1
|
Horwitz G, Kunz V, Niblett SP, Grey CP. The effect of ionic association on the electrochemistry of redox mediators for Li-O 2 batteries: developing a theoretical framework. Phys Chem Chem Phys 2024; 26:22134-22148. [PMID: 39119661 PMCID: PMC11310830 DOI: 10.1039/d4cp01488j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
A theoretical framework to explain how interactions between redox mediators (RMs) and electrolyte components impact electron transfer kinetics, thermodynamics, and catalytic efficiency is presented. Specifically focusing on ionic association, 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) is used as a case study to demonstrate these effects. Our analytical equations reveal how the observed redox couple's potential and electron transfer rate constants evolve with Li+ concentration, resulting from different redox activity mechanisms. Experimental validation by cyclic voltammetry measurements shows that DBBQ binds to three Li+ ions in its reduced state and one Li+ ion in its neutral form, leading to a maximum in the electron transfer kinetic constant at around 0.25 M. The framework is extended to account for other phenomena that can play an important role in the redox reaction mechanisms of RMs. The effect of Li+ ion solvation and its association with the supporting salt counteranion on the redox processes is considered, and the role of "free Li+" concentration in determining the electrochemical behaviour is emphasized. The impact of Li+ concentration on oxygen reduction reaction (ORR) catalysis was then explored, again using DBBQ and modelling the effects of the Li+ concentration on electron transfer and catalytic kinetics. We show that even though the observed catalytic rate constant increases with Li+ concentration, the overall catalysis can become more sluggish depending on the electron transfer pathway. Cyclic voltammograms are presented as illustrative examples. The strength of the proposed theoretical framework lies in its adaptability to a wider range of redox mediators and their interactions with the various electrolyte components and redox active molecules such as oxygen. By understanding these effects, we open up new avenues to tune electron transfer and catalytic kinetics and thus improve the energy efficiency and rate capability of Li-O2 batteries. Although exact results may not transfer to different solvents, the predictions of our model will provide a starting point for future studies of similar systems, and the model itself is easily extensible to new chemistries.
Collapse
Affiliation(s)
- Gabriela Horwitz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
- The Faraday Institution, Quad One, Harwell Campus, Becquerel Ave, Didcot OX11 0RA, UK
| | - Vera Kunz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| | - Samuel P Niblett
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
- The Faraday Institution, Quad One, Harwell Campus, Becquerel Ave, Didcot OX11 0RA, UK
| |
Collapse
|
2
|
Nishiori D, Menzel JP, Armada N, Reyes Cruz EA, Nannenga BL, Batista VS, Moore GF. Breaking a Molecular Scaling Relationship Using an Iron-Iron Fused Porphyrin Electrocatalyst for Oxygen Reduction. J Am Chem Soc 2024; 146:11622-11633. [PMID: 38639470 DOI: 10.1021/jacs.3c08586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The design of efficient electrocatalysts is limited by scaling relationships governing trade-offs between thermodynamic and kinetic performance metrics. This ″iron law″ of electrocatalysis arises from synthetic design strategies, where structural alterations to a catalyst must balance nucleophilic versus electrophilic character. Efforts to circumvent this fundamental impasse have focused on bioinspired applications of extended coordination spheres and charged sites proximal to a catalytic center. Herein, we report evidence for breaking a molecular scaling relationship involving electrocatalysis of the oxygen reduction reaction (ORR) by leveraging ligand design. We achieve this using a binuclear catalyst (a diiron porphyrin), featuring a macrocyclic ligand with extended electronic conjugation. This ligand motif delocalizes electrons across the molecular scaffold, improving the catalyst's nucleophilic and electrophilic character. As a result, our binuclear catalyst exhibits low overpotential and high catalytic turnover frequency, breaking the traditional trade-off between these two metrics.
Collapse
Affiliation(s)
- Daiki Nishiori
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Jan Paul Menzel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Nicholas Armada
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Edgar A Reyes Cruz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Brent L Nannenga
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gary F Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Liu S, Liu X, Zhang TS, Bao X, Sheng X, Qi Z, Jiang D. Electro-oxidative intermolecular C SP2-H amination of heteroarenes via proton-coupled electron transfer. Org Biomol Chem 2024; 22:2549-2553. [PMID: 38446035 DOI: 10.1039/d4ob00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A new electrochemical proton-coupled electron transfer method for the intermolecular CSP2-H amination of heteroarenes without oxidants, metal catalysts and external electrolytes has been developed. Various new N-containing heteroarenes were prepared in medium to high yields, and the indole-containing product could be converted into practical 2-oxindole by simple basic hydrolysis. Mechanistic investigation indicated that ester sulfonyl-substituted N-radicals could be formed by the combination of 2,6-lutidine and electrochemical oxidation, which is the key to achieve the desired chemoselectivity.
Collapse
Affiliation(s)
- Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Xin Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Xiaoyu Bao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Xiaoyu Sheng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Zhenjie Qi
- Department of Engineering, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Dongfang Jiang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, 412008, P. R. China.
