1
|
Bergamaschi G, Biebricher AS, Witt H, Byfield FJ, Seymonson XMR, Storm C, Janmey PA, Wuite GJL. Heterogeneous force response of chromatin in isolated nuclei. Cell Rep 2024; 43:114852. [PMID: 39412986 DOI: 10.1016/j.celrep.2024.114852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
A quantitative description of nuclear mechanics is crucial for understanding its role in force sensing within eukaryotic cells. Recent studies indicate that the chromatin within the nucleus cannot be treated as a homogeneous material. To elucidate its material properties, we combine optical tweezers manipulation of isolated nuclei with multi-color fluorescence imaging of lamin and chromatin to map the response of nuclei to local deformations. Force spectroscopy reveals nuclear strain stiffening and an exponential force dependence, well described by a hierarchical chain model. Simultaneously, fluorescence data show a higher compliance of chromatin compared to the nuclear envelope at strains <30%. Micrococcal nuclease (MNase) digestion of chromatin results in nuclear softening and can be captured by our model. Additionally, we observe stretching responses showing a lipid tether signature, suggesting that these tethers originate from the nuclear membrane. Our combined approach allows us to elucidate the nuclear force response while mapping the deformation of lamin, (eu)chromatin, and membrane.
Collapse
Affiliation(s)
- Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Hannes Witt
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Xamanie M R Seymonson
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
2
|
Labade AS, Chiang ZD, Comenho C, Reginato PL, Payne AC, Earl AS, Shrestha R, Duarte FM, Habibi E, Zhang R, Church GM, Boyden ES, Chen F, Buenrostro JD. Expansion in situ genome sequencing links nuclear abnormalities to hotspots of aberrant euchromatin repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614614. [PMID: 39386718 PMCID: PMC11463693 DOI: 10.1101/2024.09.24.614614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microscopy and genomics are both used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. While emerging multiplexed imaging methods can simultaneously localize genomic regions and nuclear proteins, their ability to accurately measure DNA-protein interactions is constrained by the diffraction limit of optical microscopy. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and superresolution localization of nuclear proteins in single cells. We applied ExIGS to fibroblast cells derived from an individual with Hutchinson-Gilford progeria syndrome to characterize how variation in nuclear morphology affects spatial chromatin organization. Using this data, we discovered that lamin abnormalities are linked to hotspots of aberrant euchromatin repression that may erode cell identity. Further, we show that lamin abnormalities heterogeneously increase the repressive environment of the nucleus in tissues and aged cells. These results demonstrate that ExIGS may serve as a generalizable platform for connecting nuclear abnormalities to changes in gene regulation across disease contexts.
Collapse
|
3
|
Girard M, de la Cruz MO, Marko JF, Erbaş A. Heterogeneous flexibility can contribute to chromatin segregation in the cell nucleus. Phys Rev E 2024; 110:014403. [PMID: 39160964 PMCID: PMC11371272 DOI: 10.1103/physreve.110.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/29/2024] [Indexed: 08/21/2024]
Abstract
The highly and slightly condensed forms of chromatin, heterochromatin and euchromatin, respectively, segregate in the cell nucleus. Heterochromatin is more abundant in the nucleus periphery. Here we study the mechanism of heterochromatin segregation by modeling interphase chromosomes as diblock ring copolymers confined in a rigid spherical shell using molecular dynamics simulations. In our model, heterochromatin and euchromatin are distinguished by their bending stiffnesses only, while an interaction potential between the spherical shell and chromatin is used to model lamin-associated proteins. Our simulations indicate that in the absence of attractive interactions between the nuclear shell and the chromatin, most heterochromatin segregates towards the nuclear interior due to the depletion of less flexible heterochromatin segments from the nuclear periphery. This inverted chromatin distribution,which is opposite to the conventional case with heterochromatin dominating at the periphery, is in accord with experimental observations in rod cells. This "inversion" is also found to be independent of the heterochromatin concentration and chromosome number. The chromatin distribution at the periphery found in vivo can be recovered by further increasing the bending stiffness of heterochromatin segments or by turning on attractive interactions between the nuclear shell and heterochromatin. Our results indicate that the bending stiffness of chromatin could be a contributor to chromosome organization along with differential effects of HP1α-driven phase segregation and of loop extruders and interactions with the nuclear envelope and topological constraints.
Collapse
Affiliation(s)
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Department of Chemistry, Department of Chemical and Biological Engineering, and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | | | - Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Zhuang Y, Guo X, Razorenova OV, Miles CE, Zhao W, Shi X. Coaching ribosome biogenesis from the nuclear periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.597078. [PMID: 38948754 PMCID: PMC11212990 DOI: 10.1101/2024.06.21.597078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Severe invagination of the nuclear envelope is a hallmark of cancers, aging, neurodegeneration, and infections. However, the outcomes of nuclear invagination remain unclear. This work identified a new function of nuclear invagination: regulating ribosome biogenesis. With expansion microscopy, we observed frequent physical contact between nuclear invaginations and nucleoli. Surprisingly, the higher the invagination curvature, the more ribosomal RNA and pre-ribosomes are made in the contacted nucleolus. By growing cells on nanopillars that generate nuclear invaginations with desired curvatures, we can increase and decrease ribosome biogenesis. Based on this causation, we repressed the ribosome levels in breast cancer and progeria cells by growing cells on low-curvature nanopillars, indicating that overactivated ribosome biogenesis can be rescued by reshaping nuclei. Mechanistically, high-curvature nuclear invaginations reduce heterochromatin and enrich nuclear pore complexes, which promote ribosome biogenesis. We anticipate that our findings will serve as a foundation for further studies on nuclear deformation.
Collapse
Affiliation(s)
- Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA 92697, United States
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University; Singapore 637459, Singapore
| | - Olga V. Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine; Irvine, CA 92697, United States
| | - Christopher E. Miles
- Department of Mathematics, University of California, Irvine; Irvine, CA 92697, United States
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University; Singapore 637459, Singapore
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA 92697, United States
- Department of Chemistry, University of California, Irvine; Irvine, CA 92697, United States
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697, United States
- Lead contact
| |
Collapse
|
5
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
6
|
Tan H, Long P, Xiao H. Dissecting the shared genetic architecture between endometriosis and polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1359236. [PMID: 38742190 PMCID: PMC11089172 DOI: 10.3389/fendo.2024.1359236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background Previous study suggested evidence for coexistence and similarities between endometriosis and polycystic ovary syndrome (PCOS), but it is unclear regarding the shared genetic architecture and causality underlying the phenotypic similarities observed for endometriosis and PCOS. Methods By leveraging summary statistics from public genome-wide association studies regarding endometriosis (European-based: N=470,866) and PCOS (European-based: N=210,870), we explored the genetic correlation that shared between endometriosis and PCOS using linkage disequilibrium score regression. Shared risk SNPs were derived using PLACO (Pleiotropic analysis under composite null hypothesis) and FUMA (Functional Mapping and Annotation of Genetic Associations). The potential causal association between endometriosis and PCOS was investigated using two-sample Mendelian randomization (MR). Linkage disequilibrium score for the specific expression of genes analysis (LDSC-SEG) were performed for tissue enrichment analysis. The expression profiles of the risk gene in tissues were further examined. Results A positive genetic association was observed between endometriosis and PCOS. 12 significant pleiotropic loci shared between endometriosis and PCOS were identified. Genetic associations between endometriosis and PCOS were particularly enriched in uterus, endometrium and fallopian tube. Two-sample MR analysis further indicated a potential causative effect of endometriosis on PCOS, and vice versa. Microarray and RNA-seq verified the expressions of SYNE1 and DNM3 were significantly altered in the endometrium of patients with endometriosis or PCOS compared to those of control subjects. Conclusion Our study indicates the genetic correlation and shared risk genes between PCOS and endometriosis. These findings provide insights into the potential mechanisms behind their comorbidity and the future development of therapeutics.
