1
|
Rubby MF, Fonder C, Uchayash S, Liang X, Sakaguchi DS, Que L. Assessment of the Behaviors of an In Vitro Brain Model On-Chip under Shockwave Impacts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33246-33258. [PMID: 38905518 DOI: 10.1021/acsami.4c08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Herein we report the assessment of the effects of shockwave (SW) impacts on adult rat hippocampal progenitor cell (AHPC) neurospheres (NSs), which are used as in vitro brain models, for enhancing our understanding of the mechanisms of traumatic brain injury (TBI). The assessment has been achieved by using culture dishes and a new microchip. The microchip allows the chemicals released from the brain models cultured inside the cell culture chamber under SW impacts to diffuse to the nanosensors in adjacent sensor chambers through built-in diffusion barriers, which are used to prevent the cells from entering the sensor chambers, thereby mitigating the biofouling issues of the sensor surface. Experiments showed the negative impact of the SW on the viability, proliferation, and differentiation of the cells within the NSs. A qPCR gene expression analysis was performed and appeared to confirm some of the immunocytochemistry (ICC) results. Finally, we demonstrated that the microchip can be used to monitor lactate dehydrogenase (LDH) released from the AHPC-NSs subjected to SW impacts. As expected, LDH levels changed when AHPC-NSs were injured by SW impacts, verifying this chip can be used for assessing the degrees of injuries to AHPC-NSs by monitoring LDH levels. Taken together, these results suggest the feasibility of using the chip to better understand the interactions between SW impacts and in vitro brain models, paving the way for potentially establishing in vitro TBI models on a chip.
Collapse
Affiliation(s)
- Md Fazlay Rubby
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Catherine Fonder
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames, Iowa 50011, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Sajid Uchayash
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xiaogan Liang
- Department of Mechanical Engineering, University of Michigan at Ann Arbor, Ann Arbor, Michigan 48109, United States
| | - Donald S Sakaguchi
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames, Iowa 50011, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Marrero - Berrios I, Salter SE, Hirday R, Rabolli CP, Tan A, Hung CT, Schloss RS, Yarmush ML. In vitro inflammatory multi-cellular model of osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100432. [PMID: 38288345 PMCID: PMC10823137 DOI: 10.1016/j.ocarto.2023.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Objective Osteoarthritis (OA) is a chronic joint disease, with limited treatment options, characterized by inflammation and matrix degradation, and resulting in severe pain or disability. Progressive inflammatory interaction among key cell types, including chondrocytes and macrophages, leads to a cascade of intra- and inter-cellular events which culminate in OA induction. In order to investigate these interactions, we developed a multi-cellular in vitro OA model, to characterize OA progression, and identify and evaluate potential OA therapeutics in response to mediators representing graded levels of inflammatory severity. Methods We compared macrophages, chondrocytes and their co-culture responses to "low" Interleukin-1 (IL-1) or "high" IL-1/tumor necrosis factor (IL-1/TNF) levels of inflammation. We also investigated response changes following the administration of dexamethasone (DEX) or mesenchymal stromal cell (MSC) treatment via a combination of gene expression and secretory changes, reflecting not only inflammation, but also chondrocyte function. Results Inflamed chondrocytes presented an osteoarthritic-like phenotype characterized by high gene expression of pro-inflammatory cytokines and chemokines, up-regulation of ECM degrading proteases, and down-regulation of chondrogenic genes. Our results indicate that while MSC treatment attenuates macrophage inflammation directly, it does not reduce chondrocyte inflammatory responses, unless macrophages are present as well. DEX however, can directly attenuate chondrocyte inflammation. Conclusions Our results highlight the importance of considering multi-cellular interactions when studying complex systems such as the articular joint. In addition, our approach, using a panel of both inflammatory and chondrocyte functional genes, provides a more comprehensive approach to investigate disease biomarkers, and responses to treatment.