| |
Collapse
|
4
|
Huang KY, Yang ZQ, Yang MR, Chen TS, Tang S, Sun WM, Yao Q, Deng HH, Chen W, Xie J. Unraveling a Concerted Proton-Coupled Electron Transfer Pathway in Atomically Precise Gold Nanoclusters. J Am Chem Soc 2024; 146:8706-8715. [PMID: 38487838 DOI: 10.1021/jacs.4c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Metal nanoclusters (MNCs) represent a promising class of materials for catalytic carbon dioxide and proton reduction as well as dihydrogen oxidation. In such reactions, multiple proton-coupled electron transfer (PCET) processes are typically involved, and the current understanding of PCET mechanisms in MNCs has primarily focused on the sequential transfer mode. However, a concerted transfer pathway, i.e., concerted electron-proton transfer (CEPT), despite its potential for a higher catalytic rate and lower reaction barrier, still lacks comprehensive elucidation. Herein, we introduce an experimental paradigm to test the feasibility of the CEPT process in MNCs, by employing Au18(SR)14 (SR denotes thiolate ligand), Au22(SR)18, and Au25(SR)18- as model clusters. Detailed investigations indicate that the photoinduced PCET reactions in the designed system proceed via an CEPT pathway. Furthermore, the rate constants of gold nanoclusters (AuNCs) have been found to be correlated with both the size of the cluster and the flexibility of the Au-S framework. This newly identified PCET behavior in AuNCs is prominently different from that observed in semiconductor quantum dots and plasmonic metal nanoparticles. Our findings are of crucial importance for unveiling the catalytic mechanisms of quantum-confined metal nanomaterials and for the future rational design of more efficient catalysts.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhi-Qiang Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Ming-Rui Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Tian-Shui Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Shurong Tang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei-Ming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
5
|
Bazant MZ. Unified quantum theory of electrochemical kinetics by coupled ion-electron transfer. Faraday Discuss 2023; 246:60-124. [PMID: 37676178 DOI: 10.1039/d3fd00108c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A general theory of coupled ion-electron transfer (CIET) is presented, which unifies Marcus kinetics of electron transfer (ET) with Butler-Volmer kinetics of ion transfer (IT). In the limit of large reorganization energy, the theory predicts normal Marcus kinetics of "electron-coupled ion transfer" (ECIT). In the limit of large ion transfer energies, the theory predicts Butler-Volmer kinetics of "ion-coupled electron transfer" (ICET), where the charge transfer coefficient and exchange current are connected to microscopic properties of the electrode/electrolyte interface. In the ICET regime, the reductive and oxidative branches of Tafel's law are predicted to hold over a wide range of overpotentials, bounded by the ion-transfer energies for oxidation and reduction, respectively. The probability distribution of transferring electron energies in CIET smoothly interpolates between a shifted Gaussian distribution for ECIT (as in the Gerischer-Marcus theory of ET) to an asymmetric, fat-tailed Meixner distribution centered at the Fermi level for ICET. The latter may help interpret asymmetric line shapes in x-ray photo-electron spectroscopy (XPS) and Auger electron spectroscopy (AES) for metal surfaces in terms of shake-up relaxation of the ionized atom and its image polaron by ICET. In the limit of large overpotentials, the theory predicts a transition to inverted Marcus ECIT, leading to a universal reaction-limited current for metal electrodes, dominated by barrierless quantum transitions. Uniformly valid, closed-form asymptotic approximations are derived that smoothly transition between the limiting rate expressions for ICET and ECIT for metal electrodes, using simple but accurate mathematical functions. The theory is applied to lithium intercalation in lithium iron phosphate (LFP) and found to provide a consistent description of the observed current dependence on overpotential, temperature and concentration. CIET theory thus provides a critical bridge between quantum electrochemistry and electrochemical engineering, which may find many other applications and extensions.
Collapse
Affiliation(s)
- Martin Z Bazant
- Department of Chemical Engineering and Department of Mathematics, Massachusetts Institute of Technology, Cambridge 02139, MA, USA.
| |
Collapse
|
6
|
Abaalkhail SA, Abul-Futouh H, Görls H, Weigand W. Electrochemical Behavior of Mono‐Substituted [FeFe]‐Hydrogenase H‐Cluster Mimic Mediated by Stannylated Dithiolato Ligand. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Hassan Abul-Futouh
- The Hashemite University Chemistry P.O. Box 330127, Zarqa 13133 13133 Zaraqa JORDAN
| | | | | |
Collapse
|
7
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Dale HJA, Leach AG, Lloyd-Jones GC. Heavy-Atom Kinetic Isotope Effects: Primary Interest or Zero Point? J Am Chem Soc 2021; 143:21079-21099. [PMID: 34870970 DOI: 10.1021/jacs.1c07351] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemists have many options for elucidating reaction mechanisms. Global kinetic analysis and classic transition-state probes (e.g., LFERs, Eyring) inevitably form the cornerstone of any strategy, yet their application to increasingly sophisticated synthetic methodologies often leads to a wide range of indistinguishable mechanistic proposals. Computational chemistry provides powerful tools for narrowing the field in such cases, yet wholly simulated mechanisms must be interpreted with great caution. Heavy-atom kinetic isotope effects (KIEs) offer an exquisite but underutilized method for reconciling the two approaches, anchoring the theoretician in the world of calculable observables and providing the experimentalist with atomistic insights. This Perspective provides a personal outlook on this synergy. It surveys the computation of heavy-atom KIEs and their measurement by NMR spectroscopy, discusses recent case studies, highlights the intellectual reward that lies in alignment of experiment and theory, and reflects on the changes required in chemical education in the area.
Collapse
Affiliation(s)
- Harvey J A Dale
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G Leach
- School of Health Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
9
|
Xiao Z, Zhong W, Liu X. Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases. Dalton Trans 2021; 51:40-47. [PMID: 34889321 DOI: 10.1039/d1dt02705k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this brief review mainly based on our own work, we summarised the electrochemical investigations into those iron carbonyl complexes relevant to the iron centres of [FeFe]-and [Fe]-hydrogenases in the following aspects: (i) electron transfer (E) coupled with a chemical reaction (C), EC process, (ii) two-electron process with potential inversion (ECisoE), and (iii) proton-coupled electron transfer (PCET) and the role of an internal base group in the non-coordination sphere. Through individual examples, these processes involved in the electrochemistry of the iron carbonyl complexes are discussed. In probing the complexes involving a two-electron process with potential inversion, the co-existence of one- and two-electron for a complex is demonstrated by incorporating intramolecularly a ferrocenyl group(s) into the complex. Our studies on proton reduction catalysed by three diiron complexes involving the PCET mechanism are also summarised. Finally, perspectives of the electrochemical study in iron carbonyl complexes inspired by the iron-containing enzymes are mentioned in the sense of developing mimics of low overpotentials for hydrogen evolution through exploiting the PCET effect.
Collapse
Affiliation(s)
- Zhiyin Xiao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Wei Zhong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| |
Collapse
|
10
|
Bedran ZV, Zhukov SS, Abramov PA, Tyurenkov IO, Gorshunov BP, Mostert AB, Motovilov KA. Water-Activated Semiquinone Formation and Carboxylic Acid Dissociation in Melanin Revealed by Infrared Spectroscopy. Polymers (Basel) 2021; 13:4403. [PMID: 34960952 PMCID: PMC8705668 DOI: 10.3390/polym13244403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Eumelanin is a widespread biomacromolecule pigment in the biosphere and has been widely investigated for numerous bioelectronics and energetic applications. Many of these applications depend on eumelanin's ability to conduct proton current at various levels of hydration. The origin of this behavior is connected to a comproportionation reaction between oxidized and reduced monomer moieties and water. A hydration-dependent FTIR spectroscopic study on eumelanin is presented herein, which allows for the first time tracking the comproportionation reaction via the gradual increase of the overall aromaticity of melanin monomers in the course of hydration. We identified spectral features associated with the presence of specific "one and a half" C𝌁O bonds, typical for o-semiquinones. Signatures of semiquinone monomers with internal hydrogen bonds and that carboxylic groups, in contrast to semiquinones, begin to dissociate at the very beginning of melanin hydration were indicated. As such, we suggest a modification to the common hydration-dependent conductivity mechanism and propose that the conductivity at low hydration is dominated by carboxylic acid protons, whereas higher hydration levels manifest semiquinone protons.
