1
|
Pérez H, Quintero García OJ, Amezcua-Allieri MA, Rodríguez Vázquez R. Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2971-3001. [PMID: 37387425 PMCID: wst_2023_179 DOI: 10.2166/wst.2023.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The increase in the surface and groundwater contamination due to global population growth, industrialization, proliferation of pathogens, emerging pollutants, heavy metals, and scarcity of drinking water represents a critical problem. Because of this problem, particular emphasis will be placed on wastewater recycling. Conventional wastewater treatment methods may be limited due to high investment costs or, in some cases, poor treatment efficiency. To address these issues, it is necessary to continuously evaluate novel technologies that complement and improve these traditional wastewater treatment processes. In this regard, technologies based on nanomaterials are also being studied. These technologies improve wastewater management and constitute one of the main focuses of nanotechnology. The following review describes wastewater's primary biological, organic, and inorganic contaminants. Subsequently, it focuses on the potential of different nanomaterials (metal oxides, carbon-based nanomaterials, cellulose-based nanomaterials), membrane, and nanobioremediation processes for wastewater treatment. The above is evident from the review of various publications. However, nanomaterials' cost, toxicity, and biodegradability need to be addressed before their commercial distribution and scale-up. The development of nanomaterials and nanoproducts must be sustainable and safe throughout the nanoproduct life cycle to meet the requirements of the circular economy.
Collapse
Affiliation(s)
- Heilyn Pérez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico E-mail:
| | - Omar Jasiel Quintero García
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Myriam Adela Amezcua-Allieri
- Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico
| | - Refugio Rodríguez Vázquez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
2
|
Yin Z, Shen B, Cui C, Chen H, Wang J, Qian W, Zhao L. High-Performance Graphene/Carbon Nanotube-Based Adsorbents for Treating Diluted o-Cresol in Water in a Pilot-Plant Scale Demo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43266-43272. [PMID: 34478256 DOI: 10.1021/acsami.1c11410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene/carbon nanotube (CNT)-based adsorbents were fabricated on a kilogram scale by extrusion processing (where graphene is used as the major adsorption material and CNTs make up the backbone to enhance the mechanical strength) and then mixed and bonded with poly(tetrafluoroethylene). Kilogram-scale adsorbents were used to treat the content of o-cresol in wastewater to be <1.12 mg/kg in a continuous and reversible adsorption-desorption apparatus, which could last for 99 h with a space velocity of 30 h-1 and a total wastewater capacity of 5 tons per day. Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and Raman spectroscopy all suggested that the surface properties and pore structure of the spent adsorbents remain unchanged after recycling at both low-temperature adsorption and high-temperature desorption in vacuum. These results provided an effective reversible adsorbent system for removing aromatic organics and prompted the scaled-up applications of carbon nanomaterials in the treatment of wastewater.
Collapse
Affiliation(s)
- Zefang Yin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Boyuan Shen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chaojie Cui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hang Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Weizhong Qian
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Beijing Capital Co. Ltd., Beijing 100028, China
| |
Collapse
|
3
|
Sugarcane molasses derived carbon sheet@sea sand composite for direct removal of methylene blue from textile wastewater: Industrial wastewater remediation through sustainable, greener, and scalable methodology. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116997] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Salehi E, Heidary F, Daraei P, Keyhani M, Behjomanesh M. Carbon nanostructures for advanced nanocomposite mixed matrix membranes: a comprehensive overview. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
The highly progressive membrane separation technology challenges conventional separation processes such as ion exchange, distillation, precipitation, solvent extraction, and adsorption. The integration of many desired properties such as low energy consumption, high removal efficiency, affordable costs, suitable selectivity, acceptable productivity, ease of scale-up, and being environmentally friendly have made the membranes capable of being replaced with other separation technologies. Combination of membrane technology and nanoscience has revolutionized the nano-engineered materials, e.g. nanocomposites applied in advanced membrane processes. Polymer composites containing carbon nanostructures are promising choices for membrane fabrication owing to their enhanced chemistry, morphology, electromagnetic properties, and physicochemical stability. Carbon nanostructures such as carbon nanotubes (CNTs), nano graphene oxides (NGOs), and fullerenes are among the most popular nanofillers that have been successfully applied in modification of polymer membranes. Literature review shows that there is no comprehensive overview reporting the modification of mixed matrix membranes (MMMs) using carbon nanofibers, nano-activated carbons, and carbon nanospheres. The present overview focuses on the applications of carbon nanostructures mainly CNTs and NGOs in the modification of MMMs and emphasizes on the application of CNTs and NGO particles.
