann W, Potapkin V, Jafari A, Schünemann V, Leupold O, Elbaz L, Krewald V, Kramm UI. Applying Nuclear Forward Scattering as In Situ and Operando Tool for the Characterization of FeN 4 Moieties in the Hydrogen Evolution Reaction. J Am Chem Soc 2024; 146:12496-12510. [PMID: 38630640 PMCID: PMC11082898 DOI: 10.1021/jacs.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.
Collapse
Affiliation(s)
- Nils Heppe
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Charlotte Gallenkamp
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
- Quantum
Chemistry, Eduard-Zintl-Institute of Inorganic and Physical Chemistry,
Department of Chemistry, Technical University
Darmstadt, Peter-Grünberg-Str.
4, 64287 Darmstadt, Germany
| | - Rifael Z. Snitkoff-Sol
- Bar-Ilan
Center for Nanotechnology and Advanced Materials and the Department
of Chemistry, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Stephen D. Paul
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Nicole Segura-Salas
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Hendrik Haak
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Dominik C. Moritz
- Surface
Science Division, Institute of Materials Science, Department of Materials
and Earth Sciences, Technical University
Darmstadt, Otto-Berndt-Str.
3, 64287 Darmstadt, Germany
| | - Bernhard Kaiser
- Surface
Science Division, Institute of Materials Science, Department of Materials
and Earth Sciences, Technical University
Darmstadt, Otto-Berndt-Str.
3, 64287 Darmstadt, Germany
| | - Wolfram Jaegermann
- Surface
Science Division, Institute of Materials Science, Department of Materials
and Earth Sciences, Technical University
Darmstadt, Otto-Berndt-Str.
3, 64287 Darmstadt, Germany
| | - Vasily Potapkin
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Atefeh Jafari
- Deutsches
Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Volker Schünemann
- Department
of Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger Straße
56, 67663 Kaiserslautern, Germany
| | - Olaf Leupold
- Deutsches
Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Lior Elbaz
- Bar-Ilan
Center for Nanotechnology and Advanced Materials and the Department
of Chemistry, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Vera Krewald
- Quantum
Chemistry, Eduard-Zintl-Institute of Inorganic and Physical Chemistry,
Department of Chemistry, Technical University
Darmstadt, Peter-Grünberg-Str.
4, 64287 Darmstadt, Germany
| | - Ulrike I. Kramm
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Kottaichamy AR, Deebansok S, Deng J, Nazrulla MA, Zhu Y, Bhat ZM, Devendrachari MC, Vinod CP, Nimbegondi Kotresh HM, Fontaine O, Thotiyl MO. Unprecedented energy storage in metal-organic complexes via constitutional isomerism. Chem Sci 2023; 14:6383-6392. [PMID: 37325136 PMCID: PMC10266471 DOI: 10.1039/d3sc01692g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The essence of any electrochemical system is engraved in its electrical double layer (EDL), and we report its unprecedented reorganization by the structural isomerism of molecules, with a direct consequence on their energy storage capability. Electrochemical and spectroscopic analyses in combination with computational and modelling studies demonstrate that an attractive field-effect due to the molecule's structural-isomerism, in contrast to a repulsive field-effect, spatially screens the ion-ion coulombic repulsions in the EDL and reconfigures the local density of anions. In a laboratory-level prototype supercapacitor, those with β-structural isomerism exhibit nearly 6-times elevated energy storage compared to the state-of-the-art electrodes, by delivering ∼535 F g-1 at 1 A g-1 while maintaining high performance metrics even at a rate as high as 50 A g-1. The elucidation of the decisive role of structural isomerism in reconfiguring the electrified interface represents a major step forward in understanding the electrodics of molecular platforms.