Collapse
Affiliation(s)
- Zakhar V. Bedran
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Sergey S. Zhukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Pavel A. Abramov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Ilya O. Tyurenkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Boris P. Gorshunov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - A. Bernardus Mostert
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | - Konstantin A. Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| |
Collapse
|
11
|
Abstract
The pathway of activationless proton transfer induced by an electron-transfer reaction is studied theoretically. Long-range electron transfer produces highly nonequilibrium medium polarization that can drive proton transfer through an activationless transition during the process of thermalization, dynamically altering the screening of the electron-proton Coulomb interaction by the medium. The cross electron-proton reorganization energy is the main energy parameter of the theory, which exceeds in magnitude the proton-transfer reorganization energy roughly by the ratio of the electron-transfer to proton-transfer distance. This parameter, which can be either positive or negative, is related to the difference in pKa values in two electron-transfer states. The relaxation time of the medium is on the (sub)picosecond time scale, which establishes the characteristic time for activationless proton transfer. Microscopic calculations predict substantial retardation of the collective relaxation dynamics compared to the continuum estimates due to the phenomenology analogous to de Gennes narrowing. Nonequilibrium medium configuration promoting proton transfer can be induced by either thermal or photoinduced charge transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Marshall D Newton
- Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, United States
| |
Collapse
|
12
|
Kaleta J, Hromadová M, Pospíšil L. Electrochemical Cleavage of Carbon‐Chlorine Bonds in Multiply Bridge‐Chlorinated Bicyclo[1.1.1]pentane‐1,3‐dicarboxylic Acids. ChemElectroChem 2021. [DOI: 10.1002/celc.202100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Lubomír Pospíšil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
13
|
Rigodanza F, Marino N, Bonetto A, Marcomini A, Bonchio M, Natali M, Sartorel A. Water-Assisted Concerted Proton-Electron Transfer at Co(II)-Aquo Sites in Polyoxotungstates With Photogenerated Ru III (bpy) 33+ Oxidant. Chemphyschem 2021; 22:1208-1218. [PMID: 33851772 PMCID: PMC8251842 DOI: 10.1002/cphc.202100190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The cobalt substituted polyoxotungstate [Co6 (H2 O)2 (α-B-PW9 O34 )2 (PW6 O26 )]17- (Co6) displays fast electron transfer (ET) kinetics to photogenerated RuIII (bpy)33+ , 4 to 5 orders of magnitude faster than the corresponding ET observed for cobalt oxide nanoparticles. Mechanistic evidence has been acquired indicating that: (i) the one-electron oxidation of Co6 involves Co(II) aquo or Co(II) hydroxo groups (abbreviated as Co6(II)-OH2 and Co6(II)-OH, respectively, whose speciation in aqueous solution is associated to a pKa of 7.6), and generates a Co(III)-OH moiety (Co6(III)-OH), as proven by transient absorption spectroscopy; (ii) at pH>pKa , the Co6(II)-OH→RuIII (bpy)33+ ET occurs via bimolecular kinetics, with a rate constant k close to the diffusion limit and dependent on the ionic strength of the medium, consistent with reaction between charged species; (iii) at pH
Collapse
Affiliation(s)
- Francesco Rigodanza
- Department of Chemical SciencesUniversity of Padovavia Marzolo 135131PadovaItaly
- Consiglio Nazionale delle Ricerche (C.N.R.)Institute on Membrane Technology section of Padovavia Marzolo 135131PadovaItaly
| | - Nadia Marino
- Department of Chemistry and Chemical TechnologiesUniversity of Calabria87036Arcavacata di Rende (CS)Italy
| | - Alessandro Bonetto
- Dept. Environmental Sciences, Informatics and StatisticsUniversity Ca' Foscari Venice VegaparkVia delle Industrie 21/830175Marghera, VeniceItaly
| | - Antonio Marcomini
- Dept. Environmental Sciences, Informatics and StatisticsUniversity Ca' Foscari Venice VegaparkVia delle Industrie 21/830175Marghera, VeniceItaly
| | - Marcella Bonchio
- Department of Chemical SciencesUniversity of Padovavia Marzolo 135131PadovaItaly
- Consiglio Nazionale delle Ricerche (C.N.R.)Institute on Membrane Technology section of Padovavia Marzolo 135131PadovaItaly
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS)University of Ferrara, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM) sez. di Ferraravia L. Borsari 4644121FerraraItaly
| | - Andrea Sartorel
- Department of Chemical SciencesUniversity of Padovavia Marzolo 135131PadovaItaly
| |
Collapse
|
14
|
Berg N, Bergwinkl S, Nuernberger P, Horinek D, Gschwind RM. Extended Hydrogen Bond Networks for Effective Proton-Coupled Electron Transfer (PCET) Reactions: The Unexpected Role of Thiophenol and Its Acidic Channel in Photocatalytic Hydroamidations. J Am Chem Soc 2021; 143:724-735. [DOI: 10.1021/jacs.0c08673] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nele Berg
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Patrick Nuernberger
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
15
|
Fraggedakis D, McEldrew M, Smith RB, Krishnan Y, Zhang Y, Bai P, Chueh WC, Shao-Horn Y, Bazant MZ. Theory of coupled ion-electron transfer kinetics. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137432] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Abstract
Ammonia-oxidizing bacteria (AOB) convert ammonia (NH3) to nitrite (NO2-) as their primary metabolism and thus provide a blueprint for the use of NH3 as a chemical fuel. The first energy-producing step involves the homotrimeric enzyme hydroxylamine oxidoreductase (HAO), which was originally reported to oxidize hydroxylamine (NH2OH) to NO2-. HAO uses the heme P460 cofactor as the site of catalysis. This heme is supported by seven other c hemes in each monomer that mediate electron transfer. Heme P460 cofactors are c-heme-based cofactors that have atypical protein cross-links between the peptide backbone and the porphyrin macrocycle. This cofactor has been observed in both the HAO and cytochrome (cyt) P460 protein families. However, there are differences; specifically, HAO uses a single tyrosine residue to form two covalent attachments to the macrocycle whereas cyt P460 uses a lysine residue to form one. In Nitrosomonas europaea, which expresses both HAO and cyt P460, these enzymes achieve the oxidation of NH2OH and were both originally reported to produce NO2-. Each can inspire means to effect controlled release of chemical energy.Spectroscopically studying the P460 cofactors of HAO is complicated by the 21 non-P460 heme cofactors, which obscure the active site. However, monoheme cyt P460 