Collapse
Affiliation(s)
| | - S. Elina Salter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rishabh Hirday
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Charles P. Rabolli
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Andrea Tan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rene S. Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Ban M, Chen J. Fabrication of plane-type axon guidance substrates by applying diamond-like carbon thin film deposition. Sci Rep 2023; 13:8489. [PMID: 37231063 DOI: 10.1038/s41598-023-35528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
This research aims to fabricate plane-type substrates for evaluating the axon behaviors of neuronal cells in vitro toward the development of brain-on-chip models by applying the functions of diamond-like carbon (DLC) thin film deposition, which helped to eliminate the costly and time-consuming lithography process by utilizing a shadow mask. The DLC thin films were partially deposited on stretched polydimethylsiloxane (PDMS) substrates covered with a metal mask by the plasma chemical vaper deposition method, and using the substrates culture teats with human neuroblastoma cells (SH-SY5Y) were performed. Three patterns of interconnection structures of axons were created on the substrates with disordered and regular linear wrinkle structures with several μm size formed by the depositions. The patterns were characterized by the structure that the aggregations of axons formed on the linear DLC thin film deposited areas were separately placed in regular intervals and connected each other by plenty of axons, which were individually taut in a straight line at about 100 to over 200 μm in length. The substrates expected of uses for evaluation of axon behaviors are available without fabricating guiding grooves by conventional soft lithographic methods requiring multiple stages and their treating times.
Collapse
Affiliation(s)
- Masahito Ban
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, 4-1, Gakuendai, Miyashiro, Minami-Saitama, Saitama, 345-8501, Japan.
- Environmental Symbiotic System Major, Nippon Institute of Technology, 4-1, Gakuendai, Miyashiro, Minami-Saitama, Saitama, 345-8501, Japan.
| | - Jing Chen
- Environmental Symbiotic System Major, Nippon Institute of Technology, 4-1, Gakuendai, Miyashiro, Minami-Saitama, Saitama, 345-8501, Japan
- WORLD INTEC CO., LTD., Kobe, Japan
| |
Collapse
|
4
|
Jarrah R, Nathani KR, Bhandarkar S, Ezeudu CS, Nguyen RT, Amare A, Aljameey UA, Jarrah SI, Bhandarkar AR, Fiani B. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations. Regen Med 2023; 18:413-423. [PMID: 37125510 DOI: 10.2217/rme-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Among the greatest general challenges in bioengineering is to mimic human physiology. Advanced efforts in tissue engineering have led to sophisticated 'brain-on-chip' (BoC) microfluidic devices that can mimic structural and functional aspects of brain tissue. BoC may be used to understand the biochemical pathways of neurolgical pathologies and assess promising therapeutic agents for facilitating regenerative medicine. We evaluated the potential of microfluidic BoC devices in various neurological pathologies, such as Alzheimer's, glioblastoma, traumatic brain injury, stroke and epilepsy. We also discuss the principles, limitations and future considerations of BoC technology. Results suggest that BoC models can help understand complex neurological pathologies and augment drug testing efforts for regenerative applications. However, implementing organ-on-chip technology to clinical practice has some practical limitations that warrant greater attention to improve large-scale applicability. Nevertheless, they remain to be versatile and powerful tools that can broaden our understanding of pathophysiological and therapeutic uncertainties to neurological diseases.
Collapse
Affiliation(s)
- Ryan Jarrah
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Shaan Bhandarkar
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Chibuze S Ezeudu
- Texas A&M School of Medicine,Texas A&M University, Bryan, TX 77807, USA
| | - Ryan T Nguyen
- University of Hawaii John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Abrham Amare
- Morehouse School of Medicine, Morehouse College, Atlanta, GA 30310, USA
| | - Usama A Aljameey
- Lincoln Memorial University DeBusk School of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Brian Fiani
- Department of Neurosurgery, Cornell Medical Center/New York Presbyterian, New York, NY 10065, USA
| |
Collapse
|
5
|
Li Z, Jiang Z, Lu L, Liu Y. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics 2023; 15:pharmaceutics15010210. [PMID: 36678839 PMCID: PMC9862045 DOI: 10.3390/pharmaceutics15010210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Physical injuries and neurodegenerative diseases often lead to irreversible damage to the organizational structure of the central nervous system (CNS) and peripheral nervous system (PNS), culminating in physiological malfunctions. Investigating these complex and diverse biological processes at the macro and micro levels will help to identify the cellular and molecular mechanisms associated with nerve degeneration and regeneration, thereby providing new options for the development of new therapeutic strategies for the functional recovery of the nervous system. Due to their distinct advantages, modern microfluidic platforms have significant potential for high-throughput cell and organoid cultures in vitro, the synthesis of a variety of tissue engineering scaffolds and drug carriers, and observing the delivery of drugs at the desired speed to the desired location in real time. In this review, we first introduce the types of nerve damage and the repair mechanisms of the CNS and PNS; then, we summarize the development of microfluidic platforms and their application in drug carriers. We also describe a variety of damage models, tissue engineering scaffolds, and drug carriers for nerve injury repair based on the application of microfluidic platforms. Finally, we discuss remaining challenges and future perspectives with regard to the promotion of nerve injury repair based on engineered microfluidic platform technology.
