1
|
Enhanced electrochemiluminescence at silica nanochannel membrane studied by scanning electrochemical microscopy. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Abstract
AbstractRecommendations are given concerning the terminology of methods used in electroanalytical chemistry. Fundamental terms in electrochemistry are reproduced from previous PAC Recommendations, and new and updated material is added for terms in electroanalytical chemistry, classification of electrode systems, and electroanalytical techniques.
Collapse
|
3
|
Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, reagentless aptamer biosensors, named aptasensors, have shown significant advancements. Particularly, electrochemical aptasensors could change the field of biosensors in this era, where digitalization seems to be a common goal of many fields. Biomedical devices are integrating electronic technologies for detecting pathogens, biomolecules, small molecules, and ions, and the physical-chemical properties of nucleic acid aptamers makes them very interesting for these devices. Aptamers can be easily synthesized and functionalized with functional groups for immobilization and with redox chemical groups that allow for the conversion of molecular interactions into electrical signals. Furthermore, non-labeled aptamers have also been utilized. This review presents the current challenges involved in aptasensor architectures based on gold electrodes as transducers.
Collapse
|
4
|
Katseli V, Economou A, Kokkinos C. Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Fu K, Han D, Ma C, Bohn PW. Electrochemistry at single molecule occupancy in nanopore-confined recessed ring-disk electrode arrays. Faraday Discuss 2018; 193:51-64. [PMID: 27711896 DOI: 10.1039/c6fd00062b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical reactions at nanoscale structures possess unique characteristics, e.g. fast mass transport, high signal-to-noise ratio at low concentration, and insignificant ohmic losses even at low electrolyte concentrations. These properties motivate the fabrication of high density, laterally ordered arrays of nanopores, embedding vertically stacked metal-insulator-metal electrode structures and exhibiting precisely controlled pore size and interpore spacing for use in redox cycling. These nanoscale recessed ring-disk electrode (RRDE) arrays exhibit current amplification factors, AFRC, as large as 55-fold with Ru(NH3)62/3+, indicative of capture efficiencies at the top and bottom electrodes, Φt,b, exceeding 99%. Finite element simulations performed to investigate the concentration distribution of redox species and to assess operating characteristics are in excellent agreement with experiment. AFRC increases as the pore diameter, at constant pore spacing, increases in the range 200-500 nm and as the pore spacing, at constant pore diameter, decreases in the range 1000-460 nm. Optimized nanoscale RRDE arrays exhibit a linear current response with concentration ranging from 0.1 μM to 10 mM and a small capacitive current with scan rate up to 100 V s-1. At the lowest concentrations, the average pore occupancy is 〈n〉 ∼ 0.13 molecule establishing productive electrochemical signals at occupancies at and below the single molecule level in these nanoscale RRDE arrays.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chaoxiong Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Zhang J, Zhou J, Pan R, Jiang D, Burgess JD, Chen HY. New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sens 2018; 3:242-250. [PMID: 29276834 DOI: 10.1021/acssensors.7b00711] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Junyu Zhou
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Rongrong Pan
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Dechen Jiang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - James D. Burgess
- Department
of Medical Laboratory, Imaging, and Radiologic Sciences, College of
Allied Health Sciences, Augusta University, Augusta, Georgia 30912, United States
| | - Hong-Yuan Chen
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| |
Collapse
|
7
|
Zhang J, Zhou J, Tian C, Yang S, Jiang D, Zhang XX, Chen HY. Localized Electrochemiluminescence from Nanoneedle Electrodes for Very-High-Density Electrochemical Sensing. Anal Chem 2017; 89:11399-11404. [DOI: 10.1021/acs.analchem.7b02363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jingjing Zhang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junyu Zhou
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chunxiu Tian
- Physical
Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shan Yang
- Physical
Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Dechen Jiang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xi-Xiang Zhang
- Physical
Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