Collapse
Affiliation(s)
- Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering , Arak University , Arak 38156-8-8349 , Iran , e-mail:
| | - Farhad Heidary
- Department of Chemistry, Faculty of Science , Arak University , Arak 38156-8-8349 , Iran
| | - Parisa Daraei
- Department of Chemical Engineering , Kermanshah University of Technology , 67156 Kermanshah , Iran
| | - Mohammad Keyhani
- Department of Chemical Engineering, Faculty of Engineering , Razi University , Kermanshah , Iran
| | - Milad Behjomanesh
- Department of Chemical Engineering , Petroleum University of Technology , Ahwaz , Iran
| |
Collapse
|
5
|
Yang Y, Chen N, Feng C, Li M, Gao Y. Chromium removal using a magnetic corncob biochar/polypyrrole composite by adsorption combined with reduction: Reaction pathway and contribution degree. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Ok YS. Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:561-581. [PMID: 28865273 DOI: 10.1016/j.scitotenv.2017.08.132] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/31/2017] [Accepted: 08/13/2017] [Indexed: 05/21/2023]
Abstract
The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry.
Collapse
Affiliation(s)
- Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Sanchita Mandal
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Pawan Kumar
- Department of Nano Science and Materials, Central University of Jammu, Jammu 181143, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea; O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Chen X, Wang X, Wang S, Qi J, Xie K, Liu X, Li J. Furfuryl alcohol functionalized graphene for sorption of radionuclides. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Abstract
Gold nanoparticles (AuNPs) as one of the most stable metal nanoparticles have demonstrated extensive applications in recent years. This paper will give a focus on the AuNPs as biosensors, due to their inertness, unique optical properties, high surface area, and various surface functionalization methods. Synthesis of AuNps and the surface functionalization will be discussed in the first part. The size, shape, and stability can be controlled by different synthetic methods, while reductant usually needed. By surface functionalization with different molecules such as polymers, nucleic acids, and proteins, AuNPs will aggregate when specified molecule linkages showing up enables selective detections. The application in biosensing to detect proteins, oligonucleotide, glucose, and heavy metals will be exemplified, followed by the summary and future perspective part in the conclusion.