Collapse
|
6
|
Chari D, Basit R, Wiseman J, Chowdhury F. Simulating traumatic brain injury in vitro: developing high throughput models to test biomaterial based therapies. Neural Regen Res 2023; 18:289-292. [PMID: 35900405 PMCID: PMC9396524 DOI: 10.4103/1673-5374.346465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traumatic brain injuries are serious clinical incidents associated with some of the poorest outcomes in neurological practice. Coupled with the limited regenerative capacity of the brain, this has significant implications for patients, carers, and healthcare systems, and the requirement for life-long care in some cases. Clinical treatment currently focuses on limiting the initial neural damage with long-term care/support from multidisciplinary teams. Therapies targeting neuroprotection and neural regeneration are not currently available but are the focus of intensive research. Biomaterial-based interventions are gaining popularity for a range of applications including biomolecule and drug delivery, and to function as cellular scaffolds. Experimental investigations into the development of such novel therapeutics for traumatic brain injury will be critically underpinned by the availability of appropriate high throughput, facile, ethically viable, and pathomimetic biological model systems. This represents a significant challenge for researchers given the pathological complexity of traumatic brain injury. Specifically, there is a concerted post-injury response mounted by multiple neural cell types which includes microglial activation and astroglial scarring with the expression of a range of growth inhibitory molecules and cytokines in the lesion environment. Here, we review common models used for the study of traumatic brain injury (ranging from live animal models to in vitro systems), focusing on penetrating traumatic brain injury models. We discuss their relative advantages and drawbacks for the developmental testing of biomaterial-based therapies.
Collapse
|
7
|
Tickle JA, Sen J, Adams C, Furness DN, Price R, Kandula V, Tzerakis N, Chari DM. A benchtop brain injury model using resected donor tissue from patients with Chiari malformation. Neural Regen Res 2022; 18:1057-1061. [PMID: 36254993 PMCID: PMC9827764 DOI: 10.4103/1673-5374.355761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The use of live animal models for testing new therapies for brain and spinal cord repair is a controversial area. Live animal models have associated ethical issues and scientific concerns regarding the predictability of human responses. Alternative models that replicate the 3D architecture of the central nervous system have prompted the development of organotypic neural injury models. However, the lack of reliable means to access normal human neural tissue has driven reliance on pathological or post-mortem tissue which limits their biological utility. We have established a protocol to use donor cerebellar tonsillar tissue surgically resected from patients with Chiari malformation (cerebellar herniation towards the foramen magnum, with ectopic rather than diseased tissue) to develop an in vitro organotypic model of traumatic brain injury. Viable tissue was maintained for approximately 2 weeks with all the major neural cell types detected. Traumatic injuries could be introduced into the slices with some cardinal features of post-injury pathology evident. Biomaterial placement was also feasible within the in vitro lesions. Accordingly, this 'proof-of-concept' study demonstrates that the model offers potential as an alternative to the use of animal tissue for preclinical testing in neural tissue engineering. To our knowledge, this is the first demonstration that donor tissue from patients with Chiari malformation can be used to develop a benchtop model of traumatic brain injury. However, significant challenges in relation to the clinical availability of tissue were encountered, and we discuss logistical issues that must be considered for model scale-up.
Collapse
Affiliation(s)
- Jacqueline A. Tickle
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Jon Sen
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Staffordshire, UK
| | | | | | - Rupert Price
- Department of Neurosurgery, Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - Viswapathi Kandula
- Department of Neurosurgery, Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - Nikolaos Tzerakis
- Department of Neurosurgery, Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - Divya M. Chari
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Staffordshire, UK,Correspondence to: Divya M. Chari, .
| |
Collapse
|
8
|
Pozo Devoto VM, Onyango IG, Stokin GB. Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 2022; 16:959598. [PMID: 35990893 PMCID: PMC9389222 DOI: 10.3389/fncel.2022.959598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.
Collapse
Affiliation(s)
- Victorio M. Pozo Devoto
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Gorazd B. Stokin
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Department of Neurosciences, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
11
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
12
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
13
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
14
|
Zhao Q, Cole T, Zhang Y, Tang SY. Mechanical Strain-Enabled Reconstitution of Dynamic Environment in Organ-on-a-Chip Platforms: A Review. MICROMACHINES 2021; 12:765. [PMID: 34203533 PMCID: PMC8304354 DOI: 10.3390/mi12070765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell-cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.
