1
|
Ruzickova E, Lichvarova M, Osickova A, Filipi K, Jurnecka D, Khaliq H, Espinosa-Vinals C, Pompach P, Masin J, Osicka R. Two pairs of back-to-back α-helices of Kingella kingae RtxA toxin are crucial for the formation of a membrane pore. Int J Biol Macromol 2024; 283:137604. [PMID: 39542310 DOI: 10.1016/j.ijbiomac.2024.137604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The RtxA cytotoxin, a member of the RTX (Repeats in ToXin) family of pore-forming toxins, is the primary virulence factor of the paediatric facultative pathogen Kingella kingae. Although structure-function studies of RTX toxins have defined their characteristic domains and features, the exact membrane topology of RTX toxins remains unknown. Here, we used labelling of cell-bound RtxA with a membrane-impermeable, lysine-reactive reagent and subsequent detection of the labelled lysine residues by mass spectrometry, which revealed that most of the membrane-bound toxin is localised extracellularly. A trypsin protection assay with cell-bound RtxA demonstrated that five of seven transmembrane α-helices, predicted by various algorithms within the N-terminal half of the molecule, are irreversibly embedded in the membrane. Structure-function analysis showed that these α-helices, four of which are arranged as two pairs of back-to-back helices, are essential for the formation of an ion-conducting membrane pore. In contrast, the C-terminal half of RtxA is required for the interaction with the cell surface and for the irreversible insertion of the toxin into the membrane via acyl chains covalently linked to the molecule. These findings advance our understanding of the structure-function relationships of RtxA and enable us to propose a membrane topology model of the toxin.
Collapse
Affiliation(s)
- Eliska Ruzickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Lichvarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Filipi
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Carlos Espinosa-Vinals
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Mondal AK, Carrillo E, Jayaraman V, Twomey EC. Temperature Sensitive Glutamate Gating of AMPA-subtype iGluRs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611422. [PMID: 39282358 PMCID: PMC11398517 DOI: 10.1101/2024.09.05.611422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that mediate the majority of excitatory neurotransmission1. iGluRs are gated by glutamate, where upon glutamate binding, they open their ion channels to enable cation influx into post-synaptic neurons, initiating signal transduction2. The structural mechanism of iGluR gating by glutamate has been extensively studied in the context of positive allosteric modulators (PAMs)3-15. A fundamental question has remained - are the PAM activated states of iGluRs representative of glutamate gating in the absence of PAMs? Here, using the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype iGluR (AMPAR) we show that glutamate gating is unique from gating in the presence of PAMs. We demonstrate that glutamate gating is temperature sensitive, and through temperature-resolved cryo-electron microscopy (cryo-EM), capture all major glutamate gating states. Physiological temperatures augment channel activation and conductance. Activation by glutamate initiates ion channel opening that involves all ion channel helices hinging away from the pores axis in a motif that is conserved across all iGluRs. Desensitization occurs when the local dimer pairs decouple and enables closure of the ion channel below through restoring the channel hinges and refolding the channel gate. Our findings define how glutamate gates iGluRs, provide foundations for therapeutic design, and point to iGluR gating being temperature sensitive.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Edward C. Twomey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70170, USA
| |
Collapse
|
3
|
White DS, Dunyak BM, Vaillancourt FH, Hoskins AA. A Sequential Binding Mechanism for 5' Splice Site Recognition and Modulation for the Human U1 snRNP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590139. [PMID: 38659798 PMCID: PMC11042371 DOI: 10.1101/2024.04.18.590139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how U1 snRNP recognizes particular 5' splice sites (5'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged a -1A bulged 5'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5'SS complexes. Branaplam is a ribonucleoprotein, not RNA duplex alone, targeting drug whose action depends on fundamental properties of 5'SS recognition.
Collapse
Affiliation(s)
- David S. White
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present Address: Element Biosciences, San Diego, CA
| | | | | | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
4
|
Kuschke S, Thon S, Sattler C, Schwabe T, Benndorf K, Schmauder R. cAMP binding to closed pacemaker ion channels is cooperative. Proc Natl Acad Sci U S A 2024; 121:e2315132121. [PMID: 38377199 PMCID: PMC10907242 DOI: 10.1073/pnas.2315132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.
Collapse
Affiliation(s)
- Stefan Kuschke
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Susanne Thon
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
5
|
Kumari M, Khatoon N, Sharma R, Adusumilli S, Auerbach A, Kashyap HK, Nayak TK. Mechanism of hydrophobic gating in the acetylcholine receptor channel pore. J Gen Physiol 2024; 156:e202213189. [PMID: 38153395 PMCID: PMC10757554 DOI: 10.1085/jgp.202213189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) are hetero-pentameric, ligand-gated ion channels. The binding of the neurotransmitter acetylcholine (ACh) to two target sites promotes a global conformational change of the receptor that opens the channel and allows ion conduction through the channel pore. Here, by measuring free-energy changes from single-channel current recordings and using molecular dynamics simulations, we elucidate how a constricted hydrophobic region acts as a "gate" to regulate the channel opening in the pore of AChRs. Mutations of gate residues, including those implicated in congenital myasthenia syndrome, lower the permeation barrier of the channel substantially and increase the unliganded gating equilibrium constant (constitutive channel openings). Correlations between hydrophobicity and the observed free-energy changes, supported by calculations of water densities in the wild-type versus mutant channel pores, provide evidence for hydrophobic wetting-dewetting transition at the gate. The analysis of a coupled interaction network provides insight into the molecular mechanism of closed- versus open-state conformational changes at the gate. Studies of the transition state by "phi"(φ)-value analysis indicate that agonist binding serves to stabilize both the transition and the open state. Intersubunit interaction energy measurements and molecular dynamics simulations suggest that channel opening involves tilting of the pore-lining M2 helices, asymmetric outward rotation of amino acid side chains, and wetting transition of the gate region that lowers the barrier to ion permeation and stabilizes the channel open conformation. Our work provides new insight into the hydrophobic gate opening and shows why the gate mutations result in constitutive AChR channel activity.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Nadira Khatoon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rachita Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sushanth Adusumilli
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anthony Auerbach
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tapan K. Nayak
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
6
|
Singh H, Khatoon N, Bhardwaj SK, Kampani P, Nayak TK, Haridas V. Bispidine as a Versatile Scaffold: From Topological Hosts to Transmembrane Transporters. Chembiochem 2023; 24:e202300502. [PMID: 37708237 DOI: 10.1002/cbic.202300502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The development of designer topological structures is a synthetically challenging endeavor. We present herein bispidine as a platform for the design of molecules with various topologies and functions. The bispidine-based acyclic molecule, which shows intriguing S-shape topology, is discussed. Single-crystal X-ray diffraction studies revealed that this molecule exists in the solid state as two conformational enantiomers. In addition, bispidine-based designer macrocycles were synthesized and investigated for ionophoric properties. Patch clamp experiments revealed that these macrocycles transport both anions and cations non-specifically with at least tenfold higher chloride conductance over the cations under the given experimental conditions. Ultramicroscopy and single-crystal X-ray crystallographic studies indicated that the self-assembling macrocycle forms a tubular assembly. Our design highlights the use of unconventional dihydrogen interactions in nanotube fabrication.
Collapse
Affiliation(s)
- Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nadira Khatoon
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Surya Kant Bhardwaj
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pradeepti Kampani
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tapan K Nayak
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
7
|
Sato M, Hariyama M, Komiya M, Suzuki K, Tozawa Y, Yamamoto H, Hirano-Iwata A. Model-free idealization: Adaptive integrated approach for idealization of ion-channel currents. Biophys J 2023; 122:3959-3975. [PMID: 37634080 PMCID: PMC10560676 DOI: 10.1016/j.bpj.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023] Open
Abstract
Single-channel electrophysiological recordings provide insights into transmembrane ion permeation and channel gating mechanisms. The first step in the analysis of the recorded currents involves an "idealization" process, in which noisy raw data are classified into two discrete levels corresponding to the open and closed states of channels. This provides valuable information on the gating kinetics of ion channels. However, the idealization step is often challenging in cases of currents with poor signal-to-noise ratios and baseline drifts, especially when the gating model of the target channel is not identified. We report herein on a highly robust model-free idealization method for achieving this goal. The algorithm, called adaptive integrated approach for idealization of ion-channel currents (AI2), is composed of Kalman filter and Gaussian mixture model clustering and functions without user input. AI2 automatically determines the noise reduction setting based on the degree of separation between the open and closed levels. We validated the method on pseudo-channel-current datasets that contain either computed or experimentally recorded noise. We also investigated the relationship between the noise reduction parameter of the Kalman filter and the cutoff frequency of the low-pass filter. The AI2 algorithm was then tested on actual experimental data for biological channels including gramicidin A, a voltage-gated sodium channel, and other unidentified channels. We compared the idealization results with those obtained by the conventional methods, including the 50%-threshold-crossing method.