Collapse
Affiliation(s)
- Alagar Raja Kottaichamy
- Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road Pashan Pune 411008 India
| | | | - Jie Deng
- Institute for Advanced Study, College of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | | | - Yachao Zhu
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Zahid Manzoor Bhat
- Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road Pashan Pune 411008 India
| | | | | | | | - Olivier Fontaine
- Molecular Electrochemistry for Energy Laboratory, VISTEC Rayong 21210 Thailand
- Institut Universitaire de France 75005 Paris France
| | - Musthafa Ottakam Thotiyl
- Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road Pashan Pune 411008 India
| |
Collapse
|
5
|
Surface bonding of MN 4 macrocyclic metal complexes with pyridine-functionalized multi-walled carbon nanotubes for non-aqueous Li-O 2 batteries. J Colloid Interface Sci 2023; 635:242-253. [PMID: 36587576 DOI: 10.1016/j.jcis.2022.12.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
It is essential to develop bifunctional catalysts with high activity and stability for reversible oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) in lithium-oxygen (Li-O2) batteries. In this work, pyridine (Py) functionalized multi-walled carbon nanotubes (MWCNTs) were prepared to immobilize various solid MN4 macrocyclic metal complexes (MN4-MC) as cathode electrocatalysts for Li-O2 batteries. Three types of MN4-MC molecules, including iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc) and iron protoporphyrin IX (Heme) were examined to evaluate the influence of central metal atoms and ligand substituents found in MN4-MC molecules on the electrocatalytic performance of the study samples. The order of the ORR/OER catalytic activity of the bifunctional catalysts is FePc > Heme > CoPc. The central metal atom in FePc molecule has the highest occupied molecular orbital (HOMO) energy than the corresponding metal atoms in CoPc and Heme molecules. This made the molecule to have better dioxygen-binding ability and higher catalytic activity in the ORR process; it also made it to easily lose electrons that were oxidized in the OER process. This study proposed a simplified scheme of the electrode surface route to assist in understanding the diverse ORR/OER performances of MN4-MC. It is discovered that the positive core of the MN5 coordination sphere in MN4-MC/Py/MWCNTs composite is the primary active site that can influence the formation of MN5···O2* and MN5-LOOLi cluster in the ORR process. The interfacial electron could be easily delivered between MWCNTs and MN5 active site through the Py bridge. This facilitated the formation and decomposition of MN5-LOOLi species during the ORRs/OERs, leading to the enhancement of its catalytic performance. This work provides a new insight into the effects of the molecular structure and organization of MN4-MC on the catalytic activity of O2 electrodes in Li-O2 batteries.
Collapse
|
6
|
Heppe N, Gallenkamp C, Paul S, Segura-Salas N, von Rhein N, Kaiser B, Jaegermann W, Jafari A, Sergueev I, Krewald V, Kramm UI. Substituent Effects in Iron Porphyrin Catalysts for the Hydrogen Evolution Reaction. Chemistry 2023; 29:e202202465. [PMID: 36301727 DOI: 10.1002/chem.202202465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
For a future hydrogen economy, non-precious metal catalysts for the water splitting reactions are needed that can be implemented on a global scale. Metal-nitrogen-carbon (MNC) catalysts with active sites constituting a metal center with fourfold coordination of nitrogen (MN4 ) show promising performance, but an optimization rooted in structure-property relationships has been hampered by their low structural definition. Porphyrin model complexes are studied to transfer insights from well-defined molecules to MNC systems. This work combines experiment and theory to evaluate the influence of porphyrin substituents on the electronic and electrocatalytic properties of MN4 centers with respect to the hydrogen evolution reaction (HER) in aqueous electrolyte. We found that the choice of substituent affects their utilization on the carbon support and their electrocatalytic performance. We propose an HER mechanism for supported iron porphyrin complexes involving a [FeII (P⋅)]- radical anion intermediate, in which a porphinic nitrogen atom acts as an internal base. While this work focuses on the HER, the limited influence of a simultaneous interaction with the support and an aqueous electrolyte will likely be transferrable to other catalytic applications.
Collapse
Affiliation(s)
- Nils Heppe
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Charlotte Gallenkamp
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany.,Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Stephen Paul
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Nicole Segura-Salas
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Niklas von Rhein
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Bernhard Kaiser
- Institute of Materials Science, Surface Science Division, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Wolfram Jaegermann
- Institute of Materials Science, Surface Science Division, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Atefeh Jafari
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Ulrike I Kramm
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| |
Collapse
|
7
|
Kuzmin SM, Chulovskaya SA, Dmitrieva OA, Mamardashvili NZ, Koifman OI, Parfenyuk VI. 2H-5,10,15,20-tetrakis(3-aminophenyl)porphyrin films: Electrochemical formation and catalyst property testing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Yu T, Liu Q, Gao C, Yang T, Yang B, Guo H, Chen W, Zhang Y, Song B. Preparation of FePcNs@GO composites and boosting oxygen reduction reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Orellana W, Loyola CZ, Marco JF, Tasca F. Evidence of carbon-supported porphyrins pyrolyzed for the oxygen reduction reaction keeping integrity. Sci Rep 2022; 12:8072. [PMID: 35577862 PMCID: PMC9110719 DOI: 10.1038/s41598-022-11820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/28/2022] [Indexed: 11/11/2022] Open
Abstract
Fe(III) 5,10,15,20-(tetraphenyl)porphyrin chloride (FeTPP) and Co(III) 5,10,15,20-(tetraphenyl)porphyrin chloride (CoTPP) were adsorbed on carbon Vulcan and studied as electrocatalysts for the oxygen reduction reaction (ORR) before and after pyrolysis. The pyrolysis process was also simulated through ab initio molecular dynamic simulations and the minimum energy path for the O2 dissociation after the interaction with the metal center of the FeTPP and CoTPP were calculated. After the pyrolysis the FeTPP showed the best performances reducing O2 completely to H2O with increased limiting current and lower overpotential. Tafel slops for the various catalysts did not change after the pyrolytic process suggesting that the mechanism for the ORR is not affected by the heat treatment. TEM images, X-ray diffraction, XPS spectroscopy, 57Fe Mössbauer, and DFT simulations, suggest that there is no breakdown of the macrocyclic complex at elevated temperatures, and that the macro cyclic geometry is preserved. Small variations in the Metal-O2 (M-O2) binding energies and the M–N bond length were observed which is attributed to the dispersive interaction between the macrocycles and the irregular surface of the Vulcan substrate induced by the heat treatment and causing better interaction with the O2 molecule. The theoretical strategy herein applied well simulate and explain the nature of the M–N–C active sites and the performances towards the ORR.