Collapse
Affiliation(s)
- Hangjing Tan
- Institute of Reproductive & Stem Cell Engineering, Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Panpan Long
- Institute of Reproductive & Stem Cell Engineering, Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Center of Genetics, Changsha Jiangwan Maternity Hospital, Changsha, Hunan, China
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
8
|
Bueno C, García-Bernal D, Martínez S, Blanquer M, Moraleda JM. The nuclei of human adult stem cells can move within the cell and generate cellular protrusions to contact other cells. Stem Cell Res Ther 2024; 15:32. [PMID: 38321563 PMCID: PMC10848534 DOI: 10.1186/s13287-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.
Collapse
Affiliation(s)
- Carlos Bueno
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain.
| | - David García-Bernal
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550, San Juan, Alicante, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, 28029, Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - Miguel Blanquer
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| | - José M Moraleda
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
9
|
Bastianello G, Porcella G, Beznoussenko GV, Kidiyoor G, Ascione F, Li Q, Cattaneo A, Matafora V, Disanza A, Quarto M, Mironov AA, Oldani A, Barozzi S, Bachi A, Costanzo V, Scita G, Foiani M. Cell stretching activates an ATM mechano-transduction pathway that remodels cytoskeleton and chromatin. Cell Rep 2023; 42:113555. [PMID: 38088930 DOI: 10.1016/j.celrep.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| | | | | | - Gururaj Kidiyoor
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | | | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Micaela Quarto
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sara Barozzi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Vincenzo Costanzo
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
10
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Gruber L, Jobst M, Kiss E, Karasová M, Englinger B, Berger W, Del Favero G. Intracellular remodeling associated with endoplasmic reticulum stress modifies biomechanical compliance of bladder cells. Cell Commun Signal 2023; 21:307. [PMID: 37904178 PMCID: PMC10614373 DOI: 10.1186/s12964-023-01295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 11/01/2023] Open
Abstract
Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.
Collapse
Affiliation(s)
- Livia Gruber
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Maximilian Jobst
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna, 1090, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Martina Karasová
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Bernhard Englinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
| |
Collapse
|
12
|
de Lope-Planelles A, González-Novo R, Madrazo E, Peralta-Carrero G, Cruz Rodríguez MP, Zamora-Carreras H, Torrano V, López-Menéndez H, Roda-Navarro P, Monroy F, Redondo-Muñoz J. Mechanical stress confers nuclear and functional changes in derived leukemia cells from persistent confined migration. Cell Mol Life Sci 2023; 80:316. [PMID: 37801090 PMCID: PMC10558412 DOI: 10.1007/s00018-023-04968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Nuclear deformability plays a critical role in cell migration. During this process, the remodeling of internal components of the nucleus has a direct impact on DNA damage and cell behavior; however, how persistent migration promotes nuclear changes leading to phenotypical and functional consequences remains poorly understood. Here, we described that the persistent migration through physical barriers was sufficient to promote permanent modifications in migratory-altered cells. We found that derived cells from confined migration showed changes in lamin B1 localization, cell morphology and transcription. Further analysis confirmed that migratory-altered cells showed functional differences in DNA repair, cell response to chemotherapy and cell migration in vivo homing experiments. Experimental modulation of actin polymerization affected the redistribution of lamin B1, and the basal levels of DNA damage in migratory-altered cells. Finally, since major nuclear changes were present in migratory-altered cells, we applied a multidisciplinary biochemical and biophysical approach to identify that confined conditions promoted a different biomechanical response of the nucleus in migratory-altered cells. Our observations suggest that mechanical compression during persistent cell migration has a role in stable nuclear and genomic alterations that might handle the genetic instability and cellular heterogeneity in aging diseases and cancer.
Collapse
Affiliation(s)
- Ana de Lope-Planelles
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Gracia Peralta-Carrero
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - María Pilar Cruz Rodríguez
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Héctor Zamora-Carreras
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Verónica Torrano
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Horacio López-Menéndez
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, University Complutense de Madrid and 12 de Octubre Health Research Institute (Imas12) Madrid, Madrid, Spain
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
13
|
Atashgar F, Shafieian M, Abolfathi N. The effect of the properties of cell nucleus and underlying substrate on the response of finite element models of astrocytes undergoing mechanical stimulations. Comput Methods Biomech Biomed Engin 2023; 26:1572-1581. [PMID: 36324266 DOI: 10.1080/10255842.2022.2128673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Astrocyte cells play a critical role in the mechanical behaviour of the brain tissue; hence understanding the properties of Astrocytes is a big step toward understanding brain diseases and abnormalities. Conventionally, atomic force microscopy (AFM) has been used as one of the most powerful tools to characterize the mechanical properties of cells. However, due to the complexities of experimental work and the complex behaviour of living cells, the finite element method (FEM) is commonly used to estimate the cells' response to mechanical stimulations. In this study, we developed a finite element model of the Astrocyte cells to investigate the effect of two key parameters that could affect the response of the cell to mechanical loading; the properties of the underlying substrate and the nucleus. In this regard, the cells were placed on two different substrates in terms of thickness and stiffness (gel and glass) with varying properties of the nucleus. The main achievement of this study was to develop an insight to investigate the response of the Astrocytes to mechanical loading for future studies, both experimentally and computationally.
Collapse
Affiliation(s)
- Fatemeh Atashgar
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Nabiollah Abolfathi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Abstract
From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration-approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle-targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.
Collapse
Affiliation(s)
- Sandeep Urandur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| |
Collapse
|
15
|
Audoin B. Principles and advances in ultrafast photoacoustics; applications to imaging cell mechanics and to probing cell nanostructure. PHOTOACOUSTICS 2023; 31:100496. [PMID: 37159813 PMCID: PMC10163675 DOI: 10.1016/j.pacs.2023.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
In this article we first present the foundations of ultrafast photoacoustics, a technique where the acoustic wavelength in play can be considerably shorter than the optical wavelength. The physics primarily involved in the conversion of short light pulses into high frequency sound is described. The mechanical disturbances following the relaxation of hot electrons in metals and other processes leading to the breaking of the mechanical balance are presented, and the generation of bulk shear-waves, of surface and interface waves and of guided waves is discussed. Then, efforts to overcome the limitations imposed by optical diffraction are described. Next, the principles behind the detection of the so generated coherent acoustic phonons with short light pulses are introduced for both opaque and transparent materials. The striking instrumental advances, in the detection of acoustic displacements, ultrafast acquisition, frequency and space resolution are discussed. Then secondly, we introduce picosecond opto-acoustics as a remote and label-free novel modality with an excellent capacity for quantitative evaluation and imaging of the cell's mechanical properties, currently with micron in-plane and sub-optical in depth resolution. We present the methods for time domain Brillouin spectroscopy in cells and for cell ultrasonography. The current applications of this unconventional means of addressing biological questions are presented. This microscopy of the nanoscale intra-cell mechanics, based on the optical monitoring of coherent phonons, is currently emerging as a breakthrough method offering new insights into the supra-molecular structural changes that accompany cell response to a myriad of biological events.