Collapse
Affiliation(s)
- Madoka Sato
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Masanori Hariyama
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.
| | - Maki Komiya
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi, Japan
| | - Kae Suzuki
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan; Epsilon Molecular Engineering, Inc, Open Innovation Center in Saitama University, Saitama, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hideaki Yamamoto
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi, Japan
| | - Ayumi Hirano-Iwata
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
8
|
Liu W, Chen L, Yin D, Yang Z, Feng J, Sun Q, Lai L, Guo X. Visualizing single-molecule conformational transition and binding dynamics of intrinsically disordered proteins. Nat Commun 2023; 14:5203. [PMID: 37626077 PMCID: PMC10457384 DOI: 10.1038/s41467-023-41018-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cellular processes and hold promise as drug targets. However, the dynamic nature of IDPs remains poorly understood. Here, we construct a single-molecule electrical nanocircuit based on silicon nanowire field-effect transistors (SiNW-FETs) and functionalize it with an individual disordered c-Myc bHLH-LZ domain to enable label-free, in situ, and long-term measurements at the single-molecule level. We use the device to study c-Myc interaction with Max and/or small molecule inhibitors. We observe the self-folding/unfolding process of c-Myc and reveal its interaction mechanism with Max and inhibitors through ultrasensitive real-time monitoring. We capture a relatively stable encounter intermediate ensemble of c-Myc during its transition from the unbound state to the fully folded state. The c-Myc/Max and c-Myc/inhibitor dissociation constants derived are consistent with other ensemble experiments. These proof-of-concept results provide an understanding of the IDP-binding/folding mechanism and represent a promising nanotechnology for IDP conformation/interaction studies and drug discovery.
Collapse
Affiliation(s)
- Wenzhe Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Limin Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, P. R. China
| | - Dongbao Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Zhiheng Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Jianfei Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Qi Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China.
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, P. R. China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China.
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
9
|
Indurthi DC, Auerbach A. Agonist efficiency links binding and gating in a nicotinic receptor. eLife 2023; 12:e86496. [PMID: 37399234 DOI: 10.7554/elife.86496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Receptors signal by switching between resting (C) and active (O) shapes ('gating') under the influence of agonists. The receptor's maximum response depends on the difference in agonist binding energy, O minus C. In nicotinic receptors, efficiency (η) represents the fraction of agonist binding energy applied to a local rearrangement (an induced fit) that initiates gating. In this receptor, free energy changes in gating and binding can be interchanged by the conversion factor η. Efficiencies estimated from concentration-response curves (23 agonists, 53 mutations) sort into five discrete classes (%): 0.56 (17), 0.51(32), 0.45(13), 0.41(26), and 0.31(12), implying that there are 5 C versus O binding site structural pairs. Within each class efficacy and affinity are corelated linearly, but multiple classes hide this relationship. η unites agonist binding with receptor gating and calibrates one link in a chain of coupled domain rearrangements that comprises the allosteric transition of the protein.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| |
Collapse
|
10
|
Gordon MT, Ziemba BP, Falke JJ. PDK1:PKCα heterodimer association-dissociation dynamics in single-molecule diffusion tracks on a target membrane. Biophys J 2023; 122:2301-2310. [PMID: 36733254 PMCID: PMC10257113 DOI: 10.1016/j.bpj.2023.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Previous studies have documented the formation of a heterodimer between the two protein kinases PDK1 and PKCα on a lipid bilayer containing their target lipids. This work investigates the association-dissociation kinetics of this PDK1:PKCα heterodimer. The approach monitors the two-dimensional diffusion of single, membrane-associated PDK1 molecules for diffusivity changes as PKCα molecules bind and unbind. In the absence of PKCα, a membrane-associated PDK1 molecule exhibits high diffusivity (or large diffusion constant, D) because its membrane-contacting PH domain binds the target PIP3 lipid headgroup with little bilayer penetration, yielding minimal frictional drag against the bilayer. In contrast, membrane-associated PKCα contacts the bilayer via its C1A, C1B, and C2 domains, which each bind at least one target lipid with significant bilayer insertion, yielding a large frictional drag and low diffusivity. The present findings reveal that individual fluor-PDK1 molecules freely diffusing on the membrane surface undergo reversible switching between distinct high and low diffusivity states, corresponding to the PDK1 monomer and the PDK1:PKCα heterodimer, respectively. The observed single-molecule diffusion trajectories are converted to step length time courses, then subjected to two-state, hidden Markov modeling and dwell time analysis. The findings reveal that both the PDK1 monomer state and the PDK1:PKCα heterodimer state decay via simple exponential kinetics, yielding estimates of rate constants for state switching in both directions. Notably, the PDK1:PKCα heterodimer has been shown to competitively inhibit PDK1 phosphoactivation of AKT1, and is believed to play a tumor suppressor role by limiting excess activation of the highly oncogenic PDK1/AKT1/mTOR pathway. Thus, the present elucidation of the PDK1:PKCα association-dissociation kinetics has important biological and medical implications. More broadly, the findings illustrate the power of single-molecule diffusion measurements to reveal the kinetics of association-dissociation events in membrane signaling reactions that yield a large change in diffusive mobility.
Collapse
Affiliation(s)
- Moshe T Gordon
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Brian P Ziemba
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
11
|
Fairlamb MS, Spies M, Washington MT, Freudenthal BD. Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair. J Biol Chem 2023; 299:104636. [PMID: 36963489 PMCID: PMC10148159 DOI: 10.1016/j.jbc.2023.104636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Base excision repair (BER) is carried out by a series of proteins that function in a step-by-step process to identify, remove, and replace DNA damage. During BER, the DNA transitions through various intermediate states as it is processed by each DNA repair enzyme. Left unrepaired, these BER intermediates can transition into double-stranded DNA breaks and promote genome instability. Previous studies have proposed a short-lived complex consisting of the BER intermediate, the incoming enzyme, and the outgoing enzyme at each step of the BER pathway to protect the BER intermediate. The transfer of BER intermediates between enzymes, known as BER coordination or substrate channeling, remains poorly understood. Here, we utilize single-molecule total internal reflection fluorescence microscopy to investigate the mechanism of BER coordination between apurinic/apyrimidinic endonuclease 1 (APE1) and DNA polymerase β (Pol β). When preformed complexes of APE1 and the incised abasic site product (APE1 product and Pol β substrate) were subsequently bound by Pol β, the Pol β enzyme dissociated shortly after binding in most of the observations. In the events where Pol β binding was followed by APE1 dissociation during substrate channeling, Pol β remained bound for a longer period of time to allow disassociation of APE1. Our results indicate that transfer of the BER intermediate from APE1 to Pol β during BER is dependent on the dissociation kinetics of APE1 and the duration of the ternary complex on the incised abasic site.
Collapse
Affiliation(s)
- Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - M Todd Washington
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; University of Kansas Cancer Center, Kansas City, Kansas, USA.
| |
Collapse
|
12
|
R-Type Fonticins Produced by Pragia fontium Form Large Pores with High Conductance. J Bacteriol 2023; 205:e0031522. [PMID: 36541812 PMCID: PMC9879110 DOI: 10.1128/jb.00315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fonticins are phage tail-like bacteriocins produced by the Gram-negative bacterium Pragia fontium from the family Budviciaceae. This bacterium produces contractile-type particles that adsorb on the surface of sensitive bacteria and penetrate the cell wall, probably during contraction, in a way similar to the type VI secretion system. We characterized the pore-forming activity of fonticins using both living cells and in vitro model membranes. Using a potassium leakage assay, we show that fonticins are able to permeabilize sensitive cells. On black lipid membranes, single-pore conductance is about 0.78 nS in 1 M NaCl and appears to be linearly dependent on the increasing molar strength of NaCl solution, which is a property of considerably large pores. In agreement with these findings, fonticins are not ion selective for Na+, K+, and Cl-. Polyethylene glycol 3350 (PEG 3350) molecules of about 3.5 nm in diameter can enter the fonticin pore lumen, whereas the larger molecules cannot pass the pore. The size of fonticin pores was confirmed by transmission electron microscopy. The terminal membrane-piercing complex of the fonticin tube probably creates a selective barrier restricting passage of macromolecules. IMPORTANCE Phage tail-like bacteriocins are now the subject of research as potent antibacterial agents due to their narrow host specificity and single-hit mode of action. In this work, we focused on the structure and mode of action of fonticins. According to some theories, related particles were initially adapted for passage of double-stranded DNA (dsDNA) molecules, but fonticins changed their function during the evolution; they are able to form large pores through the bacterial envelope of Gram-negative bacteria. As various pore-forming proteins are extensively used for nanopore sequencing and stochastic sensing, we decided to investigate the pore-forming properties of fonticin protein complexes on artificial lipid membranes. Our research revealed remarkable structural properties of these particles that may have a potential application as a nanodevice.