Collapse
Affiliation(s)
- Xinjun Yu
- Department of Chemistry, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221, US
| | - Yang Jiao
- Department of Chemistry, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221, US
| | - Qinyuan Chai
- Department of Chemistry, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221, US
| |
Collapse
|
9
|
Zhou K, Liu Y, Yang Z, Xie T, Liu H, Zhong C. Adsorptive removal of heavy metals by a bio-based polymeric material PAO-CI from wastewater. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Liu Y, Yang Y, Chen L, Zhu H, Dong Y, Alharbi NS, Alsaedi A, Hu J. Efficient removal of U(vi) from aqueous solutions by polyaniline/hydrogen-titanate nanobelt composites. RSC Adv 2016. [DOI: 10.1039/c6ra10162c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The organic–inorganic hybrid material of polyaniline/hydrogen-titanate nanobelt (PANI/H-TNB) composites was fabricated as a potential adsorbent to remove U(vi) from wastewater.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yuying Yang
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Lei Chen
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Hongshan Zhu
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yunhui Dong
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Njud S. Alharbi
- Biotechnology Research Group
- Department of Biological Sciences
- Faculty of Science
- King Abdulaziz University
- Jeddah
| | - Ahmed Alsaedi
- NAAM Research Group
- Department of Mathematics
- Faculty of Science
- King Abdulaziz University
- Jeddah
| | - Jun Hu
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
- NAAM Research Group
| |
Collapse
|
11
|
Zhao Z, Li J, Wen T, Shen C, Wang X, Xu A. Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.05.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Yi Q, Li L, Hong W, Fan L. MIL-101/GO Coated Stir Bar for SBSE to Determine Azo Dyes in Water Samples by UV–Vis Spectrophotometric Method. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s1793984415420040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A composite of chromium (III) terephthalate metal-organic framework and graphene oxide (MIL-101/GO) coated stir bar was prepared by sol–gel technique for the first time and was employed for stir bar sorptive extraction (SBSE) of trace azo dyes amaranth, sunset yellow and carmine from water samples followed by UV–Vis spectrophotometric detection. A MIL-101/GO coating was first created on the glass bar surface. MIL-101/GO and MIL-101/GO coated stir bars were characterized. The enrichment factors of azo dyes by SBSE have been investigated in detail, and the optimized experimental parameters were obtained. Under the optimal conditions, a method for determination of trace amount of azo dyes was setup, and the detection limits of amaranth, sunset yellow and carmine were 2.3 ng/mL, 1.7 ng/mL and 1.6 ng/mL. The proposed method was successfully applied for the analysis of the three azo dyes in water samples.
Collapse
Affiliation(s)
- Qiong Yi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, P. R. China
| | - Ling Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, P. R. China
| | - Wei Hong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, P. R. China
| | - Lu Fan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
13
|
Abstract
Gold nanoparticles ( AuNPs ) as one of the most stable metal nanoparticles have demonstrated extensive applications in recent years. In this review, the synthetic methods to AuNPs were discussed, which included citrate reduction, Brust–Schiffrin method, ligand-stabilized AuNPs and so on, followed with the synthetic mechanisms. Special emphasis was made on polymer modified AuNPs in biomedical applications, especially for polymer/ AuNPs conjugated in the field of cancer therapy and early diagnosis. The applications based on optoelectronic properties, which was related to surface plasmon resonance (SPR) effect, were also summarized as biosensors for labeling and detection.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yang Jiao
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Qinyuan Chai
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xinjun Yu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
14
|
|
15
|
Abstract
Layer-by-layer (LbL) self-assembly has attracted extensive attention for its simplicity and versatility. Self-assembly has many potential applications, among which biomedical applications is especially important because it can be used as a means of generating drug delivery and biomedical materials. Based on this, most recent progress in the field of self-assembly technique for drug delivery and biomedical material applications are summarized in this mini review. The remaining challenges are also mentioned.
Collapse
Affiliation(s)
- Xiao Gong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh 15261, USA
| |
Collapse
|
16
|
|
17
|
|
18
|
Wu P, Li J. Theoretical studies on the pyrolysis of (Thion)carbonates. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614500515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MP2/6-31G(d) was employed to investigate the theoretical calculations on the pyrolysis of alkyl methyl (thion)carbonates, where alkyl groups referred to ethyl, isopropyl and t-butyl groups. Nine possible pathways were considered for the pyrolysis of alkyl methyl thioncarbonates, while only seven possible pathways were found to pyrolyze alkyl methyl carbonates. Both of them had three pathways to generate the desired alkene products. Not only thermal elimination pathways were calculated, other possible mechanisms, such as rearrangements and nucleophilic substitutions, were also considered. The progress of the reactions was also investigated by the calculation of Wiberg bond indices at MP2/6-31G(d) level.
Collapse
Affiliation(s)
- Ping Wu
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Dezhou College, Dezhou, Shandong 253023, P. R. China
| | - Jiaxing Li
- Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|