Collapse
Affiliation(s)
- Qianbin Zhao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| |
Collapse
|
15
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
16
|
Enright HA, Lam D, Sebastian A, Sales AP, Cadena J, Hum NR, Osburn JJ, Peters SKG, Petkus B, Soscia DA, Kulp KS, Loots GG, Wheeler EK, Fischer NO. Functional and transcriptional characterization of complex neuronal co-cultures. Sci Rep 2020; 10:11007. [PMID: 32620908 PMCID: PMC7335084 DOI: 10.1038/s41598-020-67691-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/08/2020] [Indexed: 12/03/2022] Open
Abstract
Brain-on-a-chip systems are designed to simulate brain activity using traditional in vitro cell culture on an engineered platform. It is a noninvasive tool to screen new drugs, evaluate toxicants, and elucidate disease mechanisms. However, successful recapitulation of brain function on these systems is dependent on the complexity of the cell culture. In this study, we increased cellular complexity of traditional (simple) neuronal cultures by co-culturing with astrocytes and oligodendrocyte precursor cells (complex culture). We evaluated and compared neuronal activity (e.g., network formation and maturation), cellular composition in long-term culture, and the transcriptome of the two cultures. Compared to simple cultures, neurons from complex co-cultures exhibited earlier synapse and network development and maturation, which was supported by localized synaptophysin expression, up-regulation of genes involved in mature neuronal processes, and synchronized neural network activity. Also, mature oligodendrocytes and reactive astrocytes were only detected in complex cultures upon transcriptomic analysis of age-matched cultures. Functionally, the GABA antagonist bicuculline had a greater influence on bursting activity in complex versus simple cultures. Collectively, the cellular complexity of brain-on-a-chip systems intrinsically develops cell type-specific phenotypes relevant to the brain while accelerating the maturation of neuronal networks, important features underdeveloped in traditional cultures.
Collapse
Affiliation(s)
- Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Ana Paula Sales
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,University of California, Merced, School of Natural Sciences, Merced, CA, USA
| | - Joanne J Osburn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sandra K G Peters
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Bryan Petkus
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - David A Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kristen S Kulp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Gabriela G Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,University of California, Merced, School of Natural Sciences, Merced, CA, USA
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
17
|
Omelchenko A, Singh NK, Firestein BL. Current advances in in vitro models of central nervous system trauma. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:34-41. [PMID: 32671312 PMCID: PMC7363028 DOI: 10.1016/j.cobme.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CNS trauma is a prominent cause of mortality and morbidity, and although much effort has focused on developing treatments for CNS trauma-related pathologies, little progress has been made. Pre-clinical models of TBI and SCI suffer from significant drawbacks, which result in substantial failures during clinical translation of promising pre-clinical therapies. Here, we review recent advances made in the development of in vitro models of CNS trauma, the promises and drawbacks of current in vitro CNS injury models, and the attributes necessary for future models to accurately mimic the trauma microenvironment and facilitate CNS trauma drug discovery. The goal is to provide insight for the development of future CNS injury models and to aid researchers in selecting effective models for pre-clinical research of trauma therapeutics.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Nisha K. Singh
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| |
Collapse
|
18
|
Omelchenko A, Shrirao AB, Bhattiprolu AK, Zahn JD, Schloss RS, Dickson S, Meaney DF, Boustany NN, Yarmush ML, Firestein BL. Dynamin and reverse-mode sodium calcium exchanger blockade confers neuroprotection from diffuse axonal injury. Cell Death Dis 2019; 10:727. [PMID: 31562294 PMCID: PMC6765020 DOI: 10.1038/s41419-019-1908-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Mild traumatic brain injury (mTBI) is a frequently overlooked public health concern that is difficult to diagnose and treat. Diffuse axonal injury (DAI) is a common mTBI neuropathology in which axonal shearing and stretching induces breakdown of the cytoskeleton, impaired axonal trafficking, axonal degeneration, and cognitive dysfunction. DAI is becoming recognized as a principal neuropathology of mTBI with supporting evidence from animal model, human pathology, and neuroimaging studies. As mitochondrial dysfunction and calcium overload are critical steps in secondary brain and axonal injury, we investigated changes in protein expression of potential targets following mTBI using an in vivo controlled cortical impact model. We show upregulated expression of sodium calcium exchanger1 (NCX1) in the hippocampus and cortex at distinct time points post-mTBI. Expression of dynamin-related protein1 (Drp1), a GTPase responsible for regulation of mitochondrial fission, also changes differently post-injury in the hippocampus and cortex. Using an in vitro model of DAI previously reported by our group, we tested whether pharmacological inhibition of NCX1 by SN-6 and of dynamin1, dynamin2, and Drp1 by dynasore mitigates secondary damage. Dynasore and SN-6 attenuate stretch injury-induced swelling of axonal varicosities and mitochondrial fragmentation. In addition, we show that dynasore, but not SN-6, protects against H2O2-induced damage in an organotypic oxidative stress model. As there is currently no standard treatment to mitigate cell damage induced by mTBI and DAI, this work highlights two potential therapeutic targets for treatment of DAI in multiple models of mTBI and DAI.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Anil B Shrirao