Collapse
|
13
|
Kolcheva M, Ladislav M, Netolicky J, Kortus S, Rehakova K, Krausova BH, Hemelikova K, Misiachna A, Kadkova A, Klima M, Chalupska D, Horak M. The pathogenic N650K variant in the GluN1 subunit regulates the trafficking, conductance, and pharmacological properties of NMDA receptors. Neuropharmacology 2023; 222:109297. [PMID: 36341805 DOI: 10.1016/j.neuropharm.2022.109297] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play an essential role in excitatory neurotransmission in the mammalian brain, and their physiological importance is underscored by the large number of pathogenic mutations that have been identified in the receptor's GluN subunits and associated with a wide range of diseases and disorders. Here, we characterized the functional and pharmacological effects of the pathogenic N650K variant in the GluN1 subunit, which is associated with developmental delay and seizures. Our microscopy experiments showed that when expressed in HEK293 cells (from ATCC®), the GluN1-N650K subunit increases the surface expression of both GluN1/GluN2A and GluN1/GluN2B receptors, but not GluN1/GluN3A receptors, consistent with increased surface expression of the GluN1-N650K subunit expressed in hippocampal neurons (from embryonic day 18 of Wistar rats of both sexes). Using electrophysiology, we found that the GluN1-N650K variant increases the potency of GluN1/GluN2A receptors to both glutamate and glycine but decreases the receptor's conductance and open probability. In addition, the GluN1-N650K subunit does not form functional GluN1/GluN2B receptors but does form fully functional GluN1/GluN3A receptors. Moreover, in the presence of extracellular Mg2+, GluN1-N650K/GluN2A receptors have a similar and increased response to ketamine and memantine, respectively, while the effect of both drugs had markedly slower onset and offset compared to wild-type GluN1/GluN2A receptors. Finally, we found that expressing the GluN1-N650K subunit in hippocampal neurons reduces excitotoxicity, and memantine shows promising neuroprotective effects in neurons expressing either wild-type GluN1 or the GluN1-N650K subunit. This study provides the functional and pharmacological characterization of NMDARs containing the GluN1-N650K variant.
Collapse
Affiliation(s)
- Marharyta Kolcheva
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 12843, Prague 2, Czech Republic; Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Marek Ladislav
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Jakub Netolicky
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 12843, Prague 2, Czech Republic
| | - Stepan Kortus
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Kristyna Rehakova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Barbora Hrcka Krausova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Katarina Hemelikova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Anna Misiachna
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Anna Kadkova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Martin Klima
- Department of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, P.O. Box:16000, Prague 6, Czech Republic
| | - Dominika Chalupska
- Department of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, P.O. Box:16000, Prague 6, Czech Republic
| | - Martin Horak
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
14
|
Moffett AS, Cui G, Thomas PJ, Hunt WD, McCarty NA, Westafer RS, Eckford AW. Permissive and nonpermissive channel closings in CFTR revealed by a factor graph inference algorithm. BIOPHYSICAL REPORTS 2022; 2:100083. [PMID: 36425670 PMCID: PMC9680790 DOI: 10.1016/j.bpr.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The closing of the gated ion channel in the cystic fibrosis transmembrane conductance regulator can be categorized as nonpermissive to reopening, which involves the unbinding of ADP or ATP, or permissive, which does not. Identifying the type of closing is of interest as interactions with nucleotides can be affected in mutants or by introducing agonists. However, all closings are electrically silent and difficult to differentiate. For single-channel patch-clamp traces, we show that the type of the closing can be accurately determined by an inference algorithm implemented on a factor graph, which we demonstrate using both simulated and lab-obtained patch-clamp traces.
Collapse
Affiliation(s)
- Alexander S. Moffett
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| | - Guiying Cui
- Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio
| | - William D. Hunt
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Nael A. McCarty
- Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | | | - Andrew W. Eckford
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| |
Collapse
|
15
|
Hansen SR, White DS, Scalf M, Corrêa IR, Smith LM, Hoskins AA. Multi-step recognition of potential 5' splice sites by the Saccharomyces cerevisiae U1 snRNP. eLife 2022; 11:70534. [PMID: 35959885 PMCID: PMC9436412 DOI: 10.7554/elife.70534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of trans-acting factors or RNA structure. In this work we used colocalization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.
Collapse
Affiliation(s)
- Sarah R Hansen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - David S White
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
16
|
Wijerathne TD, Ozkan AD, Lacroix JJ. Yoda1's energetic footprint on Piezo1 channels and its modulation by voltage and temperature. Proc Natl Acad Sci U S A 2022; 119:e2202269119. [PMID: 35858335 PMCID: PMC9303978 DOI: 10.1073/pnas.2202269119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
Piezo1 channels are essential mechanically activated ion channels in vertebrates. Their selective activation by the synthetic chemical activator Yoda1 opened new avenues to probe their gating mechanisms and develop novel pharmaceuticals. Yet, the nature and extent of Piezo1 functions modulated by this small molecule remain unclear. Here we close this gap by conducting a comprehensive biophysical investigation of the effects of Yoda1 on mouse Piezo1 in mammalian cells. Using calcium imaging, we first show that cysteine bridges known to inhibit mechanically evoked Piezo1 currents also inhibit activation by Yoda1, suggesting Yoda1 acts by energetically modulating mechanosensory domains. The presence of Yoda1 alters single-channel dwell times and macroscopic kinetics consistent with a dual and reciprocal energetic modulation of open and shut states. Critically, we further discovered that the electrophysiological effects of Yoda1 depend on membrane potential and temperature, two other Piezo1 modulators. This work illuminates a complex interplay between physical and chemical modulators of Piezo1 channels.
Collapse
Affiliation(s)
- Tharaka D. Wijerathne
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
| | - Alper D. Ozkan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
| | - Jérôme J. Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
| |
Collapse
|
17
|
Ball STM, Celik N, Sayari E, Abdul Kadir L, O’Brien F, Barrett-Jolley R. DeepGANnel: Synthesis of fully annotated single molecule patch-clamp data using generative adversarial networks. PLoS One 2022; 17:e0267452. [PMID: 35536793 PMCID: PMC9089889 DOI: 10.1371/journal.pone.0267452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/09/2022] [Indexed: 11/19/2022] Open
Abstract
Development of automated analysis tools for “single ion channel” recording is hampered by the lack of available training data. For machine learning based tools, very large training sets are necessary with sample-by-sample point labelled data (e.g., 1 sample point every 100microsecond). In an experimental context, such data are labelled with human supervision, and whilst this is feasible for simple experimental analysis, it is infeasible to generate the enormous datasets that would be necessary for a big data approach using hand crafting. In this work we aimed to develop methods to generate simulated ion channel data that is free from assumptions and prior knowledge of noise and underlying hidden Markov models. We successfully leverage generative adversarial networks (GANs) to build an end-to-end pipeline for generating an unlimited amount of labelled training data from a small, annotated ion channel “seed” record, and this needs no prior knowledge of theoretical dynamical ion channel properties. Our method utilises 2D CNNs to maintain the synchronised temporal relationship between the raw and idealised record. We demonstrate the applicability of the method with 5 different data sources and show authenticity with t-SNE and UMAP projection comparisons between real and synthetic data. The model would be easily extendable to other time series data requiring parallel labelling, such as labelled ECG signals or raw nanopore sequencing data.
Collapse
Affiliation(s)
- Sam T. M. Ball
- Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Numan Celik
- Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Elaheh Sayari
- Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Lina Abdul Kadir
- Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Fiona O’Brien
- Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Münch JL, Paul F, Schmauder R, Benndorf K. Bayesian inference of kinetic schemes for ion channels by Kalman filtering. eLife 2022; 11:e62714. [PMID: 35506659 PMCID: PMC9342998 DOI: 10.7554/elife.62714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Inferring adequate kinetic schemes for ion channel gating from ensemble currents is a daunting task due to limited information in the data. We address this problem by using a parallelized Bayesian filter to specify hidden Markov models for current and fluorescence data. We demonstrate the flexibility of this algorithm by including different noise distributions. Our generalized Kalman filter outperforms both a classical Kalman filter and a rate equation approach when applied to patch-clamp data exhibiting realistic open-channel noise. The derived generalization also enables inclusion of orthogonal fluorescence data, making unidentifiable parameters identifiable and increasing the accuracy of the parameter estimates by an order of magnitude. By using Bayesian highest credibility volumes, we found that our approach, in contrast to the rate equation approach, yields a realistic uncertainty quantification. Furthermore, the Bayesian filter delivers negligibly biased estimates for a wider range of data quality. For some data sets, it identifies more parameters than the rate equation approach. These results also demonstrate the power of assessing the validity of algorithms by Bayesian credibility volumes in general. Finally, we show that our Bayesian filter is more robust against errors induced by either analog filtering before analog-to-digital conversion or by limited time resolution of fluorescence data than a rate equation approach.
Collapse
Affiliation(s)
- Jan L Münch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich Schiller University JenaJenaGermany
| | - Fabian Paul
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich Schiller University JenaJenaGermany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich Schiller University JenaJenaGermany
| |
Collapse
|
19
|
A guide to accelerated direct digital counting of single nucleic acid molecules by FRET-based intramolecular kinetic fingerprinting. Methods 2022; 197:63-73. [PMID: 34182140 PMCID: PMC8709879 DOI: 10.1016/j.ymeth.2021.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Cell-free nucleic acids (cfNAs) such as short non-coding microRNA (miRNA) and circulating tumor DNA (ctDNA) that reside in bodily fluids have emerged as potential cancer biomarkers. Methods for the rapid, highly specific, and sensitive monitoring of cfNAs in biofluids have, therefore, become increasingly attractive as clinical diagnosis tools. As a next generation technology, we provide a practical guide for an amplification-free, single molecule Förster resonance energy transfer (smFRET)-based kinetic fingerprinting approach termed intramolecular single molecule recognition through equilibrium Poisson sampling, or iSiMREPS, for the rapid detection and counting of miRNA and mutant ctDNA with virtually unlimited specificity and single molecule sensitivity. iSiMREPS utilizes a pair of fluorescent detection probes, wherein one probe immobilizes the target molecules on the surface, and the other probe transiently and reversibly binds to the target to generate characteristic time-resolved fingerprints as smFRET signal that are detected in a total internal reflection fluorescence microscope. Analysis of these kinetic fingerprints enables near-perfect discrimination between specific binding to target molecules and nonspecific background binding. By accelerating kinetic fingerprinting using the denaturant formamide and reducing background signals by removing target-less probes from the surface via toehold-mediated strand displacement, iSiMREPS has been demonstrated to count miR-141 and EGFR exon 19 deletion ctDNA molecules with a limit of detection (LOD) of ~1 and 3 fM, respectively, as well as mutant allele fractions as low as 0.0001%, during a standard acquisition time of only ~10 s per field of view. In this review, we provide a detailed roadmap for implementing iSiMREPS more broadly in research and clinical diagnostics, combining rapid analysis, high specificity, and high sensitivity.
