1
|
Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H. A structurally informed human protein-protein interactome reveals proteome-wide perturbations caused by disease mutations. Nat Biotechnol 2024:10.1038/s41587-024-02428-4. [PMID: 39448882 DOI: 10.1038/s41587-024-02428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
To assist the translation of genetic findings to disease pathobiology and therapeutics discovery, we present an ensemble deep learning framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that predicts protein-binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms to generate comprehensive structurally informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods and experimentally validate its predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces and explore their impact on disease prognosis and drug responses. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from analysis of approximately 11,000 whole exomes across 33 cancer types and show significant associations of oncoPPIs with patient survival and drug responses. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.
Collapse
Grants
- R01GM124559 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM125639 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM130885 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- RM1GM139738 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01DK115398 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U01HG007691 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- R01HL155107 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL155096 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL166137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54HL119145 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AHA957729 American Heart Association (American Heart Association, Inc.)
- 24MERIT1185447 American Heart Association (American Heart Association, Inc.)
- R01AG084250 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R56AG074001 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U01AG073323 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG066707 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG076448 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG082118 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1AG082211 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R21AG083003 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1NS133812 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
Collapse
Affiliation(s)
- Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Yunguang Qiu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, NY, USA
| | - Yadi Zhou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shobhita Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
- Biophysics Program, Cornell University, Ithaca, NY, USA
| | - Mateo Torres
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Charis Eng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H. Structurally-informed human interactome reveals proteome-wide perturbations by disease mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.24.538110. [PMID: 37162909 PMCID: PMC10168245 DOI: 10.1101/2023.04.24.538110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Human genome sequencing studies have identified numerous loci associated with complex diseases. However, translating human genetic and genomic findings to disease pathobiology and therapeutic discovery remains a major challenge at multiscale interactome network levels. Here, we present a deep-learning-based ensemble framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that accurately predicts protein binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms, generating comprehensive structurally-informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods. We further systematically validated PIONEER predictions experimentally through generating 2,395 mutations and testing their impact on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000 somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of ~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted oncoPPIs are significantly associated with patient survival and drug responses from both cancer cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic KEAP1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.
Collapse
Affiliation(s)
- Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, NY 10032, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shobhita Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Mateo Torres
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Liu X, Yang B, Huang X, Yan W, Zhang Y, Hu G. Identifying Lymph Node Metastasis-Related Factors in Breast Cancer Using Differential Modular and Mutational Structural Analysis. Interdiscip Sci 2023; 15:525-541. [PMID: 37115388 DOI: 10.1007/s12539-023-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Complex diseases are generally caused by disorders of biological networks and/or mutations in multiple genes. Comparisons of network topologies between different disease states can highlight key factors in their dynamic processes. Here, we propose a differential modular analysis approach that integrates protein-protein interactions with gene expression profiles for modular analysis, and introduces inter-modular edges and date hubs to identify the "core network module" that quantifies the significant phenotypic variation. Then, based on this core network module, key factors, including functional protein-protein interactions, pathways, and driver mutations, are predicted by the topological-functional connection score and structural modeling. We applied this approach to analyze the lymph node metastasis (LNM) process in breast cancer. The functional enrichment analysis showed that both inter-modular edges and date hubs play important roles in cancer metastasis and invasion, and in metastasis hallmarks. The structural mutation analysis suggested that the LNM of breast cancer may be the outcome of the dysfunction of rearranged during transfection (RET) proto-oncogene-related interactions and the non-canonical calcium signaling pathway via an allosteric mutation of RET. We believe that the proposed method can provide new insights into disease progression such as cancer metastasis.
Collapse
Affiliation(s)
- Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Bin Yang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xinpeng Huang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wenying Yan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, 215123, Jiangsu, China.
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
4
|
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, allosteric, and orthosteric drug discovery: Ways forward. Drug Discov Today 2023; 28:103551. [PMID: 36907321 PMCID: PMC10238671 DOI: 10.1016/j.drudis.2023.103551] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Drug discovery is arguably a highly challenging and significant interdisciplinary aim. The stunning success of the artificial intelligence-powered AlphaFold, whose latest version is buttressed by an innovative machine-learning approach that integrates physical and biological knowledge about protein structures, raised drug discovery hopes that unsurprisingly, have not come to bear. Even though accurate, the models are rigid, including the drug pockets. AlphaFold's mixed performance poses the question of how its power can be harnessed in drug discovery. Here we discuss possible ways of going forward wielding its strengths, while bearing in mind what AlphaFold can and cannot do. For kinases and receptors, an input enriched in active (ON) state models can better AlphaFold's chance of rational drug design success.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai CJ, Jang H, Tuncbag N. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK. Biophys Rev 2023; 15:163-181. [PMID: 37124926 PMCID: PMC10133437 DOI: 10.1007/s12551-023-01054-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Habibe Cansu Demirel
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
- School of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
6
|
Cheng F, Tuncbag N. Editorial overview: Artificial intelligence (AI) methodologies in structural biology. Curr Opin Struct Biol 2022; 74:102387. [PMID: 35589509 DOI: 10.1016/j.sbi.2022.102387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, 34450, Turkey; School of Medicine, Koc University, Istanbul, 34450, Turkey.
| |
Collapse
|