is more approachable biochemically and spectroscopically. Thus, we have used cyt P460 to study biological NH2OH oxidation. Under aerobic conditions substoichiometric production of NO2- was observed along with production of nitrous oxide (N2O). Under anaerobic conditions, however, N2O was the exclusive product of NH2OH oxidation. We have advanced our understanding of the mechanism of this enzyme and have showed that a key intermediate is a ferric nitrosyl that can dissociate the bound nitric oxide (NO) molecule and react with O2, thus producing NO2- abiotically. Because N2O was the true product of one P460 cofactor-containing enzyme, this prompted us to reinvestigate whether NO2- is enzymatically generated from HAO catalysis. Like cyt P460, we showed that HAO does not produce NO2- enzymatically, but unlike cyt P460, its final product is NO, establishing it as an intermediate of nitrification. More broadly, NO can be recognized as a molecule common to the primary metabolisms of all organisms involved in nitrogen "defixation".Delving deeper into cyt P460 yielded insights broadly applicable to controlled biochemical redox processes. Studies of an inactive cyt P460 from Nitrosomonas sp. AL212 showed that this enzyme was unable to oxidize NH2OH because it lacked a glutamate residue in its secondary coordination sphere that was present in the active N. europaea cyt P460 variant. Restoring the Glu residue imbued activity, revealing that a second-sphere base is Nature's key to controlled oxidation of NH2OH. A key lesson of bioinorganic chemistry is reinforced: the polypeptide matrix is an essential part of dictating function. Our work also exposed some key functional contributions of noncanonical heme-protein cross-links. The heme-Lys cross-link of cyt P460 enforces the relative position of the cofactor and second-sphere residues. Moreover, the cross-link prevents the dissociation of the axial histidine residue, which stops catalysis, emphasizing the importance of this unique post-translational modification.
Collapse
Affiliation(s)
- Rachael E. Coleman
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M. Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
A photochemical study of the triplet excited state of pyrene-4,5-dione and pyrene-4,5,9,10-tetrone derivatives. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Yamabe S, Tsuchida N, Yamazaki S. A DFT Study on Transition States of Inhibition of Oxidation by α‐Tocopherol. ChemistrySelect 2020. [DOI: 10.1002/slct.202002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shinichi Yamabe
- Department of ChemistryNara University of Education, Takabatake-cho Nara 630-8528 Japan
| | - Noriko Tsuchida
- Department of Liberal ArtsFaculty of MedicineSaitama Medical University 38 Morohongo Moroyama-machi Iruma-gun Saitama 350-0495 Japan
| | - Shoko Yamazaki
- Department of ChemistryNara University of Education, Takabatake-cho Nara 630-8528 Japan
| |
Collapse
|
19
|
Coleman RE, Vilbert AC, Lancaster KM. The Heme-Lys Cross-Link in Cytochrome P460 Promotes Catalysis by Enforcing Secondary Coordination Sphere Architecture. Biochemistry 2020; 59:2289-2298. [PMID: 32525655 DOI: 10.1021/acs.biochem.0c00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome (cyt) P460 is a c-type monoheme enzyme found in ammonia-oxidizing bacteria (AOB) and methanotrophs; additionally, genes encoding it have been found in some pathogenic bacteria. Cyt P460 is defined by a unique post-translational modification to the heme macrocycle, where a lysine (Lys) residue covalently attaches to the 13' meso carbon of the porphyrin, modifying this heme macrocycle into the enzyme's eponymous P460 cofactor, similar to the cofactor found in the enzyme hydroxylamine oxidoreductase. This cross-link imbues the protein with unique spectroscopic properties, the most obvious of which is the enzyme's green color in solution. Cyt P460 from the AOB Nitrosomonas europaea is a homodimeric redox enzyme that produces nitrous oxide (N2O) from 2 equiv of hydroxylamine. Mutation of the Lys cross-link results in spectroscopic features that are more similar to those of standard cyt c' proteins and renders the enzyme catalytically incompetent for NH2OH oxidation. Recently, the necessity of a second-sphere glutamate (Glu) residue for redox catalysis was established; it plausibly serves as proton relay during the first oxidative half of the catalytic cycle. Herein, we report the first crystal structure of a cross-link deficient cyt P460. This structure shows that the positioning of the catalytically essential Glu changes by approximately 0.8 Å when compared to a cross-linked, catalytically competent cyt P460. It appears that the heme-Lys cross-link affects the relative position of the P460 cofactor with respect to the second-sphere Glu residue, therefore dictating the catalytic competency of the enzyme.
Collapse
Affiliation(s)
- Rachael E Coleman
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Avery C Vilbert
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
21
|
Laurynėnas A, Butkevičius M, Dagys M, Shleev S, Kulys J. Consecutive Marcus Electron and Proton Transfer in Heme Peroxidase Compound II-Catalysed Oxidation Revealed by Arrhenius Plots. Sci Rep 2019; 9:14092. [PMID: 31575893 PMCID: PMC6773748 DOI: 10.1038/s41598-019-50466-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022] Open
Abstract
Electron and proton transfer reactions in enzymes are enigmatic and have attracted a great deal of theoretical, experimental, and practical attention. The oxidoreductases provide model systems for testing theoretical predictions, applying experimental techniques to gain insight into catalytic mechanisms, and creating industrially important bio(electro)conversion processes. Most previous and ongoing research on enzymatic electron transfer has exploited a theoretically and practically sound but limited approach that uses a series of structurally similar ("homologous") substrates, measures reaction rate constants and Gibbs free energies of reactions, and analyses trends predicted by electron transfer theory. This approach, proposed half a century ago, is based on a hitherto unproved hypothesis that pre-exponential factors of rate constants are similar for homologous substrates. Here, we propose a novel approach to investigating electron and proton transfer catalysed by oxidoreductases. We demonstrate the validity of this new approach for elucidating the kinetics of oxidation of "non-homologous" substrates catalysed by compound II of Coprinopsis cinerea and Armoracia rusticana peroxidases. This study - using the Marcus theory - demonstrates that reactions are not only limited by electron transfer, but a proton is transferred after the electron transfer event and thus both events control the reaction rate of peroxidase-catalysed oxidation of substrates.