Collapse
|
20
|
Mechanisms underlying drug-mediated regulation of membrane protein function. Proc Natl Acad Sci U S A 2021; 118:2113229118. [PMID: 34753824 DOI: 10.1073/pnas.2113229118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.
Collapse
|
21
|
Patel VR, Salinas AM, Qi D, Gupta S, Sidote DJ, Goldschen-Ohm MP. Single-molecule imaging with cell-derived nanovesicles reveals early binding dynamics at a cyclic nucleotide-gated ion channel. Nat Commun 2021; 12:6459. [PMID: 34753946 PMCID: PMC8578382 DOI: 10.1038/s41467-021-26816-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022] Open
Abstract
Ligand binding to membrane proteins is critical for many biological signaling processes. However, individual binding events are rarely directly observed, and their asynchronous dynamics are occluded in ensemble-averaged measures. For membrane proteins, single-molecule approaches that resolve these dynamics are challenged by dysfunction in non-native lipid environments, lack of access to intracellular sites, and costly sample preparation. Here, we introduce an approach combining cell-derived nanovesicles, microfluidics, and single-molecule fluorescence colocalization microscopy to track individual binding events at a cyclic nucleotide-gated TAX-4 ion channel critical for sensory transduction. Our observations reveal dynamics of both nucleotide binding and a subsequent conformational change likely preceding pore opening. Kinetic modeling suggests that binding of the second ligand is either independent of the first ligand or exhibits up to ~10-fold positive binding cooperativity. This approach is broadly applicable to studies of binding dynamics for proteins with extracellular or intracellular domains in native cell membrane.
Collapse
Affiliation(s)
- Vishal R Patel
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Arturo M Salinas
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Darong Qi
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Shipra Gupta
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - David J Sidote
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
22
|
Lewis AH, Grandl J. Piezo1 ion channels inherently function as independent mechanotransducers. eLife 2021; 10:70988. [PMID: 34711306 PMCID: PMC8555984 DOI: 10.7554/elife.70988] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/07/2021] [Indexed: 01/25/2023] Open
Abstract
Piezo1 is a mechanically activated ion channel involved in sensing forces in various cell types and tissues. Cryo-electron microscopy has revealed that the Piezo1 structure is bowl-shaped and capable of inducing membrane curvature via its extended footprint, which indirectly suggests that Piezo1 ion channels may bias each other’s spatial distribution and interact functionally. Here, we use cell-attached patch-clamp electrophysiology and pressure-clamp stimulation to functionally examine large numbers of membrane patches from cells expressing Piezo1 endogenously at low levels and cells overexpressing Piezo1 at high levels. Our data, together with stochastic simulations of Piezo1 spatial distributions, show that both at endogenous densities (1–2 channels/μm2), and at non-physiological densities (10–100 channels/μm2) predicted to cause substantial footprint overlap, Piezo1 density has no effect on its pressure sensitivity or open probability in the nominal absence of membrane tension. The results suggest that Piezo channels, at densities likely to be physiologically relevant, inherently behave as independent mechanotransducers. We propose that this property is essential for cells to transduce forces homogeneously across the entire cell membrane. Cells can sense a range of mechanical forces both inside and outside the body, such as the stroke of a fingertip or the filling of a lung. Pores on the surface of the cell called Piezo channels open up in response to this pressure. This allows ions to flood in to the cell and trigger a series of biochemical reactions that alter the cell’s behavior. Piezo channels have a unique bowl-like structure that transforms the shape of the cell surface around them, potentially affecting how nearby proteins behave. Previous research had suggested that these channels might be unevenly distributed across the cell surface, and were predicted to modify each other’s behaviors when tightly packed together. This cooperative response would have a significant impact on how cells sense mechanical force. To investigate if this was the case, Lewis and Grandl studied a mouse cell called Neuro2A which naturally produces Piezo ion channels. In the experiment, pressure was applied to different parts of the cell and the electric current generated by ions moving across the surface was recorded: the higher the electrical activity, the more ion channels present. This showed that Piezo channels are randomly distributed across the cell surface and do not tend to cluster together. The same Neuro2A cells were then engineered to produce up to one hundred times more Piezo proteins. Despite the channels being more densely packed together, how they responded to mechanical force remained the same. These results suggest that Piezo channels act independently and are not influenced by close proximity to one another. Lewis and Grandl propose that this property may ensure that all parts of the cell surface react to mechanical force in the same way. Further work is needed to see if this finding applies to other cell types that produce Piezo proteins.
Collapse
Affiliation(s)
- Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
23
|
Liu W, Li J, Xu Y, Yin D, Zhu X, Fu H, Su X, Guo X. Complete Mapping of DNA‐Protein Interactions at the Single‐Molecule Level. ADVANCED SCIENCE 2021; 8:2101383. [PMCID: PMC8655176 DOI: 10.1002/advs.202101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNA–protein interaction plays an essential role in the storage, expression, and regulation of genetic information. A 1D/3D facilitated diffusion mechanism has been proposed to explain the extraordinarily rapid rate of DNA‐binding protein (DBP) searching for cognate sequence along DNA and further studied by single‐molecule experiments. However, direct observation of the detailed chronological protein searching image is still a formidable challenge. Here, for the first time, a single‐molecule electrical monitoring technique is utilized to realize label‐free detection of the DBP–DNA interaction process based on high‐gain silicon nanowire field‐effect transistors (SiNW FETs). The whole binding process of WRKY domain and DNA has been visualized with high sensitivity and single‐base resolution. Impressively, the swinging of hydrogen bonds between amino acid residues and bases in DNA induce the dynamic collective motion of DBP–DNA. This in situ, label‐free electrical detection platform provides a practical experimental methodology for dynamic studies of various biomolecules.
Collapse
Affiliation(s)
- Wenzhe Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jie Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Shenzhen Bay LaboratoryShenzhen518132P. R. China
| | - Yongping Xu
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Dongbao Yin
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Xin Zhu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Huanyan Fu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Xuefeng Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| |
Collapse
|
24
|
Kampfer AJ, Balog EM. Electrical polarity-dependent gating and a unique subconductance of RyR2 induced by S-adenosyl methionine via the ATP binding site. J Biochem 2021; 170:739-752. [PMID: 34523682 DOI: 10.1093/jb/mvab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/30/2021] [Indexed: 11/14/2022] Open
Abstract
S-Adenosyl-l-methionine (SAM) was used to probe the functional effects exerted via the RyR2 adenine nucleotide binding site. Single channel experiments revealed that SAM applied to the cytoplasmic face of RyR2 had complex voltage dependent effects on channel gating and conductance. At positive transmembrane holding potentials, SAM caused a striking reduction in channel openings and a reduced channel conductance. In contrast, at negative potentials SAM promoted a clearly resolved subconductance state. At membrane potentials between -75 and -25 mV the open probability of the subconductance state was independent of voltage. ATP, but not the non-adenosine based RyR activator 4-chloro-m-cresol interfered with the effects of SAM at both negative and positive potentials. This suggests that ATP and SAM interact with a common binding site. Molecular docking showed SAM bound to the adenine nucleotide-binding site and formed a hydrogen bond to Glu4886 in the C-terminal end of the S6 alpha helix. In this configuration SAM may alter the conformation of the RyR2 ion conduction pathway. This work provides novel insight into potential functional outcomes of ligand binding to the RyR adenine nucleotide binding site.
Collapse
Affiliation(s)
- Angela J Kampfer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Edward M Balog
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
25
|
Conductance selectivity of Na + across the K + channel via Na + trapped in a tortuous trajectory. Proc Natl Acad Sci U S A 2021; 118:2017168118. [PMID: 33741736 DOI: 10.1073/pnas.2017168118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ion selectivity of the potassium channel is crucial for regulating electrical activity in living cells; however, the mechanism underlying the potassium channel selectivity that favors large K+ over small Na+ remains unclear. Generally, Na+ is not completely excluded from permeation through potassium channels. Herein, the distinct nature of Na+ conduction through the prototypical KcsA potassium channel was examined. Single-channel current recordings revealed that, at a high Na+ concentration (200 mM), the channel was blocked by Na+, and this blocking was relieved at high membrane potentials, suggesting the passage of Na+ across the channel. At a 2,000 mM Na+ concentration, single-channel Na+ conductance was measured as one-eightieth of the K+ conductance, indicating that the selectivity filter allows substantial conduit of Na+ Molecular dynamics simulations revealed unprecedented atomic trajectories of Na+ permeation. In the selectivity filter having a series of carbonyl oxygen rings, a smaller Na+ was distributed off-center in eight carbonyl oxygen-coordinated sites as well as on-center in four carbonyl oxygen-coordinated sites. This amphipathic nature of Na+ coordination yielded a continuous but tortuous path along the filter. Trapping of Na+ in many deep free energy wells in the filter caused slow elution. Conversely, K+ is conducted via a straight path, and as the number of occupied K+ ions increased to three, the concerted conduction was accelerated dramatically, generating the conductance selectivity ratio of up to 80. The selectivity filter allows accommodation of different ion species, but the ion coordination and interactions between ions render contrast conduction rates, constituting the potassium channel conductance selectivity.