Collapse
Affiliation(s)
- Walter Orellana
- Departamento de Ciencias Físicas, Universidad Andrés Bello, Sazié 2212, 837-0136, Santiago, Chile
| | - César Zúñiga Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - José F Marco
- Instituto de Química Física "Rocasolano" CSIC, Madrid, Spain
| | - Federico Tasca
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Tesakova MV, Kuzmin SM, Parfenyuk VI. Electrodeposition of films of individual 5,10,15,20-tetrakis(3-aminophenyl)porphyrin metal complexes and their composite for electrocatalytic oxygen reduction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Oyarzún MP, Silva N, Cortés-Arriagada D, Silva JF, Ponce IO, Flores M, Tammeveski K, Bélanger D, Zitolo A, Jaouen F, Zagal JH. Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Keawsongsaeng W, Seelajareon H, Namuangruk S, Chitpakdee C, Chasing P, Promarak V, Sariciftci NS, Thamyongkit P. Benzoporphyrin‐Based Nanocomposites for Photoelectrochemical O
2
Reduction. Isr J Chem 2021. [DOI: 10.1002/ijch.202100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wittawat Keawsongsaeng
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| | - Hathaichanok Seelajareon
- Linz Institute for Organic Solar Cells (LIOS) Institute of Physical Chemistry Johannes Kepler University Linz 4040 Austria
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Chirawat Chitpakdee
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering School of Molecular Science & Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Rayong 21210 Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering School of Molecular Science & Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Rayong 21210 Thailand
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS) Institute of Physical Chemistry Johannes Kepler University Linz 4040 Austria
| | - Patchanita Thamyongkit
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
13
|
Xu Q, Zhao L, Yuan R, Chen Y, Xue Z, Zhang J, Qiu X, Qu J. Interfacial charge transfer mechanism of oxygen reduction reaction in alkali media: Effects of molecular charge states and triphenylamine substituent on cobalt porphyrin electrocatalysts. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Kumar Y, Kibena-Põldsepp E, Kozlova J, Rähn M, Treshchalov A, Kikas A, Kisand V, Aruväli J, Tamm A, Douglin JC, Folkman SJ, Gelmetti I, Garcés-Pineda FA, Galán-Mascarós JR, Dekel DR, Tammeveski K. Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41507-41516. [PMID: 34428020 PMCID: PMC8589254 DOI: 10.1021/acsami.1c06737] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 05/05/2023]
Abstract
Non-precious-metal catalysts are promising alternatives for Pt-based cathode materials in low-temperature fuel cells, which is of great environmental importance. Here, we have investigated the bifunctional electrocatalytic activity toward the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) of mixed metal (FeNi; FeMn; FeCo) phthalocyanine-modified multiwalled carbon nanotubes (MWCNTs) prepared by a simple pyrolysis method. Among the bimetallic catalysts containing nitrogen derived from corresponding metal phthalocyanines, we report the excellent ORR activity of FeCoN-MWCNT and FeMnN-MWCNT catalysts with the ORR onset potential of 0.93 V and FeNiN-MWCNT catalyst for the OER having EOER = 1.58 V at 10 mA cm-2. The surface morphology, structure, and elemental composition of the prepared catalysts were examined with scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The FeCoN-MWCNT and FeMnN-MWCNT catalysts were prepared as cathodes and tested in anion-exchange membrane fuel cells (AEMFCs). Both catalysts displayed remarkable AEMFC performance with a peak power density as high as 692 mW cm-2 for FeCoN-MWCNT.