Collapse
|
16
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
17
|
Ingle J, Sengupta P, Basu S. Illuminating Sub-Cellular Organelles by Small Molecule AIEgens. Chembiochem 2023; 24:e202200370. [PMID: 36161823 DOI: 10.1002/cbic.202200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/25/2022] [Indexed: 01/05/2023]
Abstract
Sub-cellular organelles play a critical role in a myriad biological phenomena. Consequently, organelle structures and functions are invariably highjacked in diverse diseases including metabolic disorders, aging, and cancer. Hence, illuminating organelle dynamics is crucial in understanding the diseased states as well as developing organelle-targeted next generation therapeutics. In this review, we outline the novel small molecules which show remarkable aggregation-induced emission (AIE) properties due to restriction in intramolecular motion (RIM). We outline the examples of small molecules developed to image organelles like mitochondria, endoplasmic reticulum (ER), Golgi, lysosomes, nucleus, cell membrane and lipid droplets. These AIEgens have tremendous potential for next-generation phototherapy.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Poulomi Sengupta
- Department of Chemistry, Indrashil University, Rajpur, Kadi, Mehsana, Gujarat, 382740, India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
18
|
Komaragiri Y, Panhwar MH, Fregin B, Jagirdar G, Wolke C, Spiegler S, Otto O. Mechanical characterization of isolated mitochondria under conditions of oxidative stress. BIOMICROFLUIDICS 2022; 16:064101. [PMID: 36406339 PMCID: PMC9674388 DOI: 10.1063/5.0111581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.
Collapse
Affiliation(s)
| | | | | | - Gayatri Jagirdar
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | - Carmen Wolke
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | | | - Oliver Otto
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Lestrell E, Chen Y, Aslanoglou S, O'Brien CM, Elnathan R, Voelcker NH. Silicon Nanoneedle-Induced Nuclear Deformation: Implications for Human Somatic and Stem Cell Nuclear Mechanics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45124-45136. [PMID: 36173149 DOI: 10.1021/acsami.2c10583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell nuclear size and shape are strictly regulated, with aberrations often leading to or being indicative of disease. Nuclear mechanics are critically responsible for intracellular responses to extracellular cues, such as the nanotopography of the external environment. Silicon nanoneedle (SiNN) arrays are tunable, engineered cell culture substrates that permit precise, nanoscale modifications to a cell's external environment to probe mechanotransduction and intracellular signaling. We use a library of four different SiNN arrays to investigate the immediate and downstream effects of controlled geometries of nanotopographical cues on the nuclear integrity/dynamics of human immortalized somatic and renewing stem cell types. We quantify the significant, albeit different, nuclear shape changes that both cell types undergo, which suggest that cellular responses to SiNN arrays are more comparable to three-dimensional (3D) environments than traditional flat cultureware. We show that nanotopography-induced effects on nuclear envelope integrity, protein localization, and focal adhesion complex formation are cell-dependent. Migration is shown to be dramatically impeded for human neural progenitor cells (hNPCs) on nanotopographies compared to flat substrates but not for somatic cells. Our results indicate an additional layer of complexity in cellular mechanotransduction, which warrants closer attention in the context of engineered substrates and scaffolds for clinical applications.
Collapse
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Yaping Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Stella Aslanoglou
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|
20
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
21
|
Liu L, Simon M, Muggiolu G, Vilotte F, Antoine M, Caron J, Kantor G, Barberet P, Seznec H, Audoin B. Changes in intra-nuclear mechanics in response to DNA damaging agents revealed by time-domain Brillouin micro-spectroscopy. PHOTOACOUSTICS 2022; 27:100385. [PMID: 36068801 PMCID: PMC9441258 DOI: 10.1016/j.pacs.2022.100385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 05/25/2023]
Abstract
How DNA damage and repair processes affect the biomechanical properties of the nucleus interior remains unknown. Here, an opto-acoustic microscope based on time-domain Brillouin spectroscopy (TDBS) was used to investigate the induced regulation of intra-nuclear mechanics. With this ultrafast pump-probe technique, coherent acoustic phonons were tracked along their propagation in the intra-nucleus nanostructure and the complex stiffness moduli and thicknesses were measured with an optical resolution. Osteosarcoma cells were exposed to methyl methanesulfonate (MMS) and the presence of DNA damage was tested using immunodetection targeted against damage signaling proteins. TDBS revealed that the intra-nuclear storage modulus decreased significantly upon exposure to MMS, as a result of the chromatin decondensation and reorganization that favors molecular diffusion within the organelle. When the damaging agent was removed and cells incubated for 2 h in the buffer solution before fixation the intra-nuclear reorganization led to an inverse evolution of the storage modulus, the nucleus stiffened. The same tendency was measured when DNA double-strand breaks were caused by cell exposure to ionizing radiation. TDBS microscopy also revealed changes in acoustic dissipation, another mechanical probe of the intra-nucleus organization at the nano-scale, and changes in nucleus thickness during exposure to MMS and after recovery.
Collapse
Affiliation(s)
- Liwang Liu
- Univ. Bordeaux, CNRS, I2M, UMR 5295, F-33400 Talence, France
| | - Marina Simon
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | | | - Florent Vilotte
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Mikael Antoine
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Jerôme Caron
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Guy Kantor
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | | | - Hervé Seznec
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Bertrand Audoin
- Univ. Bordeaux, CNRS, I2M, UMR 5295, F-33400 Talence, France
| |
Collapse
|
22
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Lee G, Cho Y, Kim EH, Choi JM, Chae SS, Lee MG, Kim J, Choi WJ, Kwon J, Han EH, Kim SH, Park S, Chung YH, Chi SG, Jung BH, Shin JH, Lee JO. Pillar-Based Mechanical Induction of an Aggressive Tumorigenic Lung Cancer Cell Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20-31. [PMID: 34914354 DOI: 10.1021/acsami.1c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 μm diameter and 16 μm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 μm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.
Collapse
Affiliation(s)
- Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Hye Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jong Min Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Sang Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jonghyun Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Won Jin Choi
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Joseph Kwon
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young-Ho Chung
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
24
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Kapinos LE, Lim R, Benenson Y, Palivan CG. A self-assembling peptidic platform to boost the cellular uptake and nuclear delivery of oligonucleotides. Biomater Sci 2022; 10:4309-4323. [DOI: 10.1039/d2bm00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of non-viral vectors that efficiently deliver genetic materials into cells, in particular to the nucleus, remains a major challenge in gene therapy and vaccine development. To tackle the...