Collapse
|
26
|
Mangold KE, Wang W, Johnson EK, Bhagavan D, Moreno JD, Nerbonne JM, Silva JR. Identification of structures for ion channel kinetic models. PLoS Comput Biol 2021; 17:e1008932. [PMID: 34398881 PMCID: PMC8389848 DOI: 10.1371/journal.pcbi.1008932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/26/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Markov models of ion channel dynamics have evolved as experimental advances have improved our understanding of channel function. Past studies have examined limited sets of various topologies for Markov models of channel dynamics. We present a systematic method for identification of all possible Markov model topologies using experimental data for two types of native voltage-gated ion channel currents: mouse atrial sodium currents and human left ventricular fast transient outward potassium currents. Successful models identified with this approach have certain characteristics in common, suggesting that aspects of the model topology are determined by the experimental data. Incorporating these channel models into cell and tissue simulations to assess model performance within protocols that were not used for training provided validation and further narrowing of the number of acceptable models. The success of this approach suggests a channel model creation pipeline may be feasible where the structure of the model is not specified a priori. Markov models of ion channel dynamics have evolved as experimental advances have improved our understanding of channel function. Past studies have examined limited sets of various structures for Markov models of channel dynamics. Here, we present a computational routine designed to thoroughly search for Markov model topologies for simulating whole-cell currents. We tested this method on two distinct types of voltage-gated cardiac ion channels and found the number of states and connectivity required to recapitulate experimentally observed kinetics. Successful models identified with this approach have certain characteristics in common, suggesting that model structures are determined by the experimental data. Incorporation of these models into higher scale action potential and cable (an approximation of one-dimensional action potential propagation) simulations, identified key channel phenomena that were required for proper function. These methods provide a route to create functional channel models that can be used for action potential simulation without pre-defining their structure ahead of time.
Collapse
Affiliation(s)
- Kathryn E. Mangold
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Wei Wang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis Missouri, United States of America
| | - Eric K. Johnson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis Missouri, United States of America
| | - Druv Bhagavan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan D. Moreno
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis Missouri, United States of America
| | - Jeanne M. Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
Structural Arrangement Produced by Concanavalin A Binding to Homomeric GluK2 Receptors. MEMBRANES 2021; 11:membranes11080613. [PMID: 34436376 PMCID: PMC8401665 DOI: 10.3390/membranes11080613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Kainate receptors are members of the ionotropic glutamate receptor family. They form cation-specific transmembrane channels upon binding glutamate that desensitize in the continued presence of agonists. Concanavalin A (Con-A), a lectin, stabilizes the active open-channel state of the kainate receptor and reduces the extent of desensitization. In this study, we used single-molecule fluorescence resonance energy transfer (smFRET) to investigate the conformational changes underlying kainate receptor modulation by Con-A. These studies showed that Con-A binding to GluK2 homomeric kainate receptors resulted in closer proximity of the subunits at the dimer–dimer interface at the amino-terminal domain as well as between the subunits at the dimer interface at the agonist-binding domain. Additionally, the modulation of receptor functions by monovalent ions, which bind to the dimer interface at the agonist-binding domain, was not observed in the presence of Con-A. Based on these results, we conclude that Con-A modulation of kainate receptor function is mediated by a shift in the conformation of the kainate receptor toward a tightly packed extracellular domain.
Collapse
|
28
|
Tibbs J, Ghoneim M, Caldwell CC, Buzynski T, Bowie W, Boehm EM, Washington MT, Tabei SMA, Spies M. KERA: analysis tool for multi-process, multi-state single-molecule data. Nucleic Acids Res 2021; 49:e53. [PMID: 33660771 PMCID: PMC8136784 DOI: 10.1093/nar/gkab087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular machines within cells dynamically assemble, disassemble and reorganize. Molecular interactions between their components can be observed at the single-molecule level and quantified using colocalization single-molecule spectroscopy, in which individual labeled molecules are seen transiently associating with a surface-tethered partner, or other total internal reflection fluorescence microscopy approaches in which the interactions elicit changes in fluorescence in the labeled surface-tethered partner. When multiple interacting partners can form ternary, quaternary and higher order complexes, the types of spatial and temporal organization of these complexes can be deduced from the order of appearance and reorganization of the components. Time evolution of complex architectures can be followed by changes in the fluorescence behavior in multiple channels. Here, we describe the kinetic event resolving algorithm (KERA), a software tool for organizing and sorting the discretized fluorescent trajectories from a range of single-molecule experiments. KERA organizes the data in groups by transition patterns, and displays exhaustive dwell time data for each interaction sequence. Enumerating and quantifying sequences of molecular interactions provides important information regarding the underlying mechanism of the assembly, dynamics and architecture of the macromolecular complexes. We demonstrate KERA's utility by analyzing conformational dynamics of two DNA binding proteins: replication protein A and xeroderma pigmentosum complementation group D helicase.
Collapse
Affiliation(s)
- Joseph Tibbs
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colleen C Caldwell
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Troy Buzynski
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Wayne Bowie
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Elizabeth M Boehm
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Todd Washington
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Yong XLH, Zhang L, Yang L, Chen X, Tan JZA, Yu X, Chandra M, Livingstone E, Widagdo J, Vieira MM, Roche KW, Lynch JW, Keramidas A, Collins BM, Anggono V. Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit. Cell Rep 2021; 36:109338. [PMID: 34233182 PMCID: PMC8313361 DOI: 10.1016/j.celrep.2021.109338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 01/23/2023] Open
Abstract
NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.
Collapse
Affiliation(s)
- Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lingrui Zhang
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liming Yang
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaojun Yu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Livingstone
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marta M Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
30
|
White DS, Chowdhury S, Idikuda V, Zhang R, Retterer ST, Goldsmith RH, Chanda B. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 2021; 595:606-610. [PMID: 34194042 PMCID: PMC8513821 DOI: 10.1038/s41586-021-03686-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
Electrical activity in the brain and heart depends on rhythmic generation of action potentials by pacemaker ion channels (HCN) whose activity is regulated by cAMP binding1. Previous work has uncovered evidence for both positive and negative cooperativity in cAMP binding2,3, but such bulk measurements suffer from limited parameter resolution. Efforts to eliminate this ambiguity using single-molecule techniques have been hampered by the inability to directly monitor binding of individual ligand molecules to membrane receptors at physiological concentrations. Here we overcome these challenges using nanophotonic zero-mode waveguides4 to directly resolve binding dynamics of individual ligands to multimeric HCN1 and HCN2 ion channels. We show that cAMP binds independently to all four subunits when the pore is closed, despite a subsequent conformational isomerization to a flip state at each site. The different dynamics in binding and isomerization are likely to underlie physiologically distinct responses of each isoform to cAMP5 and provide direct validation of the ligand-induced flip-state model6-9. This approach for observing stepwise binding in multimeric proteins at physiologically relevant concentrations can directly probe binding allostery at single-molecule resolution in other intact membrane proteins and receptors.
Collapse
Affiliation(s)
- David S White
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sandipan Chowdhury
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Vinay Idikuda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ruohan Zhang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
31
|
Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Vinopalová M, Marková L, Voleman L, Klimeš V, Petrů M, Vaitová Z, Čepička I, Hryzáková K, Harant K, Gray MW, Chami M, Guilvout I, Francetic O, Franz Lang B, Vlček Č, Tsaousis AD, Eliáš M, Doležal P. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 2021; 12:2947. [PMID: 34011950 PMCID: PMC8134430 DOI: 10.1038/s41467-021-23046-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
The type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion. Bacteria use the type 2 secretion system to secrete enzymes and toxins across the outer membrane to the environment. Here the authors analyse the T2SS pathway in three protist lineages and suggest that the early mitochondrion may have been capable of secreting proteins into the cytosol.