Collapse
Affiliation(s)
- Yogesh Kumar
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Elo Kibena-Põldsepp
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jekaterina Kozlova
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Mihkel Rähn
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Alexey Treshchalov
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Arvo Kikas
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Vambola Kisand
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Jaan Aruväli
- Institute
of Ecology and Earth Sciences, University
of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Aile Tamm
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - John C. Douglin
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, 3200003 Haifa, Israel
| | - Scott J. Folkman
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Ilario Gelmetti
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Felipe A. Garcés-Pineda
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - José Ramón Galán-Mascarós
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Llüis Companys 23, 08010 Barcelona, Spain
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, 3200003 Haifa, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, 3200003 Haifa, Israel
| | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
15
|
Matute RA, Toro-Labbé A, Oyarzún MP, Ramirez S, Ortega DE, Oyarce K, Silva N, Zagal JH. Mapping experimental and theoretical reactivity descriptors of fe macrocyclic complexes deposited on graphite or on multi walled carbon nanotubes for the oxidation of thiols: Thioglycolic acid oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Uribe-Godínez J, Altamirano-Gutiérrez A. Systematic study of iridium-based catalysts derived from Ir4(CO)12, capable to perform the ORR and HOR. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
18
|
Kumar Y, Kibena‐Põldsepp E, Kozlova J, Kikas A, Käärik M, Aruväli J, Kisand V, Leis J, Tamm A, Tammeveski K. Bimetal Phthalocyanine‐Modified Carbon Nanotube‐Based Bifunctional Catalysts for Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yogesh Kumar
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | | | - Jekaterina Kozlova
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Arvo Kikas
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Maike Käärik
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Science University of Tartu Vanemuise 46 51014 Tartu Estonia
| | - Vambola Kisand
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Jaan Leis
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Aile Tamm
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Kaido Tammeveski
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
19
|
Hooe SL, Cook EN, Reid AG, Machan CW. Non-covalent assembly of proton donors and p-benzoquinone anions for co-electrocatalytic reduction of dioxygen. Chem Sci 2021; 12:9733-9741. [PMID: 34349945 PMCID: PMC8293985 DOI: 10.1039/d1sc01271a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
The two-electron and two-proton p-hydroquinone/p-benzoquinone (H2Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH)m]˙−. The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH)m]˙− + nAH + e− ⇌ [HQ(AH)(m+n)−1(A)]2−), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O2). The Mn electrocatalyst is selective for H2O2 with only TFEOH and O2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H2Q(AH)3(A)2]2− adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H2O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H2Q. Non-covalent interactions between reduced p-benzoquinone species and weak acids stabilize intermediates which can switch dioxygen reduction selectivity from H2O2 to H2O for a molecular Mn catalyst.![]()
Collapse
Affiliation(s)
- Shelby L Hooe
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Emma N Cook
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Amelia G Reid
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| |
Collapse
|
20
|
Zhao L, Xu Q, Shao Z, Chen Y, Xue Z, Li H, Zhang J. Enhanced Oxygen Reduction Reaction Performance Using Intermolecular Forces Coupled with More Exposed Molecular Orbitals of Triphenylamine in Co-porphyrin Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45976-45986. [PMID: 32975398 DOI: 10.1021/acsami.0c11742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Triphenylamine (TPA) has often been used as a building block to construct functional organic materials yet is rarely employed in oxygen reduction reaction (ORR) due to its strong electron-donating ability. This versatile segment bears a three-dimensional spatial structure whose effect has not been fully explored in catalytic systems. To this end, five symmetric cobalt porphyrins with carbazole and TPA derivatives have been synthesized and their ORR performance has been evaluated in acid medium. It was found that all compounds produced mainly hydrogen peroxide in oxygen reduction, with CP1 attaching benzyl derivatives and XCP4 possessing TPA-carbazole substituents at the meso-position of porphyrin, showing similar but more positive ORR potential as compared to the other analogues. Importantly, XCP4 achieved the greatest response current and the largest electron transfer numbers and H2O2 yields among the investigated molecules. Detailed electrochemical measurements suggested that the dipole-induced partial charges on the porphyrin in tandem with the more exposed molecular orbitals on TPA contributed to this enhancement, with the former attracting more protons to the affinity of reactive sites and the latter increasing the collision frequency between the electrocatalyst and H+ in solution. This is the first attempt to integrate the intermolecular forces with more exposed molecular orbitals in altering the electrochemical process.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qingxiang Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiwen Shao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yan Chen
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaoli Xue
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianming Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
21
|
Bimetallic iron–copper–nitrogen macrocyclic/carbon as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kumar A, Yasin G, Korai RM, Slimani Y, Ali MF, Tabish M, Tariq Nazir M, Nguyen TA. Boosting oxygen reduction reaction activity by incorporating the iron phthalocyanine nanoparticles on carbon nanotubes network. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Wang YH, Mondal B, Stahl SS. Molecular Cobalt Catalysts for O2 Reduction to H2O2: Benchmarking Catalyst Performance via Rate–Overpotential Correlations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02197] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Heng Wang
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Govan J, Abarca G, Aliaga C, Sanhueza B, Orellana W, Cárdenas-Jirón G, Zagal JH, Tasca F. Influence of cyano substituents on the electron density and catalytic activity towards the oxygen reduction reaction for iron phthalocyanine. The case for Fe(II) 2,3,9,10,16,17,23,24-octa(cyano)phthalocyanine. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Mazur U, Hipps KW. Single molecule level studies of reversible ligand binding to metal porphyrins at the solution/solid interface. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620300049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ligands bind reversibly to metal porphyrins in processes such as molecular recognition, electron transport and catalysis. These chemically relevant processes are ubiquitous in biology and are important in technological applications. In this article, we focus on the current advances in ligand binding to metal porphyrin receptors noncovalently bound at the solution/solid interface. In particular, we restrict ourselves to studies at the single molecule level. Dynamics of the binding/dissociation process can be monitored by scanning tunneling microscopy (STM) and can yield both qualitative and quantitative information about ligand binding affinity and the energetics that define a particular ligation reaction. Molecular and time dependent imaging can establish whether the process under study is at equilibrium. Ligand-concentration-dependent studies have been used to determine adsorption isotherms and thermodynamic data for processes occurring at the solution/solid interface. In several binding reactions, the solid support acted as an electron-donating fifth coordination site, thereby significantly changing the metal porphyrin receptor’s affinity for exogenous ligands. Supporting calculations provide insight into the metalloporphyrin/support and ligand–metalloporphyrin/support interactions and their energetics.