Collapse
|
25
|
Cantwell H, Dey G. Nuclear size and shape control. Semin Cell Dev Biol 2021; 130:90-97. [PMID: 34776332 DOI: 10.1016/j.semcdb.2021.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022]
Abstract
The nucleus displays a wide range of sizes and shapes in different species and cell types, yet its size scaling and many of the key structural constituents that determine its shape are highly conserved. In this review, we discuss the cellular properties and processes that contribute to nuclear size and shape control, drawing examples from across eukaryotes and highlighting conserved themes and pathways. We then outline physiological roles that have been uncovered for specific nuclear morphologies and disease pathologies associated with aberrant nuclear morphology. We argue that a comparative approach, assessing and integrating observations from different systems, will be a powerful way to help us address the open questions surrounding functional roles of nuclear size and shape in cell physiology.
Collapse
Affiliation(s)
- Helena Cantwell
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstr.1, 69117 Heidelberg, Germany.
| |
Collapse
|
26
|
Hernández-Guzmán C, Gallego-Gutiérrez H, Chávez-Munguía B, Martín-Tapia D, González-Mariscal L. Zonula occludens 2 and Cell-Cell Contacts Are Required for Normal Nuclear Shape in Epithelia. Cells 2021; 10:cells10102568. [PMID: 34685547 PMCID: PMC8534263 DOI: 10.3390/cells10102568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/10/2023] Open
Abstract
MAGUK protein ZO-2 is present at tight junctions (TJs) and nuclei. In MDCK ZO-2 knockdown (KD) cells, nuclei exhibit an irregular shape with lobules and indentations. This condition correlates with an increase in DNA double strand breaks, however cells are not senescent and instead become resistant to UV-induced senescence. The irregular nuclear shape is also observed in isolated cells and in those without TJs, due to the lack of extracellular calcium. The aberrant nuclear shape of ZO-2 KD cells is not accompanied by a reduced expression of lamins A/C and B and lamin B receptors. Instead, it involves a decrease in constitutive and facultative heterochromatin, and microtubule instability that is restored with docetaxel. ZO-2 KD cells over-express SUN-1 that crosses the inner nuclear membrane and connects the nucleoskeleton of lamin A to nesprins, which traverse the outer nuclear membrane. Nesprins-3 and -4 that indirectly bind on their cytoplasmic face to vimentin and microtubules, respectively, are also over-expressed in ZO-2 KD cells, whereas vimentin is depleted. SUN-1 and lamin B1 co-immunoprecipitate with ZO-2, and SUN-1 associates to ZO-2 in a pull-down assay. Our results suggest that ZO-2 forms a complex with SUN-1 and lamin B1 at the inner nuclear membrane, and that ZO-2 and cell–cell contacts are required for a normal nuclear shape.
Collapse
Affiliation(s)
- Christian Hernández-Guzmán
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
| | - Helios Gallego-Gutiérrez
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
| | - Bibiana Chávez-Munguía
- Center for Research and Advanced Studies (Cinvestav), Department of Infectomics and Molecular Pathogenesis, Ave IPN 2508, Mexico City 07360, Mexico;
| | - Dolores Martín-Tapia
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
| | - Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
- Correspondence: ; Tel.: +52-55-5747-3966
| |
Collapse
|
27
|
Modelling Nuclear Morphology and Shape Transformation: A Review. MEMBRANES 2021; 11:membranes11070540. [PMID: 34357190 PMCID: PMC8304582 DOI: 10.3390/membranes11070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
As one of the most important cellular compartments, the nucleus contains genetic materials and separates them from the cytoplasm with the nuclear envelope (NE), a thin membrane that is susceptible to deformations caused by intracellular forces. Interestingly, accumulating evidence has also indicated that the morphology change of NE is tightly related to nuclear mechanotransduction and the pathogenesis of diseases such as cancer and Hutchinson–Gilford Progeria Syndrome. Theoretically, with the help of well-designed experiments, significant progress has been made in understanding the physical mechanisms behind nuclear shape transformation in different cellular processes as well as its biological implications. Here, we review different continuum-level (i.e., energy minimization, boundary integral and finite element-based) approaches that have been developed to predict the morphology and shape change of the cell nucleus. Essential gradients, relative advantages and limitations of each model will be discussed in detail, with the hope of sparking a greater research interest in this important topic in the future.
Collapse
|
28
|
Liddane AG, McNamara CA, Campbell MC, Mercier I, Holaska JM. Defects in Emerin-Nucleoskeleton Binding Disrupt Nuclear Structure and Promote Breast Cancer Cell Motility and Metastasis. Mol Cancer Res 2021; 19:1196-1207. [PMID: 33771882 PMCID: PMC8254762 DOI: 10.1158/1541-7786.mcr-20-0413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/27/2020] [Accepted: 03/19/2021] [Indexed: 01/17/2023]
Abstract
Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamins are found in many cancers and its expression is correlated with better clinical outcomes. The nucleus is the largest organelle in the cell with a diameter between 10 and 20 μm. Nuclear size significantly impacts cell migration. Nuclear structural changes are predicted to impact cancer metastasis by regulating cancer cell migration. Here we show emerin regulates nuclear structure in invasive breast cancer cells to impact cancer metastasis. Invasive breast cancer cells had 40% to 50% less emerin than control cells, which resulted in decreased nuclear size. Overexpression of GFP-emerin in invasive breast cancer cells rescued nuclear size and inhibited migration through 3.0 and 8.0 μm pores. Mutational analysis showed emerin binding to nucleoskeletal proteins was important for its regulation of nuclear structure, migration, and invasion. Importantly, emerin expression inhibited lung metastasis by 91% in orthotopic mouse models of breast cancer. Emerin nucleoskeleton-binding mutants failed to inhibit metastasis. These results support a model whereby emerin binding to the nucleoskeleton regulates nuclear structure to impact metastasis. In this model, emerin plays a central role in metastatic transformation, because decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. IMPLICATIONS: Modulating emerin expression and function represents new targets for therapeutic interventions of metastasis, because increased emerin expression rescued cancer metastasis.
Collapse
Affiliation(s)
- Alexandra G Liddane
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Chelsea A McNamara
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Mallory C Campbell
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania
| | - Isabelle Mercier
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania
| | - James M Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania.