8
|
Fu K, Bohn PW. Nanochannel Arrays for Molecular Sieving and Electrochemical Analysis by Nanosphere Lithography Templated Graphoepitaxy of Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24908-24916. [PMID: 28661651 DOI: 10.1021/acsami.7b06794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ability to design, fabricate, and manipulate materials at the nanoscale is fundamental to the quest to develop technologies to assemble nanometer-scale pieces into larger-scale components and materials, thereby transferring unique nanometer-scale properties to macroscopic objects. In this work, we describe a new approach to the fabrication of highly ordered, ultrahigh density nanochannel arrays that employs nanosphere lithography to template the graphoepitaxy of polystyrene-polydimethylsiloxane, diblock copolymers. By optimizing the well-controlled solvent vapor annealing, overcoating conditions, and the subsequent reactive ion etching processes, silica nanochannel (SNC) arrays with areal densities, ρA, approaching 1000 elements μm-2, are obtained over macroscopic scales. The integrity and functionality of the SNC arrays was tested by using them as permselective ion barriers to nanopore-confined disk electrodes. The nanochannels allow cations to pass to the disk electrode but reject anions, as demonstrated by cyclic voltammetry. This ion gating behavior can be reversed from cation-permselective to anion-permselective by chemically inverting the surface charge from negative to positive. Furthermore, the conformal SNC array structures obtained could easily be lifted, detached, and transferred to another substrate, preserving the hierarchical organization while transferring the nanostructure-derived properties to a different substrate. These results demonstrate how nanoscale behavior can be replicated over macroscale distances, using electrochemical analysis as a model.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Fu K, Han D, Ma C, Bohn PW. Ion selective redox cycling in zero-dimensional nanopore electrode arrays at low ionic strength. NANOSCALE 2017; 9:5164-5171. [PMID: 28393950 DOI: 10.1039/c7nr00206h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surface charge characteristics and the electrical double layer (EDL) effect govern the transport of ions into and out of nanopores, producing a permselective concentration polarization, which dominates the electrochemical response of nanoelectrodes in solutions of low ionic strength. In this study, highly ordered, zero-dimensional nanopore electrode arrays (NEAs), with each nanopore presenting a pair of recessed electrodes, were fabricated to couple EDL effects with redox cycling, thereby achieving electrochemical detection with improved sensitivity and selectivity. These NEAs exhibit current amplification as high as 55-fold due to the redox cycling effect, which can be further increased by ∼500-fold upon the removal of the supporting electrolyte. The effect of nanopore geometry, which is a key factor determining the magnitude of the EDL effect, is fully characterized, as is the effect of the magnitude and sign of the charge of the redox-active species. The observed changes in limiting current with the concentration of the supporting electrolyte confirm the accumulation of cations and repulsion of anions in NEAs presenting negative surface charge. Exploiting this principle, dopamine was selectively determined in the presence of a 3000-fold excess of ascorbic acid within the NEA.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
10
|
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 2017; 8:63-77. [PMID: 28451149 PMCID: PMC5304706 DOI: 10.1039/c6sc02403c] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in nanomedicine have shown that dramatic improvements in nanoparticle therapeutics and diagnostics can be achieved through the use of disease specific targeting ligands. Although immunoglobulins have successfully been employed for the generation of actively targeted nanoparticles, their use is often hampered by the suboptimal characteristics of the resulting complexes. Emerging data suggest that a switch in focus from full antibodies to antibody derived fragments could help to alleviate these problems and expand the potential of antibody-nanoparticle conjugates as biomedical tools. This review aims to highlight how antibody derived fragments have been utilised to overcome both fundamental and practical issues encountered during the design and application of antibody-targeted nanoparticles.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| |
Collapse
|
11
|
Lynn NS, Homola J. (Bio)Sensing Using Nanoparticle Arrays: On the Effect of Analyte Transport on Sensitivity. Anal Chem 2016; 88:12145-12151. [DOI: 10.1021/acs.analchem.6b03002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Scott Lynn