Collapse
Affiliation(s)
- Lenka Horváthová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vojtěch Žárský
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tomáš Pánek
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Jan Pyrih
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alžběta Motyčková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Veronika Klápšťová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Martina Vinopalová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lenka Marková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Luboš Voleman
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Klimeš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Markéta Petrů
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zuzana Vaitová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Čepička
- Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Klára Hryzáková
- Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague 2, Czech Republic
| | - Karel Harant
- Faculty of Science, Proteomic core facility, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics, University of Basel, Basel, Switzerland
| | - Ingrid Guilvout
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montreal, QC, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 4, Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.
| | - Pavel Doležal
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
32
|
Látrová K, Havlová N, Večeřová R, Pinkas D, Bogdanová K, Kolář M, Fišer R, Konopásek I, Do Pham DD, Rejman D, Mikušová G. Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Sci Rep 2021; 11:10446. [PMID: 34001940 PMCID: PMC8129119 DOI: 10.1038/s41598-021-89883-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Lipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives. We investigated the reasons behind this different susceptibility of bacteria to the two generations of LPPOs using model membranes and the living model bacteria Bacillus subtilis and Escherichia coli. We show that both generations of LPPOs form oligomeric conductive pores and permeabilize the bacterial membrane of sensitive cells. LPPO activity is not affected by the value of the target membrane potential, and thus they are also active against persister cells. The insensitivity of Gram-negative bacteria to LPPO I is probably caused by the barrier function of the outer membrane with LPS. LPPO I is almost incapable of overcoming the outer membrane in living cells, and the presence of LPS in liposomes substantially reduces their activity. Further, the antimicrobial activity of LPPO is also influenced by the phospholipid composition of the target membrane. A higher proportion of phospholipids with neutral charge such as phosphatidylethanolamine or phosphatidylcholine reduces the LPPO permeabilizing potential.
Collapse
Affiliation(s)
- Klára Látrová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Noemi Havlová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Renata Večeřová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Dominik Pinkas
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Kateřina Bogdanová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Ivo Konopásek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Duy Dinh Do Pham
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
| | - Gabriela Mikušová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
33
|
Abstract
Potassium channels play an important role regulating transmembrane electrical activity in essentially all cell types. We were especially interested in those that determine the intrinsic electrical properties of mammalian central neurons. Over 30 different potassium channels have been molecularly identified in brain neurons, but there often is not a clear distinction between molecular structure and the function of a particular channel in the cell. Using patch-clamp methods to search for single potassium channels in excised inside-out (ISO) somatic patches with symmetrical potassium, we found that nearly all patches contained non-voltage-inactivating channels with a single-channel conductance of 100-200 pS. This conductance range is consistent with the family of sodium-activated potassium channels (Slo2.1, Slo2.2, or collectively, KNa). The activity of these channels was positively correlated with a low cytoplasmic Na+ concentration (2-20 mM). Cell-attached recordings from intact neurons, however, showed little or no activity of this K+ channel. Attempts to increase channel activity by increasing intracellular sodium concentration ([Na+]i) with bursts of action potentials or direct perfusion of Na+ through a whole cell pipette had little effect on KNa channel activity. Furthermore, excised outside-out (OSO) patches across a range of intracellular [Na+] showed less channel activity than we had seen with excised ISO patches. Blocking the Na+/K+ pump with ouabain increased the activity of the KNa channels in excised OSO patches to levels comparable with ISO-excised patches. Our results suggest that despite their apparent high levels of expression, the activity of somatic KNa channels is tightly regulated by the activity of the Na+/K+ pump.NEW & NOTEWORTHY We studied KNa channels in mouse hippocampal CA1 neurons. Excised inside-out patches showed the channels to be prevalent and active in most patches in the presence of Na+. Cell-attached recordings from intact neurons, however, showed little channel activity. Increasing cytoplasmic sodium in intact cells showed a small effect on channel activity compared with that seen in inside-out excised patches. Blockade of the Na+/K+ pump with ouabain, however, restored the activity of the channels to that seen in inside-out patches.
Collapse
Affiliation(s)
- Richard Gray
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Daniel Johnston
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
34
|
Koselski M, Pupkis V, Hashimoto K, Lapeikaite I, Hanaka A, Wasko P, Plukaite E, Kuchitsu K, Kisnieriene V, Trebacz K. Impact of Mammalian Two-Pore Channel Inhibitors on Long-Distance Electrical Signals in the Characean Macroalga Nitellopsis obtusa and the Early Terrestrial Liverwort Marchantia polymorpha. PLANTS 2021; 10:plants10040647. [PMID: 33805421 PMCID: PMC8067100 DOI: 10.3390/plants10040647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022]
Abstract
Inhibitors of human two-pore channels (TPC1 and TPC2), i.e., verapamil, tetrandrine, and NED-19, are promising medicines used in treatment of serious diseases. In the present study, the impact of these substances on action potentials (APs) and vacuolar channel activity was examined in the aquatic characean algae Nitellopsis obtusa and in the terrestrial liverwort Marchantia polymorpha. In both plant species, verapamil (20-300 µM) caused reduction of AP amplitudes, indicating impaired Ca2+ transport. In N. obtusa, it depolarized the AP excitation threshold and resting potential and prolonged AP duration. In isolated vacuoles of M. polymorpha, verapamil caused a reduction of the open probability of slow vacuolar SV/TPC channels but had almost no effect on K+ channels in the tonoplast of N. obtusa. In both species, tetrandrine (20-100 µM) evoked a pleiotropic effect: reduction of resting potential and AP amplitudes and prolongation of AP repolarization phases, especially in M. polymorpha, but it did not alter vacuolar SV/TPC activity. NED-19 (75 µM) caused both specific and unspecific effects on N. obtusa APs. In M. polymorpha, NED-19 increased the duration of repolarization. However, no inhibition of SV/TPC channels was observed in Marchantia vacuoles, but an increase in open probability and channel flickering. The results indicate an effect on Ca2+ -permeable channels governing plant excitation.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Vilmantas Pupkis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.H.); (K.K.)
| | - Indre Lapeikaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Piotr Wasko
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Egle Plukaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.H.); (K.K.)
| | - Vilma Kisnieriene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
- Correspondence: (V.K.); (K.T.)
| | - Kazimierz Trebacz
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
- Correspondence: (V.K.); (K.T.)
| |
Collapse
|
35
|
Agonist efficiency from concentration-response curves: Structural implications and applications. Biophys J 2021; 120:1800-1813. [PMID: 33675765 DOI: 10.1016/j.bpj.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Agonists are evaluated by a concentration-response curve (CRC), with a midpoint (EC50) that indicates potency, a high-concentration asymptote that indicates efficacy, and a low-concentration asymptote that indicates constitutive activity. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that η can be calculated from EC50 and the asymptotes of a CRC derived from either single-channel or whole-cell responses. For 20 agonists of skeletal muscle nicotinic receptors, the distribution of η-values is bimodal with population means at 51% (including acetylcholine, nornicotine, and dimethylphenylpiperazinium) and 40% (including epibatidine, varenicline, and cytisine). The value of η is related inversely to the size of the agonist's headgroup, with high- versus low-efficiency ligands having an average volume of 70 vs. 102 Å3. Most binding site mutations have only a small effect on acetylcholine efficiency, except for αY190A (35%), αW149A (60%), and those at αG153 (42%). If η is known, the EC50 and high-concentration asymptote can be calculated from each other. Hence, an entire CRC can be estimated from the response to a single agonist concentration, and efficacy can be estimated from EC50 of a CRC that has been normalized to 1. Given η, the level of constitutive activity can be estimated from a single CRC.
Collapse
|
36
|
Pein F, Eltzner B, Munk A. Analysis of patchclamp recordings: model-free multiscale methods and software. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:187-209. [PMID: 33837454 PMCID: PMC8071803 DOI: 10.1007/s00249-021-01506-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Analysis of patchclamp recordings is often a challenging issue. We give practical guidance how such recordings can be analyzed using the model-free multiscale idealization methodology JSMURF, JULES, and HILDE. We provide an operational manual how to use the accompanying software available as an R-package and as a graphical user interface. This includes selection of the right approach and tuning of parameters. We also discuss advantages and disadvantages of model-free approaches in comparison to hidden Markov model approaches and explain how they complement each other.
Collapse
Affiliation(s)
- Florian Pein
- Statistical Laboratory, DPMMS, University of Cambridge, Cambridge, UK.
| | - Benjamin Eltzner
- Institute for Mathematical Stochastics, Georg-August-University of Goettingen, Göttingen, Germany
| | - Axel Munk
- Institute for Mathematical Stochastics, Georg-August-University of Goettingen, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Felix Bernstein Institute for Mathematical Statistics in the Biosciences, Göttingen, Germany
| |
Collapse
|
37
|
Prokaryotic Argonaute from Archaeoglobus fulgidus interacts with DNA as a homodimer. Sci Rep 2021; 11:4518. [PMID: 33633170 PMCID: PMC7907199 DOI: 10.1038/s41598-021-83889-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
Argonaute (Ago) proteins are found in all three domains of life. The best-characterized group is eukaryotic Argonautes (eAgos), which are the core of RNA interference. The best understood prokaryotic Ago (pAgo) proteins are full-length pAgos. They are composed of four major structural/functional domains (N, PAZ, MID, and PIWI) and thereby closely resemble eAgos. It was demonstrated that full-length pAgos function as prokaryotic antiviral systems, with the PIWI domain performing cleavage of invading nucleic acids. However, the majority of identified pAgos are shorter and catalytically inactive (encode just MID and inactive PIWI domains), thus their action mechanism and function remain unknown. In this work we focus on AfAgo, a short pAgo protein encoded by an archaeon Archaeoglobus fulgidus. We find that in all previously solved AfAgo structures, its two monomers form substantial dimerization interfaces involving the C-terminal β-sheets. Led by this finding, we have employed various biochemical and biophysical assays, including SEC-MALS, SAXS, single-molecule FRET, and AFM, to show that AfAgo is indeed a homodimer in solution, which is capable of simultaneous interaction with two DNA molecules. This finding underscores the diversity of prokaryotic Agos and broadens the range of currently known Argonaute-nucleic acid interaction mechanisms.