Collapse
Affiliation(s)
- Ursula Mazur
- Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-4630, USA
| | - K. W. Hipps
- Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-4630, USA
| |
Collapse
|
26
|
Zagal JH. Electrochemistry, past, present, and future: energy conversion, sensors, and beyond. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Mourzina YG, Offenhäusser A. Electrochemical properties and biomimetic activity of water-soluble meso-substituted Mn(III) porphyrin complexes in the electrocatalytic reduction of hydrogen peroxide. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Zhao YM, Zhang PC, Xu C, Zhou XY, Liao LM, Wei PJ, Liu E, Chen H, He Q, Liu JG. Design and Preparation of Fe-N 5 Catalytic Sites in Single-Atom Catalysts for Enhancing the Oxygen Reduction Reaction in Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17334-17342. [PMID: 32207602 DOI: 10.1021/acsami.9b20711] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is an urgent need for developing nonprecious metal catalysts to replace Pt-based electrocatalysts for oxygen reduction reaction (ORR) in fuel cells. Atomically dispersed M-Nx/C catalysts have shown promising ORR activity; however, enhancing their performance through modulating their active site structure is still a challenge. In this study, a simple approach was proposed for preparing atomically dispersed iron catalysts embedded in nitrogen- and fluorine-doped porous carbon materials with five-coordinated Fe-N5 sites. The C@PVI-(DFTPP)Fe-800 catalyst, obtained through pyrolysis of a bio-inspired iron porphyrin precursor coordinated with an axial imidazole from the surface of polyvinylimidazole-grafted carbon black at 800 °C under an Ar atmosphere, exhibited a high electrocatalytic activity with a half-wave potential of 0.88 V versus the reversible hydrogen electrode for ORR through a four-electron reduction pathway in alkaline media. In addition, an anion-exchange membrane electrode assembly (MEA) with C@PVI-(DFTPP)Fe-800 as the cathode electrocatalyst generated a maximum power density of 0.104 W cm-2 and a current density of 0.317 mA cm-2. X-ray absorption spectroscopy demonstrated that a single-atom catalyst (Fe-Nx/C) with an Fe-N5 active site can selectively be obtained; furthermore, the catalyst ORR activity can be tuned using fluorine atom doping through appropriate pre-assembling of the molecular catalyst on a carbon support followed by pyrolysis. This provides an effective strategy to prepare structure-performance-correlated electrocatalysts at the molecular level with a large number of M-Nx active sites for ORR. This method can also be utilized for designing other catalysts.
Collapse
Affiliation(s)
- Ye-Min Zhao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peng-Cheng Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Chao Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin-You Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li-Mei Liao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ershuai Liu
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston 02115, Massachusetts, United States
| | - Hengquan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
29
|
Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04543-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Vera-Estrada IL, Uribe-Godínez J, Jiménez-Sandoval O. Study of M(iii)-cyclam (M = Rh, Ru; cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes as novel methanol resistant electrocatalysts for the oxygen reduction reaction. RSC Adv 2020; 10:22586-22594. [PMID: 35514573 PMCID: PMC9054714 DOI: 10.1039/d0ra02904a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023] Open
Abstract
Ru(iii)- and Rh(iii)-cyclam macrocyclic complexes as selective oxygen electroreduction catalysts: no ligand μ-bonds or complex heating treatments are needed.
Collapse
Affiliation(s)
- I. L. Vera-Estrada
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
- MEXICO
| | | | - O. Jiménez-Sandoval
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
- MEXICO
| |
Collapse
|
31
|
The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213047] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Mpeta LS, Gwebu SS, Arotiba OA, Maxakato NW. Methanol Oxidation in Alkaline Media with Pt-Au/fMWCNTs and Pt-Pd/fMWCNTs Electrocatalysts on an Exfoliated Graphite Electrode. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00555-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Shen S, Zhai Z, Qin J, Zhang X, Song Y. Pyrolysis of self-assembled hemin on carbon for efficient oxygen reduction reaction. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The employment of inexpensive metallomacrocycles to create non-precious metal electrocatalysts (NPMEs) with high performance remains a challenge. Herein, we report the self-assembly of low-cost and abundant hemin on carbon black (EC600) under hydrothermal conditions in combination with subsequent pyrolysis, leading to a new NPME. Our NPME exhibits a half-wave potential of 0.89 V vs. reversible hydrogen electrode (RHE), an onset potential of 1.0 V vs. RHE and an average HO[Formula: see text] yield below 2% as well as high durability toward oxygen reduction reactions (ORR) in alkaline electrolytes, ranking at the top of all reported NPMEs derived from hemin.