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
29
|
Sharma VP, Williams J, Leung E, Sanders J, Eddy R, Castracane J, Oktay MH, Entenberg D, Condeelis JS. SUN-MKL1 Crosstalk Regulates Nuclear Deformation and Fast Motility of Breast Carcinoma Cells in Fibrillar ECM Microenvironment. Cells 2021; 10:1549. [PMID: 34205257 PMCID: PMC8234170 DOI: 10.3390/cells10061549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Aligned collagen fibers provide topography for the rapid migration of single tumor cells (streaming migration) to invade the surrounding stroma, move within tumor nests towards blood vessels to intravasate and form distant metastases. Mechanisms of tumor cell motility have been studied extensively in the 2D context, but the mechanistic understanding of rapid single tumor cell motility in the in vivo context is still lacking. Here, we show that streaming tumor cells in vivo use collagen fibers with diameters below 3 µm. Employing 1D migration assays with matching in vivo fiber dimensions, we found a dependence of tumor cell motility on 1D substrate width, with cells moving the fastest and the most persistently on the narrowest 1D fibers (700 nm-2.5 µm). Interestingly, we also observed nuclear deformation in the absence of restricting extracellular matrix pores during high speed carcinoma cell migration in 1D, similar to the nuclear deformation observed in tumor cells in vivo. Further, we found that actomyosin machinery is aligned along the 1D axis and actomyosin contractility synchronously regulates cell motility and nuclear deformation. To further investigate the link between cell speed and nuclear deformation, we focused on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex proteins and SRF-MKL1 signaling, key regulators of mechanotransduction, actomyosin contractility and actin-based cell motility. Analysis of The Cancer Genome Atlas dataset showed a dramatic decrease in the LINC complex proteins SUN1 and SUN2 in primary tumor compared to the normal tissue. Disruption of LINC complex by SUN1 + 2 KD led to multi-lobular elongated nuclei, increased tumor cell motility and concomitant increase in F-actin, without affecting Lamin proteins. Mechanistically, we found that MKL1, an effector of changes in cellular G-actin to F-actin ratio, is required for increased 1D motility seen in SUN1 + 2 KD cells. Thus, we demonstrate a previously unrecognized crosstalk between SUN proteins and MKL1 transcription factor in modulating nuclear shape and carcinoma cell motility in an in vivo relevant 1D microenvironment.
Collapse
Affiliation(s)
- Ved P. Sharma
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James Williams
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Edison Leung
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
| | - Joe Sanders
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Robert Eddy
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
| | - James Castracane
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Maja H. Oktay
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Entenberg
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Saini A, Singh J, Kumar S. Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Org Biomol Chem 2021; 19:5208-5236. [PMID: 34037048 DOI: 10.1039/d1ob00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent chemical probes have become powerful tools to study biological events in living cells. They provide a great opportunity to quantitatively and qualitatively analyze the physiological and biochemical properties of living cells in real time. The ability of researchers to manipulate these probes for a desired specific purpose has turned many heads in the scientific community. Despite a slow start, fluorescent probe research has seen exponential growth over the last decade in the world. This change required some adventurous and creative scientists from different fields-like biology, medicine, and chemistry-to come together to facilitate the constant expansion of this field. This review article introduces some fundamental concepts related to fluorescent probe designing and development. It also summarizes various fluorescent probes with superior optical properties used in fields like cell biology, cellular imaging, medical research, and cancer diagnosis. It is hoped that this article will encourage more young and creative scientists to contribute their talents to this field.
Collapse
Affiliation(s)
- Abhishek Saini
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Jyoti Singh
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| |
Collapse
|
31
|
Calero-Cuenca FJ, Osorio DS, Carvalho-Marques S, Sridhara SC, Oliveira LM, Jiao Y, Diaz J, Janota CS, Cadot B, Gomes ER. Ctdnep1 and Eps8L2 regulate dorsal actin cables for nuclear positioning during cell migration. Curr Biol 2021; 31:1521-1530.e8. [PMID: 33567288 PMCID: PMC8043254 DOI: 10.1016/j.cub.2021.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Cells actively position their nuclei within the cytoplasm for multiple cellular and physiological functions.1, 2, 3 Consequently, nuclear mispositioning is usually associated with cell dysfunction and disease, from muscular disorders to cancer metastasis.4, 5, 6, 7 Different cell types position their nuclei away from the leading edge during cell migration.8, 9, 10, 11 In migrating fibroblasts, nuclear positioning is driven by an actin retrograde flow originated at the leading edge that drives dorsal actin cables away from the leading edge. The dorsal actin cables connect to the nuclear envelope by the linker of nucleoskeleton and cytoskeleton (LINC) complex on transmembrane actin-associated nuclear (TAN) lines.12, 13, 14 Dorsal actin cables are required for the formation of TAN lines. How dorsal actin cables are organized to promote TAN lines formation is unknown. Here, we report a role for Ctdnep1/Dullard, a nuclear envelope phosphatase,15, 16, 17, 18, 19, 20, 21, 22 and the actin regulator Eps8L223, 24, 25 on nuclear positioning and cell migration. We demonstrate that Ctdnep1 and Eps8L2 directly interact, and this interaction is important for nuclear positioning and cell migration. We also show that Ctdnep1 and Eps8L2 are involved in the formation and thickness of dorsal actin cables required for TAN lines engagement during nuclear movement. We propose that Ctdnep1-Eps8L2 interaction regulates dorsal actin cables for nuclear movement during cell migration. Ctdnep1 and Eps8L2 are required for nuclear positioning and TAN lines formation Ctdnep1 directly interacts with Eps8L2 for nuclear movement and cell migration Ctdnep1-Eps8L2 interaction regulates dorsal actin organization
Collapse
Affiliation(s)
- Francisco J Calero-Cuenca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Daniel S Osorio
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Sofia Carvalho-Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sreerama Chaitanya Sridhara
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luis M Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Yue Jiao
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Jheimmy Diaz
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Cátia S Janota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bruno Cadot
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Edgar R Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
32
|
Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends Immunol 2021; 42:323-335. [PMID: 33653660 DOI: 10.1016/j.it.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
The leukocyte nucleus must be sufficiently elastic to squeeze through tissue barriers during migration, but not so collapsible as to risk damaging chromatin. The proper balance is struck in part by the composition of the nuclear lamina, a flexible meshwork composed mainly of intermediate filaments woven from type A and type B lamin proteins, that is located subjacent to the inner nuclear membrane. There is now increasing evidence that, in addition to influencing nuclear shape and stiffness and cell migration, lamins and lamin-interacting proteins may also interact functionally with chromatin to influence leukocyte gene expression, differentiation, and effector function, including T cell differentiation, B cell somatic hypermutation, and the formation of neutrophil extracellular traps (NETosis).
Collapse
|
33
|
Wang N, Karaaslan ES, Faiss N, Berendzen KW, Liu C. Characterization of a Plant Nuclear Matrix Constituent Protein in Liverwort. FRONTIERS IN PLANT SCIENCE 2021; 12:670306. [PMID: 34025705 PMCID: PMC8139558 DOI: 10.3389/fpls.2021.670306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/01/2021] [Indexed: 05/19/2023]
Abstract
The nuclear lamina (NL) is a complex network of nuclear lamins and lamina-associated nuclear membrane proteins, which scaffold the nucleus to maintain structural integrity. In animals, type V intermediate filaments are the main constituents of NL. Plant genomes do not encode any homologs of these intermediate filaments, yet plant nuclei contain lamina-like structures that are present in their nuclei. In Arabidopsis thaliana, CROWDED NUCLEI (CRWN), which are required for maintaining structural integrity of the nucleus and specific perinuclear chromatin anchoring, are strong candidates for plant lamin proteins. Recent studies revealed additional roles of Arabidopsis Nuclear Matrix Constituent Proteins (NMCPs) in modulating plants' response to pathogen and abiotic stresses. However, detailed analyses of Arabidopsis NMCP activities are challenging due to the presence of multiple homologs and their functional redundancy. In this study, we investigated the sole NMCP gene in the liverwort Marchantia polymorpha (MpNMCP). We found that MpNMCP proteins preferentially were localized to the nuclear periphery. Using CRISPR/Cas9 techniques, we generated an MpNMCP loss-of-function mutant, which displayed reduced growth rate and curly thallus lobes. At an organelle level, MpNMCP mutants did not show any alteration in nuclear morphology. Transcriptome analyses indicated that MpNMCP was involved in regulating biotic and abiotic stress responses. Additionally, a highly repetitive genomic region on the male sex chromosome, which was preferentially tethered at the nuclear periphery in wild-type thalli, decondensed in the MpNMCP mutants and located in the nuclear interior. This perinuclear chromatin anchoring, however, was not directly controlled by MpNMCP. Altogether, our results unveiled that NMCP in plants have conserved functions in modulating stress responses.