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Atul K Bhattiprolu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6391, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6391, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
19
|
Lutton EM, Farney SK, Andrews AM, Shuvaev VV, Chuang GY, Muzykantov VR, Ramirez SH. Endothelial Targeted Strategies to Combat Oxidative Stress: Improving Outcomes in Traumatic Brain Injury. Front Neurol 2019; 10:582. [PMID: 31275220 PMCID: PMC6593265 DOI: 10.3389/fneur.2019.00582] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/17/2019] [Indexed: 01/29/2023] Open
Abstract
The endothelium is a thin monolayer of specialized cells that lines the luminal wall of blood vessels and constitutes the critical innermost portion of the physical barrier between the blood and the brain termed the blood-brain barrier (BBB). Aberrant changes in the endothelium occur in many neuropathological states, including those with high morbidity and mortality that lack targeted therapeutic interventions, such as traumatic brain injury (TBI). Utilizing ligands of surface determinants expressed on brain endothelium to target and combat injury mechanisms at damaged endothelium offers a new approach to the study of TBI and new avenues for clinical advancement. Many factors influence the targets that are expressed on endothelium. Therefore, the optimization of binding sites and ideal design features of nanocarriers are controllable factors that permit the engineering of nanotherapeutic agents with applicability that is specific to a known disease state. Following TBI, damaged endothelial cells upregulate cell adhesion molecules, including ICAM-1, and are key sites of reactive oxygen species (ROS) generation, including hydrogen peroxide. Reactive oxygen species along with pro-inflammatory mediators are known to contribute to endothelial damage and loss of BBB integrity. The use of targeted endothelial nanomedicine, with conjugates of the antioxidant enzyme catalase linked to anti-ICAM-1 antibodies, has recently been demonstrated to minimize oxidative stress at the BBB and reduce neuropathological outcomes following TBI. Here, we discuss targeted endothelial nanomedicine and its potential to provide benefits in TBI outcomes and future directions of this approach.
Collapse
Affiliation(s)
- Evan M Lutton
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - S Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Shrirao AB, Kung FH, Omelchenko A, Schloss RS, Boustany NN, Zahn JD, Yarmush ML, Firestein BL. Microfluidic platforms for the study of neuronal injury in vitro. Biotechnol Bioeng 2018; 115:815-830. [PMID: 29251352 DOI: 10.1002/bit.26519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) affects 5.3 million people in the United States, and there are 12,500 new cases of spinal cord injury (SCI) every year. There is yet a significant need for in vitro models of TBI and SCI in order to understand the biological mechanisms underlying central nervous system (CNS) injury and to identify and test therapeutics to aid in recovery from neuronal injuries. While TBI or SCI studies have been aided with traditional in vivo and in vitro models, the innate limitations in specificity of injury, isolation of neuronal regions, and reproducibility of these models can decrease their usefulness in examining the neurobiology of injury. Microfluidic devices provide several advantages over traditional methods by allowing researchers to (1) examine the effect of injury on specific neural components, (2) fluidically isolate neuronal regions to examine specific effects on subcellular components, and (3) reproducibly create a variety of injuries to model TBI and SCI. These microfluidic devices are adaptable for modeling a wide range of injuries, and in this review, we will examine different methodologies and models recently utilized to examine neuronal injury. Specifically, we will examine vacuum-assisted axotomy, physical injury, chemical injury, and laser-based axotomy. Finally, we will discuss the benefits and downsides to each type of injury model and discuss how researchers can use these parameters to pick a particular microfluidic device to model CNS injury.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Frank H Kung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
21
|
Choi JH, Cho HY, Choi JW. Microdevice Platform for In Vitro Nervous System and Its Disease Model. Bioengineering (Basel) 2017; 4:E77. [PMID: 28952555 PMCID: PMC5615323 DOI: 10.3390/bioengineering4030077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