Collapse
Affiliation(s)
- Shen Shen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zihui Zhai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiaqi Qin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yujiang Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
34
|
|
35
|
Zhou Y, Xing YF, Wen J, Ma HB, Wang FB, Xia XH. Axial ligands tailoring the ORR activity of cobalt porphyrin. Sci Bull (Beijing) 2019; 64:1158-1166. [PMID: 36659687 DOI: 10.1016/j.scib.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
Abstract
In an effort to provide visualization and understanding to the electronic "push effect" of axial ligands on the catalytic activity of cobalt macrocyclic molecules, we design a simple model system involving an [5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin]cobalt(II) (TMMPCo) monolayer axially-coordinated on thiol ligand modified Au electrode and explore the activity of the axial-ligand coordinated TMPPCo toward oxygen reduction reaction (ORR) in acidic medium. Three different ligands, with a decreasing order of coordinating ability as: 4-mercaptopyridine (MPy) > 4-aminothiolphenol (APT) > 4-mercaptobenzonitrile (MBN) are used and a maximum difference in ORR onset potential of 80 mV is observed between the MPy (highest onset potential) and MBN systems (lowest onset potential). The ORR activity of TMPPCo increases with the increase in binding strength of the axial ligand. A detailed mechanism study reveals that ORR on the three ligand coordinated TMPPCo systems shares the same 2-electron mechanism with H2O2 as the terminal product. Theoretical calculation into the structure of the ligand coordinated cobalt porphyrins uncovers the variation in atomic charge of the Co(II) center and altered frontier molecular orbital distribution among the three ligand systems. Both properties have great influence on the back-bonding formation between the Co(II) center and O2 molecules, which has been suggested to be critical toward the O2 adsorption and subsequent activation process.
Collapse
Affiliation(s)
- Yue Zhou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong-Fang Xing
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Bo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Feng-Bin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
36
|
He C, Wu ZY, Zhao L, Ming M, Zhang Y, Yi Y, Hu JS. Identification of FeN4 as an Efficient Active Site for Electrochemical N2 Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00959] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Yuan Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ming
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yun Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Davydova ES, Speck FD, Paul MT, Dekel DR, Cherevko S. Stability Limits of Ni-Based Hydrogen Oxidation Electrocatalysts for Anion Exchange Membrane Fuel Cells. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01582] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena S. Davydova
- The Wolfson Department of Chemical Engineering, Technion−Israel Institute of Technology, 3200003 Haifa, Israel
| | - Florian D. Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michael T.Y. Paul
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| | - Dario R. Dekel
- The Wolfson Department of Chemical Engineering, Technion−Israel Institute of Technology, 3200003 Haifa, Israel
- The Nancy and Stephen Grand Technion Energy Program (GTEP), Technion−Israel Institute of Technology, 3200003 Haifa, Israel
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| |
Collapse
|
38
|
Zúñiga C, Candia-Onfray C, Venegas R, Muñoz K, Urra J, Sánchez-Arenillas M, Marco JF, Zagal JH, Recio FJ. Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
39
|
Li W, Min C, Tan F, Li Z, Zhang B, Si R, Xu M, Liu W, Zhou L, Wei Q, Zhang Y, Yang X. Bottom-Up Construction of Active Sites in a Cu-N 4-C Catalyst for Highly Efficient Oxygen Reduction Reaction. ACS NANO 2019; 13:3177-3187. [PMID: 30821960 DOI: 10.1021/acsnano.8b08692] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bottom-up construction of efficient active sites in transition metal-nitrogen-carbon (M-N-C) catalysts for oxygen reduction reaction (ORR) from single molecular building blocks remains one of the most difficult challenges. Herein, we report a bottom-up approach to produce a highly active Cu-N4-C catalyst with well-defined Cu-N4 coordination sites derived from a small molecular copper complex containing Cu-N4 moieties. The Cu-N4 moieties were found to be covalently integrated into graphene sheets to create the Cu-N4 active sites for ORR. Furthermore, the activity was boosted by tuning the structure of active sites. We find that the high ORR activity of the Cu-N4-C catalyst is related to the Cu-N4 center linked to edges of the graphene sheets, where the electronic structure of the Cu center has the right symmetry for the degenerate π* orbital of the O2 molecule. These findings point out the direction for the synthesis of the M-N-C catalysts at the molecular level.