Collapse
Affiliation(s)
- Nan Wang
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | | | - Natalie Faiss
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
- *Correspondence: Chang Liu,
| |
Collapse
|
34
|
Sapra KT, Qin Z, Dubrovsky-Gaupp A, Aebi U, Müller DJ, Buehler MJ, Medalia O. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. Nat Commun 2020; 11:6205. [PMID: 33277502 PMCID: PMC7718915 DOI: 10.1038/s41467-020-20049-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/11/2020] [Indexed: 01/16/2023] Open
Abstract
The nuclear lamina—a meshwork of intermediate filaments termed lamins—is primarily responsible for the mechanical stability of the nucleus in multicellular organisms. However, structural-mechanical characterization of lamin filaments assembled in situ remains elusive. Here, we apply an integrative approach combining atomic force microscopy, cryo-electron tomography, network analysis, and molecular dynamics simulations to directly measure the mechanical response of single lamin filaments in three-dimensional meshwork. Endogenous lamin filaments portray non-Hookean behavior – they deform reversibly at a few hundred picoNewtons and stiffen at nanoNewton forces. The filaments are extensible, strong and tough similar to natural silk and superior to the synthetic polymer Kevlar®. Graph theory analysis shows that the lamin meshwork is not a random arrangement of filaments but exhibits small-world properties. Our results suggest that lamin filaments arrange to form an emergent meshwork whose topology dictates the mechanical properties of individual filaments. The quantitative insights imply a role of meshwork topology in laminopathies. Mechanical strength of in situ assembled nuclear lamin filaments arranged in a 3D meshwork is unclear. Here, using mechanical, structural and simulation tools, the authors report the hierarchical organization of the lamin meshwork that imparts strength and toughness to lamin filaments at par with silk and Kevlar®
Collapse
Affiliation(s)
- K Tanuj Sapra
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Anna Dubrovsky-Gaupp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
35
|
Colón-Bolea P, García-Gómez R, Shackleton S, Crespo P, Bustelo XR, Casar B. RAC1 induces nuclear alterations through the LINC complex to enhance melanoma invasiveness. Mol Biol Cell 2020; 31:2768-2778. [PMID: 33026942 PMCID: PMC7851868 DOI: 10.1091/mbc.e20-02-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RHO GTPases are key regulators of the cytoskeletal architecture, which impact a broad range of biological processes in malignant cells including motility, invasion, and metastasis, thereby affecting tumor progression. One of the constraints during cell migration is the diameter of the pores through which cells pass. In this respect, the size and shape of the nucleus pose a major limitation. Therefore, enhanced nuclear plasticity can promote cell migration. Nuclear morphology is determined in part through the cytoskeleton, which connects to the nucleoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we unravel the role of RAC1 as an orchestrator of nuclear morphology in melanoma cells. We demonstrate that activated RAC1 promotes nuclear alterations through its effector PAK1 and the tubulin cytoskeleton, thereby enhancing migration and intravasation of melanoma cells. Disruption of the LINC complex prevented RAC1-induced nuclear alterations and the invasive properties of melanoma cells. Thus, RAC1 induces nuclear morphology alterations through microtubules and the LINC complex to promote an invasive phenotype in melanoma cells.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sue Shackleton
- Department of Biochemistry, University of Leicester, Leicester LE1 9HM, UK
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Xosé R Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain.,Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC), Universidad de Salamanca, Salamanca 37007, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
36
|
Tenga R, Medalia O. Structure and unique mechanical aspects of nuclear lamin filaments. Curr Opin Struct Biol 2020; 64:152-159. [DOI: 10.1016/j.sbi.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 11/15/2022]
|
37
|
Kidiyoor GR, Li Q, Bastianello G, Bruhn C, Giovannetti I, Mohamood A, Beznoussenko GV, Mironov A, Raab M, Piel M, Restuccia U, Matafora V, Bachi A, Barozzi S, Parazzoli D, Frittoli E, Palamidessi A, Panciera T, Piccolo S, Scita G, Maiuri P, Havas KM, Zhou ZW, Kumar A, Bartek J, Wang ZQ, Foiani M. ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nat Commun 2020; 11:4828. [PMID: 32973141 PMCID: PMC7518249 DOI: 10.1038/s41467-020-18580-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response. The nucleus is a mechanically stiff organelle of the cell and the DNA damage response protein ATR can localize to the nuclear envelope upon mechanical stress. Here, the authors show that ATR may contribute to the integrity of the nuclear envelope and may play a role in cell migration.
Collapse
Affiliation(s)
| | - Qingsen Li
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Adhil Mohamood
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | | | | | - Angela Bachi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | - Stefano Piccolo
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.,University of Padova, Padova, Italy
| | - Giorgio Scita
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.,University of Milan, Milan, Italy
| | - Paolo Maiuri
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Zhong-Wei Zhou
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Amit Kumar
- Genome and Cell Integrity Lab, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Karolinska Institute, Stockholm, Sweden
| | - Zhao-Qi Wang
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Friedrich-Schiller University, Jena, Germany
| | - Marco Foiani
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy. .,University of Milan, Milan, Italy.
| |
Collapse
|
38
|
Abstract
The presence of actin in the nucleus has historically been a highly contentious issue. It is now, however, well accepted that actin has physiologically important roles in the nucleus. In this Review, we describe the evolution of our thinking about actin in the nucleus starting with evidence supporting its involvement in transcription, chromatin remodeling and intranuclear movements. We also review the growing literature on the mechanisms that regulate the import and export of actin and how post-translational modifications of actin could regulate nuclear actin. We end with an extended discussion of the role of nuclear actin in the repair of DNA double stranded breaks.
Collapse
Affiliation(s)
- Leonid Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
39
|
Tamashunas AC, Tocco VJ, Matthews J, Zhang Q, Atanasova KR, Paschall L, Pathak S, Ratnayake R, Stephens AD, Luesch H, Licht JD, Lele TP. High-throughput gene screen reveals modulators of nuclear shape. Mol Biol Cell 2020; 31:1392-1402. [PMID: 32320319 PMCID: PMC7353136 DOI: 10.1091/mbc.e19-09-0520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Irregular nuclear shapes characterized by blebs, lobules, micronuclei, or invaginations are hallmarks of many cancers and human pathologies. Despite the correlation between abnormal nuclear shape and human pathologies, the mechanism by which the cancer nucleus becomes misshapen is not fully understood. Motivated by recent evidence that modifying chromatin condensation can change nuclear morphology, we conducted a high-throughput RNAi screen to identify epigenetic regulators that are required to maintain normal nuclear shape in human breast epithelial MCF-10A cells. We silenced 608 genes in parallel using an epigenetics siRNA library and used an unbiased Fourier analysis approach to quantify nuclear contour irregularity from fluorescent images captured on a high-content microscope. Using this quantitative approach, which we validated with confocal microscopy, we significantly expand the list of epigenetic regulators that impact nuclear morphology.
