1
|
Rajdeo P, Aronow B, Surya Prasath VB. Deep learning-based multimodal spatial transcriptomics analysis for cancer. Adv Cancer Res 2024; 163:1-38. [PMID: 39271260 PMCID: PMC11431148 DOI: 10.1016/bs.acr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.
Collapse
Affiliation(s)
- Pankaj Rajdeo
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - V B Surya Prasath
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States; Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States; Department of Computer Science, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
2
|
Zhao K, Chen P, Alexander-Bloch A, Wei Y, Dyrba M, Yang F, Kang X, Wang D, Fan D, Ye S, Tang Y, Yao H, Zhou B, Lu J, Yu C, Wang P, Liao Z, Chen Y, Huang L, Zhang X, Han Y, Li S, Liu Y. A neuroimaging biomarker for Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN): a cross-sectional study. EClinicalMedicine 2023; 65:102276. [PMID: 37954904 PMCID: PMC10632687 DOI: 10.1016/j.eclinm.2023.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that poses a worldwide public health challenge. A neuroimaging biomarker would significantly improve early diagnosis and intervention, ultimately enhancing the quality of life for affected individuals and reducing the burden on healthcare systems. Methods Cross-sectional and longitudinal data (10,099 participants with 13,380 scans) from 12 independent datasets were used in the present study (this study was performed between September 1, 2021 and February 15, 2023). The Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN) score was developed via integrated regional- and network-based measures under an ensemble machine learning model based on structural MRI data. We systematically assessed whether IBRAIN could be a neuroimaging biomarker for AD. Findings IBRAIN accurately differentiated individuals with AD from NCs (AUC = 0.92) and other neurodegenerative diseases, including Frontotemporal dementia (FTD), Parkinson's disease (PD), Vascular dementia (VaD) and Amyotrophic Lateral Sclerosis (ALS) (AUC = 0.92). IBRAIN was significantly correlated to clinical measures and gene expression, enriched in immune process and protein metabolism. The IBRAIN score exhibited a significant ability to reveal the distinct progression of prodromal AD (i.e., Mild cognitive impairment, MCI) (Hazard Ratio (HR) = 6.52 [95% CI: 4.42∼9.62], p < 1 × 10-16), which offers similar powerful performance with Cerebrospinal Fluid (CSF) Aβ (HR = 3.78 [95% CI: 2.63∼5.43], p = 2.13 × 10-14) and CSF Tau (HR = 3.77 [95% CI: 2.64∼5.39], p = 9.53 × 10-15) based on the COX and Log-rank test. Notably, the IBRAIN shows comparable sensitivity (beta = -0.70, p < 1 × 10-16) in capturing longitudinal changes in individuals with conversion to AD than CSF Aβ (beta = -0.26, p = 4.40 × 10-9) and CSF Tau (beta = 0.12, p = 1.02 × 10-5). Interpretation Our findings suggested that IBRAIN is a biologically relevant, specific, and sensitive neuroimaging biomarker that can serve as a clinical measure to uncover prodromal AD progression. It has strong potential for application in future clinical practice and treatment trials. Funding Science and Technology Innovation 2030 Major Projects, the National Natural Science Foundation of China, Beijing Natural Science Funds, the Fundamental Research Funds for the CentralUniversity, and the Startup Funds for Talents at Beijing Normal University.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Martin Dyrba
- German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Fan Yang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Longjian Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Centre for Geriatric Disorders, Beijing, China
- Centre of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Xu Y, Dai S, Song H, Du L, Chen Y. Multi-modal brain MRI images enhancement based on framelet and local weights super-resolution. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4258-4273. [PMID: 36899626 DOI: 10.3934/mbe.2023199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic resonance (MR) image enhancement technology can reconstruct high-resolution image from a low-resolution image, which is of great significance for clinical application and scientific research. T1 weighting and T2 weighting are the two common magnetic resonance imaging modes, each of which has its own advantages, but the imaging time of T2 is much longer than that of T1. Related studies have shown that they have very similar anatomical structures in brain images, which can be utilized to enhance the resolution of low-resolution T2 images by using the edge information of high-resolution T1 images that can be rapidly imaged, so as to shorten the imaging time needed for T2 images. In order to overcome the inflexibility of traditional methods using fixed weights for interpolation and the inaccuracy of using gradient threshold to determine edge regions, we propose a new model based on previous studies on multi-contrast MR image enhancement. Our model uses framelet decomposition to finely separate the edge structure of the T2 brain image, and uses the local regression weights calculated from T1 image to construct a global interpolation matrix, so that our model can not only guide the edge reconstruction more accurately where the weights are shared, but also carry out collaborative global optimization for the remaining pixels and their interpolated weights. Experimental results on a set of simulated MR data and two sets of real MR images show that the enhanced images obtained by the proposed method are superior to the compared methods in terms of visual sharpness or qualitative indicators.
Collapse
Affiliation(s)
- Yingying Xu
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Songsong Dai
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Haifeng Song
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Lei Du
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Ying Chen
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
4
|
Wu J, Zhao K, Li Z, Wang D, Ding Y, Wei Y, Zhang H, Liu Y. A systematic analysis of diagnostic performance for Alzheimer's disease using structural MRI. PSYCHORADIOLOGY 2022; 2:287-295. [PMID: 38665142 PMCID: PMC10939341 DOI: 10.1093/psyrad/kkac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 04/28/2024]
Abstract
Background Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the elderly. Although numerous structural magnetic resonance imaging (sMRI) studies have reported diagnostic models that could distinguish AD from normal controls (NCs) with 80-95% accuracy, limited efforts have been made regarding the clinically practical computer-aided diagnosis (CAD) system for AD. Objective To explore the potential factors that hinder the clinical translation of the AD-related diagnostic models based on sMRI. Methods To systematically review the diagnostic models for AD based on sMRI, we identified relevant studies published in the past 15 years on PubMed, Web of Science, Scopus, and Ovid. To evaluate the heterogeneity and publication bias among those studies, we performed subgroup analysis, meta-regression, Begg's test, and Egger's test. Results According to our screening criterion, 101 studies were included. Our results demonstrated that high diagnostic accuracy for distinguishing AD from NC was obtained in recently published studies, accompanied by significant heterogeneity. Meta-analysis showed that many factors contributed to the heterogeneity of high diagnostic accuracy of AD using sMRI, which included but was not limited to the following aspects: (i) different datasets; (ii) different machine learning models, e.g. traditional machine learning or deep learning model; (iii) different cross-validation methods, e.g. k-fold cross-validation leads to higher accuracies than leave-one-out cross-validation, but both overestimate the accuracy when compared to validation in independent samples; (iv) different sample sizes; and (v) the publication times. We speculate that these complicated variables might be the adverse factor for developing a clinically applicable system for the early diagnosis of AD. Conclusions Our findings proved that previous studies reported promising results for classifying AD from NC with different models using sMRI. However, considering the many factors hindering clinical radiology practice, there would still be a long way to go to improve.
Collapse
Affiliation(s)
- Jiangping Wu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Kun Zhao
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhuangzhuang Li
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Dong Wang
- School of Information Science and Engineering, Shandong Normal University, Ji'nan, 250014, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Ji'nan, 250014, China
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Han Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- Center for Artificial Intelligence in Medical Imaging, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| |
Collapse
|