Collapse
Affiliation(s)
- Wei Li
- Faculty of Materials Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
- Research Center for Analysis and Measurement , Kunming University of Science and Technology , Kunming 650093 , China
| | - Chungang Min
- Research Center for Analysis and Measurement , Kunming University of Science and Technology , Kunming 650093 , China
| | - Feng Tan
- Faculty of Materials Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
- Research Center for Analysis and Measurement , Kunming University of Science and Technology , Kunming 650093 , China
| | - Zhanping Li
- Analysis Center Tsinghua University , Tsinghua University, Beijing 100080 , China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science , Institute of Metal Research Chinese Academy of Sciences , Shenyang 110016 , China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201204 , China
| | - Mingli Xu
- Faculty of Metallurgical and Energy Engineering , Kunming University of Science and Technology , Kunming 650093 , China
| | - Weiping Liu
- Faculty of Materials Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
| | - Liexing Zhou
- Research Center for Analysis and Measurement , Kunming University of Science and Technology , Kunming 650093 , China
| | - Qingmao Wei
- Faculty of Materials Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
- Research Center for Analysis and Measurement , Kunming University of Science and Technology , Kunming 650093 , China
| | - Yuzhen Zhang
- Faculty of Materials Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
- Research Center for Analysis and Measurement , Kunming University of Science and Technology , Kunming 650093 , China
| | - Xikun Yang
- Faculty of Materials Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
- Research Center for Analysis and Measurement , Kunming University of Science and Technology , Kunming 650093 , China
| |
Collapse
|
40
|
Hooe SL, Machan CW. Dioxygen Reduction to Hydrogen Peroxide by a Molecular Mn Complex: Mechanistic Divergence between Homogeneous and Heterogeneous Reductants. J Am Chem Soc 2019; 141:4379-4387. [PMID: 30712355 DOI: 10.1021/jacs.8b13373] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The selective electrocatalytic reduction of dioxygen (O2) to hydrogen peroxide (H2O2) could be an alternative to the anthraquinone process used industrially, as well as enable the on-demand production of a useful chemical oxidant, obviating the need for long-term storage. There are challenges associated with this, since the two-proton/two-electron reduction of H2O2 to two equivalents of water (H2O) or disproportionation to O2 and H2O can be competing reactions. Recently, we reported a Mn(III) Schiff base-type complex, Mn(tbudhbpy)Cl, where 6,6'-di(3,5-di- tert-butyl-2-phenolate)-2,2'-bipyridine = [tbudhbpy]2-, which is active for the electrocatalytic reduction of O2 to H2O2 (ca. 80% selectivity). The less-than-quantitative selectivity could be attributed in part to a thermal disproportionation reaction of H2O2 to O2 and H2O. To understand the mechanism in greater detail, spectrochemical stopped-flow and electrochemical techniques were employed to examine the catalytic rate law and kinetic reaction parameters. Under electrochemical conditions, the catalyst produces H2O2 by an ECCEC mechanism with appreciable rates down to overpotentials of 20 mV and exhibits a catalytic response with a strong dependence on proton donor p Ka. Mechanistic studies suggest that under spectrochemical conditions, where the homogeneous reductant decamethylferrocene (Cp*2Fe) is used, H2O2 is instead produced via a disproportionation pathway, which does not show a strong acid dependence. These results demonstrate that differences in mechanistic pathways can occur for homogeneous catalysts in redox processes, dependent on whether an electrode or homogeneous reductant is used.
Collapse
Affiliation(s)
- Shelby L Hooe
- Department of Chemistry , University of Virginia , PO Box 400319, Charlottesville , Virginia 22904-4319 , United States
| | - Charles W Machan
- Department of Chemistry , University of Virginia , PO Box 400319, Charlottesville , Virginia 22904-4319 , United States
| |
Collapse
|
41
|
Li C, Huang T, Huang Z, Sun J, Zong C, Yang J, Deng W, Dai F. A sulfonated cobalt phthalocyanine/carbon nanotube hybrid as a bifunctional oxygen electrocatalyst. Dalton Trans 2019; 48:17258-17265. [DOI: 10.1039/c9dt03360b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the sulfur modified CoN4 sites and the conductive CNT, the CoPc-SO3H/CNT hybrid exhibits ORR/OER bifunctional activity.