Collapse
Affiliation(s)
| | | | - James Matthews
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | - Kalina R. Atanasova
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | | | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Jonathan D. Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610
| | | |
Collapse
|
40
|
Zhang J, Alisafaei F, Nikolić M, Nou XA, Kim H, Shenoy VB, Scarcelli G. Nuclear Mechanics within Intact Cells Is Regulated by Cytoskeletal Network and Internal Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907688. [PMID: 32243075 PMCID: PMC7799396 DOI: 10.1002/smll.201907688] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 05/11/2023]
Abstract
The mechanical properties of the cellular nucleus are extensively studied as they play a critical role in important processes, such as cell migration, gene transcription, and stem cell differentiation. While the mechanical properties of the isolated nucleus have been tested, there is a lack of measurements about the mechanical behavior of the nucleus within intact cells and specifically about the interplay of internal nuclear components with the intracellular microenvironment, because current testing methods are based on contact and only allow studying the nucleus after isolation from a cell or disruption of cytoskeleton. Here, all-optical Brillouin microscopy and 3D chemomechanical modeling are used to investigate the regulation of nuclear mechanics in physiological conditions. It is observed that the nuclear modulus can be modulated by epigenetic regulation targeting internal nuclear nanostructures such as lamin A/C and chromatin. It is also found that nuclear modulus is strongly regulated by cytoskeletal behavior through a robust mechanism conserved in different culturing conditions. Given the active role of cytoskeletal modulation in nearly all cell functions, this work will enable to reveal highly relevant mechanisms of nuclear mechanical regulations in physiological and pathological conditions.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Farid Alisafaei
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, PA, 19104, USA
| | - Miloš Nikolić
- Maryland Biophysics Program, University of Maryland, College Park, MD 20742, USA
| | - Xuefei A. Nou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Hanyoup Kim
- Canon U.S. Life Sciences, Inc., 9800 Medical Center Drive, Suite C-120, Rockville, MD 20850, USA
| | - Vivek B. Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, PA, 19104, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
41
|
Multiple particle tracking analysis in isolated nuclei reveals the mechanical phenotype of leukemia cells. Sci Rep 2020; 10:6707. [PMID: 32317728 PMCID: PMC7174401 DOI: 10.1038/s41598-020-63682-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The nucleus is fundamentally composed by lamina and nuclear membranes that enclose the chromatin, nucleoskeletal components and suspending nucleoplasm. The functional connections of this network integrate external stimuli into cell signals, including physical forces to mechanical responses of the nucleus. Canonically, the morphological characteristics of the nucleus, as shape and size, have served for pathologists to stratify and diagnose cancer patients; however, novel biophysical techniques must exploit physical parameters to improve cancer diagnosis. By using multiple particle tracking (MPT) technique on chromatin granules, we designed a SURF (Speeded Up Robust Features)-based algorithm to study the mechanical properties of isolated nuclei and in living cells. We have determined the apparent shear stiffness, viscosity and optical density of the nucleus, and how the chromatin structure influences on these biophysical values. Moreover, we used our MPT-SURF analysis to study the apparent mechanical properties of isolated nuclei from patients of acute lymphoblastic leukemia. We found that leukemia cells exhibited mechanical differences compared to normal lymphocytes. Interestingly, isolated nuclei from high-risk leukemia cells showed increased viscosity than their counterparts from normal lymphocytes, whilst nuclei from relapsed-patient's cells presented higher density than those from normal lymphocytes or standard- and high-risk leukemia cells. Taken together, here we presented how MPT-SURF analysis of nuclear chromatin granules defines nuclear mechanical phenotypic features, which might be clinically relevant.
Collapse
|
42
|
Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells. Biophys J 2020; 118:2319-2332. [PMID: 32320674 DOI: 10.1016/j.bpj.2020.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.
Collapse
|
43
|
Song J, Meng X, Zhang H, Zhao K, Hu Y, Xie H. Probing Multidimensional Mechanical Phenotyping of Intracellular Structures by Viscoelastic Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1913-1923. [PMID: 31802656 DOI: 10.1021/acsami.9b19597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical phenotyping of complex cellular structures gives insight into the process and function of mechanotransduction in biological systems. Several methods have been developed to characterize intracellular elastic moduli, while direct viscoelastic characterization of intracellular structures is still challenging. Here, we develop a needle tip viscoelastic spectroscopy method to probe multidimensional mechanical phenotyping of intracellular structures during a mini-invasive penetrating process. Viscoelastic spectroscopy is determined by magnetically driven resonant vibration (about 15 kHz) with a tiny amplitude. It not only detects the unique dynamic stiffness, damping, and loss tangent of the cell membrane-cytoskeleton and nucleus-nuclear lamina but also bridges viscoelastic parameters between the mitotic phase and interphase. Self-defined dynamic mechanical ratios of these two phases can identify two malignant cervical cancer cell lines (HeLa-HPV18+, SiHa-HPV16+) whose membrane or nucleus elastic moduli are indistinguishable. This technique provides a quantitative method for studying mechanosensation, mechanotransduction, and mechanoresponse of intracellular structures from a dynamic mechanical perspective. This technique has the potential to become a reliable quantitative measurement method for dynamic mechanical studies of intracellular structures.
Collapse
|
44
|
Abstract
Lamins are evolutionarily conserved nuclear intermediate filament proteins. They provide structural support for the nucleus and help regulate many other nuclear activities. Mutations in human lamin genes, and especially in the LMNA gene, cause numerous diseases, termed laminopathies, including muscle, cardiac, metabolic, neuronal and early aging diseases. Most laminopathies arise from autosomal dominant missense mutations. Many of the mutant residues are conserved in the lamin genes of the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Our current understanding of the mechanisms leading to these diseases is mostly based on patients cell lines and animal models including C. elegans and D. melanogaster. The simpler lamin system and the powerful genetic tools offered by these invertebrate organisms greatly contributed to such studies. Here we provide an overview of the studies of laminopathies in Drosophila and C. elegans models.