Collapse
Affiliation(s)
- Audrius Laurynėnas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania.
| | - Marius Butkevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Marius Dagys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Sergey Shleev
- Malmö University, Jan Waldenströmsgata 25, SE-214 28, Malmö, Sweden
| | - Juozas Kulys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
22
|
Jackson MN, Kaminsky CJ, Oh S, Melville JF, Surendranath Y. Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis. J Am Chem Soc 2019; 141:14160-14167. [PMID: 31353897 PMCID: PMC6748662 DOI: 10.1021/jacs.9b04981] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The efficient interconversion
of electrical and chemical energy
requires the intimate coupling of electrons and small-molecule substrates
at catalyst active sites. In molecular electrocatalysis, the molecule
acts as a redox mediator which typically undergoes oxidation or reduction
in a separate step from substrate activation. These mediated pathways
introduce a high-energy intermediate, cap the driving force for substrate
activation at the reduction potential of the molecule, and impede
access to high rates at low overpotentials. Here we show that electronically
coupling a molecular hydrogen evolution catalyst to a graphitic electrode
eliminates stepwise pathways and forces concerted electron transfer
and proton binding. Electrochemical and X-ray absorption spectroscopy
data establish that hydrogen evolution catalysis at the graphite-conjugated
Rh molecule proceeds without first reducing the metal center. These
results have broad implications for the molecular-level design of
energy conversion catalysts.
Collapse
Affiliation(s)
- Megan N Jackson
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Corey J Kaminsky
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Seokjoon Oh
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jonathan F Melville
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yogesh Surendranath
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
23
|
Teixeira RI, Goulart JS, Corrêa RJ, Garden SJ, Ferreira SB, Netto-Ferreira JC, Ferreira VF, Miro P, Marin ML, Miranda MA, de Lucas NC. A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Adv 2019; 9:13386-13397. [PMID: 35519567 PMCID: PMC9063979 DOI: 10.1039/c9ra01939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.
Collapse
Affiliation(s)
- Rodolfo I Teixeira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Juliana S Goulart
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Rodrigo J Corrêa
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Simon J Garden
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Sabrina B Ferreira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | | | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmaceûtica Niterói Santa Rosa Brazil
| | - Paula Miro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Nanci C de Lucas
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| |
Collapse
|
24
|
Thammavongsy Z, Mercer IP, Yang JY. Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem Commun (Camb) 2019; 55:10342-10358. [DOI: 10.1039/c9cc05139b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mini-review on using the secondary coordination sphere to facilitate multi-electron, multi-proton catalysis.
Collapse
Affiliation(s)
| | - Ian P. Mercer
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Jenny Y. Yang
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
25
|
Geng C, Weiske T, Li J, Shaik S, Schwarz H. Intrinsic Reactivity of Diatomic 3d Transition-Metal Carbides in the Thermal Activation of Methane: Striking Electronic Structure Effects. J Am Chem Soc 2018; 141:599-610. [PMID: 30520302 DOI: 10.1021/jacs.8b11739] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanistic aspects of the C-H bond activation of methane by metal-carbide cations MC+ of the 3d transition-metals Sc-Zn were elucidated by NEVPT2//CASSCF quantum-chemical calculations and verified experimentally for M = Ti, V, Fe, and Cu by using Fourier transform ion-cyclotron resonance mass spectrometry. While MC+ species with M = Sc, Ti, V, Cr, Cu, and Zn activate CH4 at ambient temperature, this is prevented with carbide cations of M = Mn, Fe, and Co by high apparent barriers; NiC+ has a small apparent barrier. Hydrogen-atom transfers from methane to metal-carbide cations were found to proceed via a proton-coupled electron transfer mechanism for M = Sc-Co; wherein the doubly occupied πxz/yz-orbitals between metal and carbon at the carbon site serve as electron donors and the corresponding metal-centered vacant π*xz/yz-orbitals as electron acceptors. Classical hydrogen-atom transfer transpires only in the case of NiC+, while ZnC+ follows a mechanistic scenario, in which a formally hydridic hydrogen is transferred. CuC+ reacts by a synchronous activation of two C-H bonds. While spin density is often so crucial for the reactions of numerous MO+/CH4 couples, it is much less important for the C-H bond activation by carbide cations of the 3d transition-metals, in which one notes large changes in bond dissociation energies, spin states, number of d-electrons, and charge distributions. All these factors jointly affect both the reactivity of the metal carbides and their mechanisms of C-H bond activation.