The development of precise microdevices can be applied to the reconstruction of in vitro human microenvironmental systems with biomimetic physiological conditions that have highly tunable spatial and temporal features. Organ-on-a-chip can emulate human physiological functions, particularly at the organ level, as well as its specific roles in the body. Due to the complexity of the structure of the central nervous system and its intercellular interaction, there remains an urgent need for the development of human brain or nervous system models. Thus, various microdevice models have been proposed to mimic actual human brain physiology, which can be categorized as nervous system-on-a-chip. Nervous system-on-a-chip platforms can prove to be promising technologies, through the application of their biomimetic features to the etiology of neurodegenerative diseases. This article reviews the microdevices for nervous system-on-a-chip platform incorporated with neurobiology and microtechnology, including microfluidic designs that are biomimetic to the entire nervous system. The emulation of both neurodegenerative disorders and neural stem cell behavior patterns in micro-platforms is also provided, which can be used as a basis to construct nervous system-on-a-chip.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| | - Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| |
Collapse
|
22
|
Abstract
Traumatic Brain Injury (TBI) remains a significant cause of mortality and morbidity, affecting individuals of all age groups. Much remains to be learned about its complex pathophysiology, with a view to designing effective neuroprotective strategies to protect sublethally injured brain tissue that would otherwise die in secondary injury processes. Experimental in vivo models offer the potential to study TBI in the laboratory, however, treatments that were neuroprotective in animals have, thus far, largely failed to translate in human clinical studies. In vitro models of neurotrauma can be used to study specific pathophysiological cascades — individually and without confounding factors — and to test potential neuroprotective strategies. These in vitro models include transection, compression, barotrauma, acceleration, hydrodynamic, chemical injury and cell-stretch methodologies. Various cell culture systems can also be utilised, including brain-on-a-chip, immortalised cell lines, primary cultures, acute preparations and organotypic cultures. Potential positive outcomes of the increased use of in vitro platforms to study TBI would be the refinement of in vivo experiments, as well as enhanced translation of the results into clinically meaningful neuroprotective strategies for the future. In addition, the replacement of in vivo experiments by suitable in vitro studies would lead to a welcome reduction in the numbers of animal procedures in this ethically-challenging field.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
23
|
Pamies D, Barreras P, Block K, Makri G, Kumar A, Wiersma D, Smirnova L, Zang C, Bressler J, Christian KM, Harris G, Ming GL, Berlinicke CJ, Kyro K, Song H, Pardo CA, Hartung T, Hogberg HT. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 34:362-376. [PMID: 27883356 PMCID: PMC6047513 DOI: 10.14573/altex.1609122] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
Abstract
Human in vitro models of brain neurophysiology are needed to investigate molecular and cellular mechanisms associated with neurological disorders and neurotoxicity. We have developed a reproducible iPSC-derived human 3D brain microphysiological system (BMPS), comprised of differentiated mature neurons and glial cells (astrocytes and oligodendrocytes) that reproduce neuronal-glial interactions and connectivity. BMPS mature over eight weeks and show the critical elements of neuronal function: synaptogenesis and neuron-to-neuron (e.g., spontaneous electric field potentials) and neuronal-glial interactions (e.g., myelination), which mimic the microenvironment of the central nervous system, rarely seen in vitro before. The BMPS shows 40% overall myelination after 8 weeks of differentiation. Myelin was observed by immunohistochemistry and confirmed by confocal microscopy 3D reconstruction and electron microscopy. These findings are of particular relevance since myelin is crucial for proper neuronal function and development. The ability to assess oligodendroglial function and mechanisms associated with myelination in this BMPS model provide an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating diseases. The BMPS provides a suitable and reliable model to investigate neuron-neuroglia function as well as pathogenic mechanisms in neurotoxicology.
Collapse
Affiliation(s)
- David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Paula Barreras
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Katharina Block
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Georgia Makri
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Anupama Kumar
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Daphne Wiersma
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Lenna Smirnova
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Ce Zang
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Joseph Bressler
- Hugo Moser Institute at the Kennedy Krieger, Johns Hopkins University, Baltimore, USA
| | - Kimberly M Christian
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Guo-Li Ming
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | | | - Kelly Kyro
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, USA
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA.,University of Konstanz, Konstanz, Germany
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
24
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|