Collapse
|
38
|
Carrillo E, Shaikh SA, Berka V, Durham RJ, Litwin DB, Lee G, MacLean DM, Nowak LM, Jayaraman V. Mechanism of modulation of AMPA receptors by TARP-γ8. J Gen Physiol 2021; 152:jgp.201912451. [PMID: 31748249 PMCID: PMC7034100 DOI: 10.1085/jgp.201912451] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 01/24/2023] Open
Abstract
Using single-channel recordings and single-molecule FRET, Carrillo et al. show that resensitization of α-amino-5-methyl-3-hydroxy-4-isoxazole propionate receptors by the regulatory protein γ8 is characterized by transitions to high conductance levels associated with tighter conformational coupling similar to those seen in the presence of cyclothiazide. Fast excitatory synaptic transmission in the mammalian central nervous system is mediated by glutamate-activated α-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA) receptors. In neurons, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs). Assembly with TARP γ8 alters the biophysical properties of the receptor, producing resensitization currents in the continued presence of glutamate. Using single-channel recordings, we show that under resensitizing conditions, GluA2 AMPA receptors primarily transition to higher conductance levels, similar to activation of the receptors in the presence of cyclothiazide, which stabilizes the open state. To study the conformation associated with these states, we have used single-molecule FRET and show that this high-conductance state exhibits tighter coupling between subunits in the extracellular parts of the receptor. Furthermore, the dwell times for the transition from the tightly coupled state to the decoupled states correlate to longer open durations of the channels, thus correlating conformation and function at the single-molecule level.
Collapse
Affiliation(s)
- Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,E. Carrillo and S.A. Shaikh contributed equally to this work and are listed in alphabetical order
| | - Sana A Shaikh
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,E. Carrillo and S.A. Shaikh contributed equally to this work and are listed in alphabetical order
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Garam Lee
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Linda M Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
39
|
Hájek J, Bieringer S, Voráčová K, Macho M, Saurav K, Delawská K, Divoká P, Fišer R, Mikušová G, Cheel J, Fewer DP, Vu DL, Paichlová J, Riepl H, Hrouzek P. Semi-synthetic puwainaphycin/minutissamide cyclic lipopeptides with improved antifungal activity and limited cytotoxicity. RSC Adv 2021; 11:30873-30886. [PMID: 35498921 PMCID: PMC9041360 DOI: 10.1039/d1ra04882a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial cyclic lipopeptides are an important class of antifungal compounds with applications in pharmacology and biotechnology. However, the cytotoxicity of many cyclic lipopeptides limits their potential as antifungal drugs. Here we present a structure–activity relationship study on the puwainaphycin/minutissamide (PUW/MIN) family of cyclic lipopeptides isolated from cyanobacteria. PUWs/MINs with variable fatty acid chain lengths differed in the dynamic of their cytotoxic effect despite their similar IC50 after 48 hours (2.8 μM for MIN A and 3.2 μM for PUW F). Furthermore, they exhibited different antifungal potency with the lowest MIC values obtained for MIN A and PUW F against the facultative human pathogen Aspergillus fumigatus (37 μM) and the plant pathogen Alternaria alternata (0.6 μM), respectively. We used a Grignard-reaction with alkylmagnesium halides to lengthen the lipopeptide FA moiety as well as the Steglich esterification on the free hydroxyl substituents to prepare semi-synthetic lipopeptide variants possessing multiple fatty acid tails. Cyclic lipopeptides with extended and branched FA tails showed improved strain-specific antifungal activity against A. fumigatus (MIC = 0.5–3.8 μM) and A. alternata (MIC = 0.1–0.5 μM), but with partial retention of the cytotoxic effect (∼10–20 μM). However, lipopeptides with esterified free hydroxyl groups possessed substantially higher antifungal potencies, especially against A. alternata (MIC = 0.2–0.6 μM), and greatly reduced or abolished cytotoxic activity (>20 μM). Our findings pave the way for a generation of semi-synthetic variants of lipopeptides with improved and selective antifungal activities. Both the substitution of free hydroxyl substituents and extending/branching of the fatty acid moiety improved the antifungal potency and limits the cytotoxicity of cyanobacterial cyclic lipopeptides puwainaphycin/minutissamides.![]()
Collapse
Affiliation(s)
- Jan Hájek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Sebastian Bieringer
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University Munich, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-analytical Chemistry, 94315 Straubing, Germany
| | - Kateřina Voráčová
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Markéta Macho
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Kumar Saurav
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Kateřina Delawská
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Petra Divoká
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Radovan Fišer
- Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Gabriela Mikušová
- Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - José Cheel
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, Biocenter 1, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | - Dai Long Vu
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Jindřiška Paichlová
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Herbert Riepl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University Munich, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-analytical Chemistry, 94315 Straubing, Germany
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| |
Collapse
|
40
|
Schmidpeter PAM, Rheinberger J, Nimigean CM. Prolyl isomerization controls activation kinetics of a cyclic nucleotide-gated ion channel. Nat Commun 2020; 11:6401. [PMID: 33328472 PMCID: PMC7744796 DOI: 10.1038/s41467-020-20104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
SthK, a cyclic nucleotide-modulated ion channel from Spirochaeta thermophila, activates slowly upon cAMP increase. This is reminiscent of the slow, cAMP-induced activation reported for the hyperpolarization-activated and cyclic nucleotide-gated channel HCN2 in the family of so-called pacemaker channels. Here, we investigate slow cAMP-induced activation in purified SthK channels using stopped-flow assays, mutagenesis, enzymatic catalysis and inhibition assays revealing that the cis/trans conformation of a conserved proline in the cyclic nucleotide-binding domain determines the activation kinetics of SthK. We propose that SthK exists in two forms: trans Pro300 SthK with high ligand binding affinity and fast activation, and cis Pro300 SthK with low affinity and slow activation. Following channel activation, the cis/trans equilibrium, catalyzed by prolyl isomerases, is shifted towards trans, while steady-state channel activity is unaffected. Our results reveal prolyl isomerization as a regulatory mechanism for SthK, and potentially eukaryotic HCN channels. This mechanism could contribute to electrical rhythmicity in cells.
Collapse
Affiliation(s)
- Philipp A. M. Schmidpeter
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA
| | - Jan Rheinberger
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.4830.f0000 0004 0407 1981Present Address: University of Groningen, Groningen, Netherlands
| | - Crina M. Nimigean
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065 USA
| |
Collapse
|
41
|
Chen X, Yeoh YQ, He Y, Zhou C, Horsley JR, Abell AD, Yu J, Guo X. Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angew Chem Int Ed Engl 2020; 59:22554-22562. [PMID: 32851761 DOI: 10.1002/anie.202004701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The majority of the protein structures have been elucidated under equilibrium conditions. The aim herein is to provide a better understanding of the dynamic behavior inherent to proteins by fabricating a label-free nanodevice comprising a single-peptide junction to measure real-time conductance, from which their structural dynamic behavior can be inferred. This device contains an azobenzene photoswitch for interconversion between a well-defined cis, and disordered trans isomer. Real-time conductance measurements revealed three distinct states for each isomer, with molecular dynamics simulations showing each state corresponds to a specific range of hydrogen bond lengths within the cis isomer, and specific dihedral angles in the trans isomer. These insights into the structural dynamic behavior of peptides may rationally extend to proteins. Also demonstrated is the capacity to modulate conductance which advances the design and development of bioinspired electronic nanodevices.
Collapse
Affiliation(s)
- Xinjiani Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yuan Qi Yeoh
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Yanbin He
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.,Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, P. R. China
| | - Chenguang Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - John R Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Xuefeng Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
42
|
Gielen M, Barilone N, Corringer PJ. The desensitization pathway of GABA A receptors, one subunit at a time. Nat Commun 2020; 11:5369. [PMID: 33097732 PMCID: PMC7585415 DOI: 10.1038/s41467-020-19218-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors mediate most inhibitory synaptic transmission in the brain of vertebrates. Following GABA binding and fast activation, these receptors undergo a slower desensitization, the conformational pathway of which remains largely elusive. To explore the mechanism of desensitization, we used concatemeric α1β2γ2 GABAA receptors to selectively introduce gain-of-desensitization mutations one subunit at a time. A library of twenty-six mutant combinations was generated and their bi-exponential macroscopic desensitization rates measured. Introducing mutations at the different subunits shows a strongly asymmetric pattern with a key contribution of the γ2 subunit, and combining mutations results in marked synergistic effects indicating a non-concerted mechanism. Kinetic modelling indeed suggests a pathway where subunits move independently, the desensitization of two subunits being required to occlude the pore. Our work thus hints towards a very diverse and labile conformational landscape during desensitization, with potential implications in physiology and pharmacology.
Collapse
Affiliation(s)
- Marc Gielen
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France.