Collapse
Affiliation(s)
- Caiyun Geng
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| | - Thomas Weiske
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| | - Jilai Li
- Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China.,Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190401 Jerusalem , Israel
| | - Helmut Schwarz
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| |
Collapse
|
26
|
Ryu J, Wuttig A, Surendranath Y. Quantification of Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non‐Faradaic Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jaeyune Ryu
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139-4307 USA
| | - Anna Wuttig
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139-4307 USA
| | - Yogesh Surendranath
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139-4307 USA
| |
Collapse
|
27
|
Ryu J, Wuttig A, Surendranath Y. Quantification of Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non‐Faradaic Reaction. Angew Chem Int Ed Engl 2018; 57:9300-9304. [DOI: 10.1002/anie.201802756] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jaeyune Ryu
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139-4307 USA
| | - Anna Wuttig
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139-4307 USA
| | - Yogesh Surendranath
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139-4307 USA
| |
Collapse
|
28
|
Geng C, Li J, Weiske T, Schwarz H. Thermal O–H Bond Activation of Water As Mediated by Heteronuclear [Al2Mg2O5]•+: Evidence for Oxygen-Atom Scrambling. J Am Chem Soc 2018; 140:9275-9281. [DOI: 10.1021/jacs.8b05618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Caiyun Geng
- Institut für Chemie, Technische Universität Berlin, Straße des 17 Juni 115, Berlin 10623, Germany
| | - Jilai Li
- Institut für Chemie, Technische Universität Berlin, Straße des 17 Juni 115, Berlin 10623, Germany
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Thomas Weiske
- Institut für Chemie, Technische Universität Berlin, Straße des 17 Juni 115, Berlin 10623, Germany
| | - Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17 Juni 115, Berlin 10623, Germany
| |
Collapse
|
29
|
Thiyagarajan SK, Suresh R, Ramanan V, Ramamurthy P. Deciphering the incognito role of water in a light driven proton coupled electron transfer process. Chem Sci 2018; 9:910-921. [PMID: 29629158 PMCID: PMC5873145 DOI: 10.1039/c7sc03161k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 01/26/2023] Open
Abstract
Light induced multisite electron proton transfer in two different phenol (simple and phenol carrying an intramolecularly hydrogen bonded base) pendants on acridinedione dye (ADD) and an NADH analogue was studied by following fluorescence quenching dynamics in an ultrafast timescale. In a simple phenol derivative (ADDOH), photo-excited acridinedione acquires an electron from phenol intramolecularly, coupled with the transfer of a proton to solvent water. But in a phenol carrying hydrogen bonded base (ADDDP), both electron and proton transfer occur completely intramolecularly. The sequence of this electron and proton transfer process was validated by discerning the pH dependency of the reaction kinetics. Since photo-excited ADDs are stronger oxidants, the sequential electron first proton transfer mechanism (ETPT) was observed in ADDOH and hence there is no change in the PCET reaction kinetics kETPT ∼ 6.57 × 109 s-1 in the entire pH range (pH 2-12). But the phenol carrying hydrogen bonded base (ADDDP) unleashes concerted electron proton transfer where the PCET reaction rate decreases upon decreasing the pH below its pKa. Noticeably, the concerted EPT process in ADDDP mimics the donor side of photosystem II and it occurs by two distinct pathways: (i) through direct intramolecular hydrogen bonding between the phenol and amine, kDEPT ∼ 12.5 × 1010 s-1 and (ii) through the bidirectional hydrogen bond extended by the water molecule trapped in between the proton donor and acceptor, which mediates the proton transfer and serves as a proton wire, kWMEPT ∼ 2.85 × 1010 s-1. These results unravel the incognito role played by water in mediating the proton transfer process when the structural elements do not favor direct hydrogen bonding between the proton donor and acceptor in a concerted PCET reaction.
Collapse
Affiliation(s)
- Senthil Kumar Thiyagarajan
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| | - Raghupathy Suresh
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| | - Vadivel Ramanan
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| | - Perumal Ramamurthy
- National Centre for Ultrafast Processes , University of Madras , Taramani Campus , Chennai - 600 113 , India .
| |
Collapse
|
30
|
Nick TU, Ravichandran KR, Stubbe J, Kasanmascheff M, Bennati M. Spectroscopic Evidence for a H Bond Network at Y 356 Located at the Subunit Interface of Active E. coli Ribonucleotide Reductase. Biochemistry 2017. [PMID: 28640584 DOI: 10.1021/acs.biochem.7b00462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction catalyzed by E. coli ribonucleotide reductase (RNR) composed of α and β subunits that form an active α2β2 complex is a paradigm for proton-coupled electron transfer (PCET) processes in biological transformations. β2 contains the diferric tyrosyl radical (Y122·) cofactor that initiates radical transfer (RT) over 35 Å via a specific pathway of amino acids (Y122· ⇆ [W48] ⇆ Y356 in β2 to Y731 ⇆ Y730 ⇆ C439 in α2). Experimental evidence exists for colinear and orthogonal PCET in α2 and β2, respectively. No mechanistic model yet exists for the PCET across the subunit (α/β) interface. Here, we report unique EPR spectroscopic features of Y356·-β, the pathway intermediate generated by the reaction of 2,3,5-F3Y122·-β2/CDP/ATP with wt-α2, Y731F-α2, or Y730F-α2. High field EPR (94 and 263 GHz) reveals a dramatically perturbed g tensor. [1H] and [2H]-ENDOR reveal two exchangeable H bonds to Y356·: a moderate one almost in-plane with the π-system and a weak one. DFT calculation on small models of Y· indicates that two in-plane, moderate H bonds (rO-H ∼1.8-1.9 Å) are required to reproduce the gx value of Y356· (wt-α2). The results are consistent with a model, in which a cluster of two, almost symmetrically oriented, water molecules provide the two moderate H bonds to Y356· that likely form a hydrogen bond network of water molecules involved in either the reversible PCET across the subunit interface or in H+ release to the solvent during Y356 oxidation.
Collapse
Affiliation(s)
- Thomas U Nick
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Kanchana R Ravichandran
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Müge Kasanmascheff
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Marina Bennati
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany.,Department of Chemistry, University of Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
31
|
Muñoz-Rugeles L, Galano A, Raúl Alvarez-Idaboy J. Non-covalent π–π stacking interactions turn off non-adiabatic effects in proton-coupled electron transfer reactions. Phys Chem Chem Phys 2017; 19:6969-6972. [DOI: 10.1039/c6cp08610a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacked transition states correspond to a PCET mechanism, albeit ground and first-excited states are separated by more than 20 kcal mol−1. The latter is usually attributed to HAT.
Collapse
Affiliation(s)
- Leonardo Muñoz-Rugeles
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- México D. F
- Mexico
| | - J. Raúl Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| |
Collapse
|
32
|
Sequential and Coupled Proton and Electron Transfer Events in the S2 → S3 Transition of Photosynthetic Water Oxidation Revealed by Time-Resolved X-ray Absorption Spectroscopy. Biochemistry 2016; 55:6996-7004. [DOI: 10.1021/acs.biochem.6b01078] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Affiliation(s)
- Jean-Michel Saveant
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS; Université Paris Diderot, Sorbonne Paris Cité; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13t France
| |
Collapse
|
34
|
Pairas GN, Tsoungas PG. H-Bond: Τhe Chemistry-Biology H-Bridge. ChemistrySelect 2016; 1:4520-4532. [PMID: 32328512 PMCID: PMC7169486 DOI: 10.1002/slct.201600770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
H-bonding, as a non covalent stabilizing interaction of diverse nature, has a central role in the structure, function and dynamics of chemical and biological processes, pivotal to molecular recognition and eventually to drug design. Types of conventional and non conventional (H-H, dihydrogen, H- π, CH- π, anti- , proton coordination and H-S) H-bonding interactions are discussed as well as features emerging from their interplay, such as cooperativity (σ- and π-) effects and allostery. Its utility in many applications is described. Catalysis, proton and electron transfer processes in various materials or supramolecular architectures of preorganized hosts for guest binding, are front-line technology. The H-bond-related concept of proton transfer (PT) addresses energy issues or deciphering the mechanism of many natural and synthetic processes. PT is also of paramount importance in the functions of cells and is assisted by large complex proteins embedded in membranes. Both intermolecular and intramolecular PT in H-bonded systems has received attention, theoretically and experimentally, using prototype molecules. It is found in rearrangement reactions, protein functions, and enzyme reactions or across proton channels and pumps. Investigations on the competition between intra- and intermolecular H bonding are discussed. Of particular interest is the H-bond furcation, a common phenomenon in protein-ligand binding. Multiple H-bonding (H-bond furcation) is observed in supramolecular structures.