- Institute of Photonics and
Electronics, Academy of Sciences of the Czech Republic, Chaberská
57, Prague 18251, Czech Republic
| | - Jiří Homola
- Institute of Photonics and
Electronics, Academy of Sciences of the Czech Republic, Chaberská
57, Prague 18251, Czech Republic
| |
Collapse
|
12
|
Vatansever F, Hamblin MR. Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:302. [PMID: 28360819 PMCID: PMC5367471 DOI: 10.1007/s11051-016-3328-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/05/2016] [Indexed: 06/07/2023]
Abstract
Core-shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original trioctylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48-53 nm.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA. Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02139, USA
| |
Collapse
|
13
|
Understanding Mass Transport at Channel Microband Electrodes: Influence of Confined Space under Stagnant Conditions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Ma C, Xu W, Wichert WRA, Bohn PW. Ion Accumulation and Migration Effects on Redox Cycling in Nanopore Electrode Arrays at Low Ionic Strength. ACS NANO 2016; 10:3658-64. [PMID: 26910572 DOI: 10.1021/acsnano.6b00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ion permselectivity can lead to accumulation in zero-dimensional nanopores, producing a significant increase in ion concentration, an effect which may be combined with unscreened ion migration to improve sensitivity in electrochemical measurements, as demonstrated by the enormous current amplification (∼2000-fold) previously observed in nanopore electrode arrays (NEA) in the absence of supporting electrolyte. Ionic strength is a key experimental factor that governs the magnitude of the additional current amplification (AFad) beyond simple redox cycling through both ion accumulation and ion migration effects. Separate contributions from ion accumulation and ion migration to the overall AFad were identified by studying NEAs with varying geometries, with larger AFad values being achieved in NEAs with smaller pores. In addition, larger AFad values were observed for Ru(NH3)6(3/2+) than for ferrocenium/ferrocene (Fc(+)/Fc) in aqueous solution, indicating that coupling efficiency in redox cycling can significantly affect AFad. While charged species are required to observe migration effects or ion accumulation, poising the top electrode at an oxidizing potential converts neutral species to cations, which can then exhibit current amplification similar to starting with the cation. The electrical double layer effect was also demonstrated for Fc/Fc(+) in acetonitrile and 1,2-dichloroethane, producing AFad up to 100× at low ionic strength. The pronounced AFad effects demonstrate the advantage of coupling redox cycling with ion accumulation and migration effects for ultrasensitive electrochemical measurements.
Collapse
Affiliation(s)
- Chaoxiong Ma
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Wei Xu
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - William R A Wichert
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Nanoparticle chains as electrochemical sensors and electrodes. Anal Bioanal Chem 2016; 408:2697-705. [DOI: 10.1007/s00216-015-9287-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 11/24/2022]
|
16
|
McKeating KS, Aubé A, Masson JF. Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst 2016; 141:429-49. [DOI: 10.1039/c5an01861g] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Review of different biosensors and nanobiosensors increasingly used in therapeutic drug monitoring (TDM) for pharmaceutical drugs with dosage limitations or toxicity issues and for therapeutic response monitoring.
Collapse
Affiliation(s)
| | - Alexandra Aubé
- Département de chimie
- Université de Montréal
- Montreal
- Canada
| | - Jean-Francois Masson
- Département de chimie
- Université de Montréal
- Montreal
- Canada
- Centre for self-assembled chemical structures (CSACS)
| |
Collapse
|
17
|
|
18
|
Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DWM. Achievement of Diffusional Independence at Nanoscale Liquid–Liquid Interfaces within Arrays. Anal Chem 2015; 87:5486-90. [DOI: 10.1021/acs.analchem.5b01162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Liu
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Masniza Sairi
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
- Mechanisation
and Automation Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), P.O. Box 12301, 50774 Kuala Lumpur, Malaysia
| | - Gregor Neusser
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Christine Kranz
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Damien W. M. Arrigan
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|