Collapse
Affiliation(s)
- Chuan Li
- The State Key Lab of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Tianxiang Huang
- The State Key Lab of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Zhaodi Huang
- School of Materials Science and Engineering
- College of Science
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Jianpeng Sun
- School of Materials Science and Engineering
- College of Science
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Cheng Zong
- The State Key Lab of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Jingge Yang
- The State Key Lab of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Wenan Deng
- The State Key Lab of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Fangna Dai
- School of Materials Science and Engineering
- College of Science
- China University of Petroleum (East China)
- Qingdao
- PR China
| |
Collapse
|
42
|
Zhao Y, Yu G, Wang F, Wei P, Liu J. Bioinspired Transition‐Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction. Chemistry 2018; 25:3726-3739. [DOI: 10.1002/chem.201803764] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Ye‐Min Zhao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Guo‐Qiang Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Fei‐Fei Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Ping‐Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Jin‐Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
43
|
Kuzmin SM, Chulovskaya SA, Parfenyuk VI. Superoxide-assisted electrochemical deposition of Mn-aminophenyl porphyrins: Process characteristics and properties of the films. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Silva N, Calderón S, Páez MA, Oyarzún MP, Koper MT, Zagal JH. Probing the Fen+/Fe(n−1)+ redox potential of Fe phthalocyanines and Fe porphyrins as a reactivity descriptor in the electrochemical oxidation of cysteamine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Gonen S, Lori O, Cohen-Taguri G, Elbaz L. Metal organic frameworks as a catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-based catalyst incorporated in activated carbon. NANOSCALE 2018; 10:9634-9641. [PMID: 29756623 DOI: 10.1039/c7nr09081a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to their unique chemistry and physical properties, metal-organic frameworks (MOFs) are an interesting class of materials which can be utilized for a wide array of applications. MOFs have been proposed to be used as catalysts for fuel cells, but their low intrinsic electronic conductivity hampered their utilization as is. In this work, we present the synthesis and application of MOF-based precious-metal-group-free (PGM-free) catalysts for oxygen reduction based on a unique metal-organic framework-carbon composite material. Benzene tricarboxylic acid-based MOFs were synthesized inside activated carbon (AC) with four different, first row transition metals: Mn, Fe, Co, and Cu. The MOFs@AC were analyzed electrochemically to measure their catalytic activity. Further physical and chemical characterization studies are performed to measure the material properties. The MOFs@AC are found to be conductive and active catalysts for the oxygen reduction reaction in an alkaline environment. Surprisingly, the Mn-MOF-based@AC exhibits the best performance with an onset potential of 0.9 V vs. RHE and the almost four-electron mechanism, as opposed to most other known PGM-free catalysts, which show Fe and Co as the most active metals.
Collapse
Affiliation(s)
- S Gonen
- Department of chemistry Bar-Ilan University, Ramat Gan 52900, Israel.
| | | | | | | |
Collapse
|
46
|
Electrocatalytic properties of manganese and cobalt polyporphine films toward oxygen reduction reaction. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Osmieri L, Escudero-Cid R, Armandi M, Ocón P, Monteverde Videla AH, Specchia S. Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuel cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Hooe SL, Rheingold AL, Machan CW. Electrocatalytic Reduction of Dioxygen to Hydrogen Peroxide by a Molecular Manganese Complex with a Bipyridine-Containing Schiff Base Ligand. J Am Chem Soc 2018; 140:3232-3241. [PMID: 29216711 DOI: 10.1021/jacs.7b09027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The synthesis and electrocatalytic reduction of dioxygen by a molecular manganese(III) complex with a tetradentate dianionic bipyridine-based ligand is reported. Electrochemical characterization indicates a Nernstian dependence on the added proton source for the reduction of Mn(III) to Mn(II). The resultant species is competent for the reduction of dioxygen to H2O2 with 81 ± 4% Faradaic efficiency. Mechanistic studies suggest that the catalytically active species has been generated through the interaction of the added proton donor and the parent Mn complex, resulting in the protonation of a coordinated phenolate moiety following the single-electron reduction, generating a neutral species with a vacant coordination site at the metal center. As a consequence, the active catalyst has a pendent proton source in close proximity to the active site for subsequent intramolecular reactions.
Collapse
Affiliation(s)
- Shelby L Hooe
- Department of Chemistry , University of Virginia , McCormick Road P.O. Box 400319, Charlottesville , Virginia 22904-4319 , United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0358 , United States
| | - Charles W Machan
- Department of Chemistry , University of Virginia , McCormick Road P.O. Box 400319, Charlottesville , Virginia 22904-4319 , United States
| |
Collapse
|
49
|
Phung QM, Pierloot K. The dioxygen adducts of iron and manganese porphyrins: electronic structure and binding energy. Phys Chem Chem Phys 2018; 20:17009-17019. [DOI: 10.1039/c8cp03078b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The electronic structures of adducts of O2 and metal porphyrins were thoroughly investigated by highly accurate DMRG-CASPT2.
Collapse
|
50
|
Anson CW, Stahl SS. Cooperative Electrocatalytic O 2 Reduction Involving Co(salophen) with p-Hydroquinone as an Electron-Proton Transfer Mediator. J Am Chem Soc 2017; 139:18472-18475. [PMID: 29198114 DOI: 10.1021/jacs.7b11362] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular cobalt complex, Co(salophen), and para-hydroquinone (H2Q) serve as effective cocatalysts for the electrochemical reduction of O2 to water. Mechanistic studies reveal redox cooperativity between Co(salophen) and H2Q. H2Q serves as an electron-proton transfer mediator (EPTM) that enables electrochemical O2 reduction at higher potentials and with faster rates than is observed with Co(salophen) alone. Replacement of H2Q with the higher-potential EPTM, 2-chloro-H2Q, allows for faster O2 reduction rates at higher applied potential. These results demonstrate a unique strategy to achieve improved performance with molecular electrocatalyst systems.
Collapse
Affiliation(s)
- Colin W Anson
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|