Collapse
Affiliation(s)
- George N. Pairas
- Department of PharmacyLaboratory of Medicinal ChemistryUniversity of PatrasGR-265 04PatrasGreece
| | - Petros G. Tsoungas
- Laboratory of BiochemistryHellenic Pasteur Institute127 Vas. Sofias Ave.GR-115 21AthensGreece
| |
Collapse
|
35
|
Li J, Zhou S, Zhang J, Schlangen M, Usharani D, Shaik S, Schwarz H. Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions. J Am Chem Soc 2016; 138:11368-77. [DOI: 10.1021/jacs.6b07246] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jilai Li
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
- Institute
of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Shaodong Zhou
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Jun Zhang
- Institute
of Theoretical Chemistry, University of Cologne, Greinstraße
4, 50939 Cologne, Germany
| | - Maria Schlangen
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Dandamudi Usharani
- Department
of Lipid Science, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Sason Shaik
- Institute
of Chemistry and the Lise-Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Helmut Schwarz
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
36
|
Tzeli D, Kozielewicz P, Zervou M, Potamitis C, Kokkotou K, Rak B, Petrou A, Tsolaki E, Gavalas A, Geronikaki A, Petsalakis ID, Tsoungas PG. 2, 2′-Dihydroxybenzophenones and Derivatives. Efficient Synthesis and Structure Endoscopy by DFT and NMR. Credentials as Potent Antiinflammatory Agents. ChemistrySelect 2016. [DOI: 10.1002/slct.201600396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Demeter Tzeli
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Pawel Kozielewicz
- School of Clinical and Experimental Medicine; College of Medical and Dental Sciences; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Maria Zervou
- Institute of Biology; Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Constantinos Potamitis
- Institute of Biology; Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Katerina Kokkotou
- Institute of Biology; Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Benedikt Rak
- Centre for New Technologies; University of Warsaw; 02-097 Warsaw Poland
| | - Anthi Petrou
- Laboratory of Pharmaceutical.Chemistry; School of Pharmacy; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Evangelia Tsolaki
- Laboratory of Pharmaceutical.Chemistry; School of Pharmacy; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Antonios Gavalas
- Laboratory of Pharmaceutical.Chemistry; School of Pharmacy; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Athina Geronikaki
- Laboratory of Pharmaceutical.Chemistry; School of Pharmacy; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Ioannis D. Petsalakis
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Petros G. Tsoungas
- Department of Biochemistry; Hellenic Pasteur Institute; 127 Vas.Sofias Ave. Athens GR-11521 Greece
| |
Collapse
|
37
|
Li J, Zhou S, Zhang J, Schlangen M, Weiske T, Usharani D, Shaik S, Schwarz H. Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO2]+ (X, Y = Al, Si, Mg): Competition between Proton-Coupled Electron Transfer and Hydrogen-Atom Transfer. J Am Chem Soc 2016; 138:7973-81. [DOI: 10.1021/jacs.6b03798] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jilai Li
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
- Institute
of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Shaodong Zhou
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Jun Zhang
- Institute
of Theoretical Chemistry, University of Cologne, Greinstraße
4, 50939 Cologne, Germany
| | - Maria Schlangen
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Thomas Weiske
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Dandamudi Usharani
- Department
of Lipid Science, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Sason Shaik
- Institute
of Chemistry and the Lise-Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Helmut Schwarz
- Institut
für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
38
|
Miller DC, Tarantino KT, Knowles RR. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Top Curr Chem (Cham) 2016; 374:30. [PMID: 27573270 PMCID: PMC5107260 DOI: 10.1007/s41061-016-0030-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter, we aim to highlight the origins, development, and evolution of the PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups.
Collapse
Affiliation(s)
- David C Miller
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Kyle T Tarantino
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Robert R Knowles
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
39
|
Kasanmascheff M, Lee W, Nick TU, Stubbe J, Bennati M. Radical transfer in E. coli ribonucleotide reductase: a NH 2Y 731/R 411A-α mutant unmasks a new conformation of the pathway residue 731. Chem Sci 2016; 7:2170-2178. [PMID: 29899944 PMCID: PMC5968753 DOI: 10.1039/c5sc03460d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/06/2015] [Indexed: 11/21/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all living organisms. The catalytic cycle of E. coli RNR involves a long-range proton-coupled electron transfer (PCET) from a tyrosyl radical (Y122˙) in subunit β2 to a cysteine (C439) in the active site of subunit α2, which subsequently initiates nucleotide reduction. This oxidation occurs over 35 Å and involves a specific pathway of redox active amino acids (Y122 ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2). The mechanisms of the PCET steps at the interface of the α2β2 complex remain puzzling due to a lack of structural information for this region. Recently, DFT calculations on the 3-aminotyrosyl radical (NH2Y731˙)-α2 trapped by incubation of NH2Y731-α2/β2/CDP(substrate)/ATP(allosteric effector) suggested that R411-α2, a residue close to the α2β2 interface, interacts with NH2Y731˙ and accounts in part for its perturbed EPR parameters. To examine its role, we further modified NH2Y731-α2 with a R411A substitution. NH2Y731˙/R411A generated upon incubation of NH2Y731/R411A-α2/β2/CDP/ATP was investigated using multi-frequency (34, 94 and 263 GHz) EPR, 34 GHz pulsed electron-electron double resonance (PELDOR) and electron-nuclear double resonance (ENDOR) spectroscopies. The data indicate a large conformational change in NH2Y731˙/R411A relative to the NH2Y731˙ single mutant. Particularly, the inter-spin distance from NH2Y731˙/R411A in one αβ pair to Y122˙ in a second αβ pair decreases by 3 Å in the presence of the R411A mutation. This is the first experimental evidence for the flexibility of pathway residue Y731-α2 in an α2β2 complex and suggests a role for R411 in the stacked Y731/Y730 conformation involved in collinear PCET. Furthermore, NH2Y731˙/R411A serves as a probe of the PCET process across the subunit interface.