- Sorbonne Université, 21 rue de l'École de Médecine, 75006, Paris, France.
| | - Nathalie Barilone
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
43
|
Iwahashi Y, Toyama Y, Imai S, Itoh H, Osawa M, Inoue M, Shimada I. Conformational equilibrium shift underlies altered K + channel gating as revealed by NMR. Nat Commun 2020; 11:5168. [PMID: 33057011 PMCID: PMC7560842 DOI: 10.1038/s41467-020-19005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023] Open
Abstract
The potassium ion (K+) channel plays a fundamental role in controlling K+ permeation across the cell membrane and regulating cellular excitabilities. Mutations in the transmembrane pore reportedly affect the gating transitions of K+ channels, and are associated with the onset of neural disorders. However, due to the lack of structural and dynamic insights into the functions of K+ channels, the structural mechanism by which these mutations cause K+ channel dysfunctions remains elusive. Here, we used nuclear magnetic resonance spectroscopy to investigate the structural mechanism underlying the decreased K+-permeation caused by disease-related mutations, using the prokaryotic K+ channel KcsA. We demonstrated that the conformational equilibrium in the transmembrane region is shifted toward the non-conductive state with the closed intracellular K+-gate in the disease-related mutant. We also demonstrated that this equilibrium shift is attributable to the additional steric contacts in the open-conductive structure, which are evoked by the increased side-chain bulkiness of the residues lining the transmembrane helix. Our results suggest that the alteration in the conformational equilibrium of the intracellular K+-gate is one of the fundamental mechanisms underlying the dysfunctions of K+ channels caused by disease-related mutations. Potassium ion channels control K+ permeation across cell membranes and mutations that cause cardiovascular and neural diseases are known. Here, the authors perform NMR measurements with the prototypical K+ channel from Streptomyces lividans, KcsA and characterise the effects of disease causing mutations on the conformational dynamics of K+ channels in a physiological solution environment.
Collapse
Affiliation(s)
- Yuta Iwahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan.
| |
Collapse
|
44
|
Chen X, Yeoh YQ, He Y, Zhou C, Horsley JR, Abell AD, Yu J, Guo X. Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xinjiani Chen
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China
| | - Yuan Qi Yeoh
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Yanbin He
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Pharmaceutical Department Changzhi Medical College Changzhi 046000 P. R. China
| | - Chenguang Zhou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Xuefeng Guo
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China
- Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
45
|
Pinkas D, Fišer R, Kozlík P, Dolejšová T, Hryzáková K, Konopásek I, Mikušová G. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183405. [DOI: 10.1016/j.bbamem.2020.183405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
|
46
|
Lee S, Housden NG, Ionescu SA, Zimmer MH, Kaminska R, Kleanthous C, Bayley H. Transmembrane Epitope Delivery by Passive Protein Threading through the Pores of the OmpF Porin Trimer. J Am Chem Soc 2020; 142:12157-12166. [PMID: 32614588 PMCID: PMC7366379 DOI: 10.1021/jacs.0c02362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trimeric porins in the outer membrane (OM) of Gram-negative bacteria are the conduits by which nutrients and antibiotics diffuse passively into cells. The narrow gateways that porins form in the OM are also exploited by bacteriocins to translocate into cells by a poorly understood process. Here, using single-channel electrical recording in planar lipid bilayers in conjunction with protein engineering, we explicate the mechanism by which the intrinsically unstructured N-terminal translocation domain (IUTD) of the endonuclease bacteriocin ColE9 is imported passively across the Escherichia coli OM through OmpF. We show that the import is dominated by weak interactions of OmpF pores with binding epitopes within the IUTD that are orientationally biased and result in the threading of over 60 amino acids through 2 subunits of OmpF. Single-molecule kinetic analysis demonstrates that the IUTD enters from the extracellular side of OmpF and translocates to the periplasm where the polypeptide chain does an about turn in order to enter a neighboring subunit, only for some of these molecules to pop out of this second subunit before finally re-entering to form a stable complex. These intimately linked transport/binding processes generate an essentially irreversible, hook-like assembly that constrains an import activating peptide epitope between two subunits of the OmpF trimer.
Collapse
Affiliation(s)
- Sejeong Lee
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | | | - Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Matthew H Zimmer
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
47
|
Osickova A, Khaliq H, Masin J, Jurnecka D, Sukova A, Fiser R, Holubova J, Stanek O, Sebo P, Osicka R. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J Biol Chem 2020; 295:9268-9280. [PMID: 32461253 DOI: 10.1074/jbc.ra120.014122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial repeats in toxin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved lysine residues by co-expressed toxin-activating acyltransferases. Here, we investigated how the chemical nature, position, and number of bound acyl chains govern the activities of Bordetella pertussis adenylate cyclase toxin (CyaA), Escherichia coli α-hemolysin (HlyA), and Kingella kingae cytotoxin (RtxA). We found that the three protoxins are acylated in the same E. coli cell background by each of the CyaC, HlyC, and RtxC acyltransferases. We also noted that the acyltransferase selects from the bacterial pool of acyl-acyl carrier proteins (ACPs) an acyl chain of a specific length for covalent linkage to the protoxin. The acyltransferase also selects whether both or only one of two conserved lysine residues of the protoxin will be posttranslationally acylated. Functional assays revealed that RtxA has to be modified by 14-carbon fatty acyl chains to be biologically active, that HlyA remains active also when modified by 16-carbon acyl chains, and that CyaA is activated exclusively by 16-carbon acyl chains. These results suggest that the RTX toxin molecules are structurally adapted to the length of the acyl chains used for modification of their acylated lysine residue in the second, more conserved acylation site.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Anna Sukova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
48
|
Evans EGB, Morgan JLW, DiMaio F, Zagotta WN, Stoll S. Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:10839-10847. [PMID: 32358188 PMCID: PMC7245078 DOI: 10.1073/pnas.1916375117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels are essential components of mammalian visual and olfactory signal transduction. CNG channels open upon direct binding of cyclic nucleotides (cAMP and/or cGMP), but the allosteric mechanism by which this occurs is incompletely understood. Here, we employed double electron-electron resonance (DEER) spectroscopy to measure intersubunit distance distributions in SthK, a bacterial CNG channel from Spirochaeta thermophila Spin labels were introduced into the SthK C-linker, a domain that is essential for coupling cyclic nucleotide binding to channel opening. DEER revealed an agonist-dependent conformational change in which residues of the B'-helix displayed outward movement with respect to the symmetry axis of the channel in the presence of the full agonist cAMP, but not with the partial agonist cGMP. This conformational rearrangement was observed both in detergent-solubilized SthK and in channels reconstituted into lipid nanodiscs. In addition to outward movement of the B'-helix, DEER-constrained Rosetta structural models suggest that channel activation involves upward translation of the cytoplasmic domain and formation of state-dependent interactions between the C-linker and the transmembrane domain. Our results demonstrate a previously unrecognized structural transition in a CNG channel and suggest key interactions that may be responsible for allosteric gating in these channels.
Collapse
Affiliation(s)
- Eric G B Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Jacob L W Morgan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195;
| | - Stefan Stoll
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195;
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
49
|
White DS, Goldschen-Ohm MP, Goldsmith RH, Chanda B. Top-down machine learning approach for high-throughput single-molecule analysis. eLife 2020; 9:e53357. [PMID: 32267232 PMCID: PMC7205464 DOI: 10.7554/elife.53357] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Single-molecule approaches provide enormous insight into the dynamics of biomolecules, but adequately sampling distributions of states and events often requires extensive sampling. Although emerging experimental techniques can generate such large datasets, existing analysis tools are not suitable to process the large volume of data obtained in high-throughput paradigms. Here, we present a new analysis platform (DISC) that accelerates unsupervised analysis of single-molecule trajectories. By merging model-free statistical learning with the Viterbi algorithm, DISC idealizes single-molecule trajectories up to three orders of magnitude faster with improved accuracy compared to other commonly used algorithms. Further, we demonstrate the utility of DISC algorithm to probe cooperativity between multiple binding events in the cyclic nucleotide binding domains of HCN pacemaker channel. Given the flexible and efficient nature of DISC, we anticipate it will be a powerful tool for unsupervised processing of high-throughput data across a range of single-molecule experiments.
Collapse
Affiliation(s)
- David S White
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Department of Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Department of Biomolecular Chemistry University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
50
|
Celik N, O'Brien F, Brennan S, Rainbow RD, Dart C, Zheng Y, Coenen F, Barrett-Jolley R. Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data. Commun Biol 2020; 3:3. [PMID: 31925311 PMCID: PMC6946689 DOI: 10.1038/s42003-019-0729-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/06/2019] [Indexed: 12/05/2022] Open
Abstract
Single-molecule research techniques such as patch-clamp electrophysiology deliver unique biological insight by capturing the movement of individual proteins in real time, unobscured by whole-cell ensemble averaging. The critical first step in analysis is event detection, so called "idealisation", where noisy raw data are turned into discrete records of protein movement. To date there have been practical limitations in patch-clamp data idealisation; high quality idealisation is typically laborious and becomes infeasible and subjective with complex biological data containing many distinct native single-ion channel proteins gating simultaneously. Here, we show a deep learning model based on convolutional neural networks and long short-term memory architecture can automatically idealise complex single molecule activity more accurately and faster than traditional methods. There are no parameters to set; baseline, channel amplitude or numbers of channels for example. We believe this approach could revolutionise the unsupervised automatic detection of single-molecule transition events in the future.
Collapse
Affiliation(s)
- Numan Celik
- Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Fiona O'Brien
- Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Sean Brennan
- Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Richard D Rainbow
- Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Caroline Dart
- Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Yalin Zheng
- Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Frans Coenen
- Department of Computer Science, University of Liverpool, Liverpool, UK
| | | |
Collapse
|