1
|
Quitté L, Leclercq M, Prunier J, Scott-Boyer MP, Moroy G, Droit A. A Machine Learning Approach to Identify Key Residues Involved in Protein-Protein Interactions Exemplified with SARS-CoV-2 Variants. Int J Mol Sci 2024; 25:6535. [PMID: 38928241 PMCID: PMC11204244 DOI: 10.3390/ijms25126535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Human infection with the coronavirus disease 2019 (COVID-19) is mediated by the binding of the spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the human angiotensin-converting enzyme 2 (ACE2). The frequent mutations in the receptor-binding domain (RBD) of the spike protein induced the emergence of variants with increased contagion and can hinder vaccine efficiency. Hence, it is crucial to better understand the binding mechanisms of variant RBDs to human ACE2 and develop efficient methods to characterize this interaction. In this work, we present an approach that uses machine learning to analyze the molecular dynamics simulations of RBD variant trajectories bound to ACE2. Along with the binding free energy calculation, this method was used to characterize the major differences in ACE2-binding capacity of three SARS-CoV-2 RBD variants-namely the original Wuhan strain, Omicron BA.1, and the more recent Omicron BA.5 sublineages. Our analyses assessed the differences in binding free energy and shed light on how it affects the infectious rates of different variants. Furthermore, this approach successfully characterized key binding interactions and could be deployed as an efficient tool to predict different binding inhibitors to pave the way for new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Léopold Quitté
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1V 0A6, Canada; (L.Q.); (M.L.); (J.P.); (M.-P.S.-B.)
| | - Mickael Leclercq
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1V 0A6, Canada; (L.Q.); (M.L.); (J.P.); (M.-P.S.-B.)
| | - Julien Prunier
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1V 0A6, Canada; (L.Q.); (M.L.); (J.P.); (M.-P.S.-B.)
| | - Marie-Pier Scott-Boyer
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1V 0A6, Canada; (L.Q.); (M.L.); (J.P.); (M.-P.S.-B.)
| | - Gautier Moroy
- Université Paris Cité, CNRS, INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1V 0A6, Canada; (L.Q.); (M.L.); (J.P.); (M.-P.S.-B.)
- Département de Médecine Moléculaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Dodd-O J, Roy A, Siddiqui Z, Jafari R, Coppola F, Ramasamy S, Kolloli A, Kumar D, Kaundal S, Zhao B, Kumar R, Robang AS, Li J, Azizogli AR, Pai V, Acevedo-Jake A, Heffernan C, Lucas A, McShan AC, Paravastu AK, Prasad BVV, Subbian S, Král P, Kumar V. Antiviral fibrils of self-assembled peptides with tunable compositions. Nat Commun 2024; 15:1142. [PMID: 38326301 PMCID: PMC10850501 DOI: 10.1038/s41467-024-45193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
The lasting threat of viral pandemics necessitates the development of tailorable first-response antivirals with specific but adaptive architectures for treatment of novel viral infections. Here, such an antiviral platform has been developed based on a mixture of hetero-peptides self-assembled into functionalized β-sheets capable of specific multivalent binding to viral protein complexes. One domain of each hetero-peptide is designed to specifically bind to certain viral proteins, while another domain self-assembles into fibrils with epitope binding characteristics determined by the types of peptides and their molar fractions. The self-assembled fibrils maintain enhanced binding to viral protein complexes and retain high resilience to viral mutations. This method is experimentally and computationally tested using short peptides that specifically bind to Spike proteins of SARS-CoV-2. This platform is efficacious, inexpensive, and stable with excellent tolerability.
Collapse
Affiliation(s)
- Joseph Dodd-O
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Roya Jafari
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Francesco Coppola
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Dilip Kumar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Soni Kaundal
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Boyang Zhao
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeffrey Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Abdul-Rahman Azizogli
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Varun Pai
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Amanda Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Corey Heffernan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- SAPHTx Inc, Newark, NJ, 07104, USA
| | - Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E, Tempe, AZ, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - B V Venkataram Prasad
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- SAPHTx Inc, Newark, NJ, 07104, USA.
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Electrostatics in Computational Biophysics and Its Implications for Disease Effects. Int J Mol Sci 2022; 23:ijms231810347. [PMID: 36142260 PMCID: PMC9499338 DOI: 10.3390/ijms231810347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
This review outlines the role of electrostatics in computational molecular biophysics and its implication in altering wild-type characteristics of biological macromolecules, and thus the contribution of electrostatics to disease mechanisms. The work is not intended to review existing computational approaches or to propose further developments. Instead, it summarizes the outcomes of relevant studies and provides a generalized classification of major mechanisms that involve electrostatic effects in both wild-type and mutant biological macromolecules. It emphasizes the complex role of electrostatics in molecular biophysics, such that the long range of electrostatic interactions causes them to dominate all other forces at distances larger than several Angstroms, while at the same time, the alteration of short-range wild-type electrostatic pairwise interactions can have pronounced effects as well. Because of this dual nature of electrostatic interactions, being dominant at long-range and being very specific at short-range, their implications for wild-type structure and function are quite pronounced. Therefore, any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could be the dominant factor contributing to pathogenicity. However, we also outline that due to the plasticity of biological macromolecules, the effect of amino acid mutation may be reduced, and thus a charge deletion or insertion may not necessarily be deleterious.
Collapse
|