Collapse
Affiliation(s)
- Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- Department of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Wankyu Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Thomas U Nick
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- Department of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Pagba CV, McCaslin TG, Chi SH, Perry JW, Barry BA. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale. J Phys Chem B 2016; 120:1259-72. [PMID: 26886811 DOI: 10.1021/acs.jpcb.6b00560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.
Collapse
Affiliation(s)
- Cynthia V Pagba
- School of Chemistry and Biochemistry, the Petit Institute for Bioengineering and Bioscience, and the ‡Center for Organic Photonics and Electronics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Tyler G McCaslin
- School of Chemistry and Biochemistry, the Petit Institute for Bioengineering and Bioscience, and the ‡Center for Organic Photonics and Electronics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - San-Hui Chi
- School of Chemistry and Biochemistry, the Petit Institute for Bioengineering and Bioscience, and the ‡Center for Organic Photonics and Electronics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Joseph W Perry
- School of Chemistry and Biochemistry, the Petit Institute for Bioengineering and Bioscience, and the ‡Center for Organic Photonics and Electronics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, the Petit Institute for Bioengineering and Bioscience, and the ‡Center for Organic Photonics and Electronics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Volcano Activity Relationships for Proton-Coupled Electron Transfer Reactions in Electrocatalysis. Top Catal 2015. [DOI: 10.1007/s11244-015-0489-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Welker EA, Tiley BL, Sasaran CM, Zuchero MA, Tong WS, Vettleson MJ, Richards RA, Geruntho JG, Stoll S, Wolbach JP, Rhile IJ. Conformational Change with Steric Interactions Affects the Inner Sphere Component of Concerted Proton-Electron Transfer in a Pyridyl-Appended Radical Cation System. J Org Chem 2015; 80:8705-12. [PMID: 26270193 PMCID: PMC10758225 DOI: 10.1021/acs.joc.5b01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) model systems combine one-electron oxidants and bases to generate net hydrogen atom acceptors. We have generated two persistent pyridyl-appended radical cations: 10-(pyrid-2-yl)-10H-phenothiazinium (PPT•+) and 3-(pyrid-2-yl)-10-methyl-10H-phenothiazinium (MPTP•+). EPR spectra and corresponding calculations indicate phenothiazinium radical cations with minimal spin on the pyridine nitrogen. Addition of hindered phenols causes the radical cations to decay, and protonated products and the corresponding phenoxyl radicals to form. The ΔG° values for the formation of intermediates (determined through cyclic voltammetry and pKa measurements) rule out a stepwise mechanism, and kinetic isotope effects support concerted proton–electron transfer (CPET) as the mechanism. Calculations indicate that the reaction of PPT•+ + tBu3PhOH undergoes a significant conformational change with steric interactions on the diabatic surface while maintaining the hydrogen bond; in contrast, MPTP•+ + tBu3PhOH maintains its conformation throughout the reaction. This difference is reflected in both experiment and calculations with ΔG(⧧)MPTP•+ < ΔG(⧧)PPT•+ despite ΔG°MPTP•+ > ΔG°PPT•+. Experimental results with 2,6-di-tert-butyl-4-methoxyphenol are similar. Hence, despite the structural similarity between the compounds, differences in the inner sphere component for CPET affect the kinetics.
Collapse
Affiliation(s)
- Evan A. Welker
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Brittney L. Tiley
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Crina M. Sasaran
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Matthew A. Zuchero
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Wing-Sze Tong
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Melissa J. Vettleson
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Robert A. Richards
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Jonathan G. Geruntho
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, United States
| | | | - Ian J. Rhile
- Department of Chemistry and Biochemistry, Albright College, Reading, PA 19610-5234, United States
| |
Collapse
|
43
|
Nick T, Lee W, Koßmann S, Neese F, Stubbe J, Bennati M. Hydrogen bond network between amino acid radical intermediates on the proton-coupled electron transfer pathway of E. coli α2 ribonucleotide reductase. J Am Chem Soc 2015; 137:289-98. [PMID: 25516424 PMCID: PMC4304443 DOI: 10.1021/ja510513z] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all organisms. In all Class Ia RNRs, initiation of nucleotide diphosphate (NDP) reduction requires a reversible oxidation over 35 Å by a tyrosyl radical (Y122•, Escherichia coli) in subunit β of a cysteine (C439) in the active site of subunit α. This radical transfer (RT) occurs by a specific pathway involving redox active tyrosines (Y122 ⇆ Y356 in β to Y731 ⇆ Y730 ⇆ C439 in α); each oxidation necessitates loss of a proton coupled to loss of an electron (PCET). To study these steps, 3-aminotyrosine was site-specifically incorporated in place of Y356-β, Y731- and Y730-α, and each protein was incubated with the appropriate second subunit β(α), CDP and effector ATP to trap an amino tyrosyl radical (NH2Y•) in the active α2β2 complex. High-frequency (263 GHz) pulse electron paramagnetic resonance (EPR) of the NH2Y•s reported the gx values with unprecedented resolution and revealed strong electrostatic effects caused by the protein environment. (2)H electron-nuclear double resonance (ENDOR) spectroscopy accompanied by quantum chemical calculations provided spectroscopic evidence for hydrogen bond interactions at the radical sites, i.e., two exchangeable H bonds to NH2Y730•, one to NH2Y731• and none to NH2Y356•. Similar experiments with double mutants α-NH2Y730/C439A and α-NH2Y731/Y730F allowed assignment of the H bonding partner(s) to a pathway residue(s) providing direct evidence for colinear PCET within α. The implications of these observations for the PCET process within α and at the interface are discussed.
Collapse
Affiliation(s)
- Thomas
U. Nick
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wankyu Lee
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Simone Koßmann
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - JoAnne Stubbe
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Marina Bennati
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department
of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Fang YH, Liu ZP. Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles. ACS Catal 2014. [DOI: 10.1021/cs501312v] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ya-Hui Fang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Department
of Chemistry, Key Laboratory of Computational Physical Science (Ministry
of Education), Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Department
of Chemistry, Key Laboratory of Computational Physical Science (Ministry
of Education), Fudan University, Shanghai 200433, China
| |
Collapse
|