Collapse
Affiliation(s)
- Ryszard Rzepecki
- a Laboratory of Nuclear Proteins, Faculty of Biotechnology , University of Wroclaw , Fryderyka Joliot-Curie, Wroclaw , Poland
| | - Yosef Gruenbaum
- a Laboratory of Nuclear Proteins, Faculty of Biotechnology , University of Wroclaw , Fryderyka Joliot-Curie, Wroclaw , Poland.,b Department of Genetics , Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
45
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Mechanosensing at the Nuclear Envelope by Nuclear Pore Complex Stretch Activation and Its Effect in Physiology and Pathology. Front Physiol 2019; 10:896. [PMID: 31354529 PMCID: PMC6640030 DOI: 10.3389/fphys.2019.00896] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/27/2019] [Indexed: 02/03/2023] Open
Abstract
Cell fate is correlated to mechanotransduction, in which forces transmitted by the cytoskeleton filaments alter the nuclear shape, affecting transcription factor import/export, cells transcription activity and chromatin distribution. There is in fact evidence that stem cells cultured in 3D environments mimicking the native niche are able to maintain their stemness or modulate their cellular function. However, the molecular and biophysical mechanisms underlying cellular mechanosensing are still largely unclear. The propagation of mechanical stimuli via a direct pathway from cell membrane integrins to SUN proteins residing in the nuclear envelop has been demonstrated, but we suggest that the cells’ fate is mainly affected by the force distribution at the nuclear envelope level, where the SUN protein transmits the stimuli via its mechanical connection to several cell structures such as chromatin, lamina and the nuclear pore complex (NPC). In this review, we analyze the NPC structure and organization, which have not as yet been fully investigated, and its plausible involvement in cell fate. NPC is a multiprotein complex that spans the nuclear envelope, and is involved in several key cellular processes such as bidirectional nucleocytoplasmic exchange, cell cycle regulation, kinetochore organization, and regulation of gene expression. As several connections between the NPC and the nuclear envelope, chromatin and other transmembrane proteins have been identified, it is reasonable to suppose that nuclear deformations can alter the NPC structure. We provide evidence that the transmission of mechanical forces may significantly affects the basket conformation via the Nup153-SUN1 connection, both altering the passage of molecules through it and influencing the state of chromatin packing. Finally, we review the known correlations between a pathological NPC structure and diseases such as cancer, autoimmune disease, aging and laminopathies.
Collapse
Affiliation(s)
- F Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - E Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - M Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - M T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| |
Collapse
|
46
|
Burridge K, Monaghan-Benson E, Graham DM. Mechanotransduction: from the cell surface to the nucleus via RhoA. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180229. [PMID: 31431179 PMCID: PMC6627015 DOI: 10.1098/rstb.2018.0229] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cells respond and adapt to their physical environments and to the mechanical forces that they experience. The translation of physical forces into biochemical signalling pathways is known as mechanotransduction. In this review, we focus on two aspects of mechanotransduction. First, we consider how forces exerted on cell adhesion molecules at the cell surface regulate the RhoA signalling pathway by controlling the activities of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). In the second part of the review, we discuss how the nucleus contributes to mechanotransduction as a physical structure connected to the cytoskeleton. We focus on recent studies that have either severed the connections between the nucleus and the cytoskeleton, or that have entirely removed the nucleus from cells. These actions reduce the levels of active RhoA, thereby altering the mechanical properties of cells and decreasing their ability to generate tension and respond to external mechanical forces. This article is part of a discussion meeting issue ‘Forces in cancer: interdisciplinary approaches in tumour mechanobiology’.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Graham
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
47
|
Constitutional abnormality of nuclear membrane proteins in small cell lung carcinoma. Virchows Arch 2019; 475:407-414. [PMID: 31201505 DOI: 10.1007/s00428-019-02597-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Nuclear membrane proteins reportedly play important roles in maintaining nuclear structures and coordinating cell activities. Studying profiles of nuclear membrane proteins may help us evaluate the biological and/or clinical nature of malignant tumors. Using immunohistochemistry with antibodies for emerin, lamin A/C, lamin B, and LAP2, we examined 105 lung cancer tissues from 33 small cell lung carcinomas (SCLCs) and 72 non-SCLCs (34 adenocarcinomas, 30 squamous cell carcinomas, and 8 large cell carcinomas). Emerin had negative or local/weak positivity in 79% of SCLCs and 1% of non-SCLCs, and lamin A/C had similar positivity in 91% of SCLCs and 3% of non-SCLCs. LAP2's expression was similar between SCLCs and non-SCLCs. RT-PCR analyses for these four nuclear membrane proteins over 7 cell lines showed that mRNA of emerin and lamin A/C were distinctly downregulated in the SCLC cell lines, supporting the immunohistochemical results. In conclusion, we suggest that downregulation of the nuclear membrane proteins emerin and lamin A/C is characteristic of SCLC cells, and this constitutional abnormality of the nuclear membrane may be related to the biological and/or clinical nature of SCLC. In addition, knowing the nuclear protein profile in SCLC cells may contribute to our understanding of nuclear fragility known as the crush artifact in pulmonary biopsy specimens.
Collapse
|
48
|
Wang X, Ho C, Tsatskis Y, Law J, Zhang Z, Zhu M, Dai C, Wang F, Tan M, Hopyan S, McNeill H, Sun Y. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci Robot 2019; 4:4/28/eaav6180. [DOI: 10.1126/scirobotics.aav6180] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
The capability to directly interrogate intracellular structures inside a single cell for measurement and manipulation is important for understanding subcellular and suborganelle activities, diagnosing diseases, and developing new therapeutic approaches. Compared with measurements of single cells, physical measurement and manipulation of subcellular structures and organelles remain underexplored. To improve intracellular physical measurement and manipulation, we have developed a multipole magnetic tweezers system for micromanipulation involving submicrometer position control and piconewton force control of a submicrometer magnetic bead inside a single cell for measurement in different locations (spatial) and different time points (temporal). The bead was three-dimensionally positioned in the cell using a generalized predictive controller that addresses the control challenge caused by the low bandwidth of visual feedback from high-resolution confocal imaging. The average positioning error was quantified to be 0.4 μm, slightly larger than the Brownian motion–imposed constraint (0.31 μm). The system is also capable of applying a force up to 60 pN with a resolution of 4 pN for a period of time longer than 30 min. The measurement results revealed that significantly higher stiffness exists in the nucleus’ major axis than in the minor axis. This stiffness polarity is likely attributed to the aligned actin filament. We also showed that the nucleus stiffens upon the application of an intracellularly applied force, which can be attributed to the response of structural protein lamin A/C and the intracellular stress fiber actin filaments.
Collapse
|
49
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
50
|
Saito N, Araya J, Ito S, Tsubouchi K, Minagawa S, Hara H, Ito A, Nakano T, Hosaka Y, Ichikawa A, Kadota T, Yoshida M, Fujita Y, Utsumi H, Kurita Y, Kobayashi K, Hashimoto M, Wakui H, Numata T, Kaneko Y, Asano H, Odaka M, Ohtsuka T, Morikawa T, Nakayama K, Kuwano K. Involvement of Lamin B1 Reduction in Accelerated Cellular Senescence during Chronic Obstructive Pulmonary Disease Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1428-1440. [PMID: 30692212 DOI: 10.4049/jimmunol.1801293] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2023]
Abstract
Downregulation of lamin B1 has been recognized as a crucial step for development of full senescence. Accelerated cellular senescence linked to mechanistic target of rapamycin kinase (MTOR) signaling and accumulation of mitochondrial damage has been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. We hypothesized that lamin B1 protein levels are reduced in COPD lungs, contributing to the process of cigarette smoke (CS)-induced cellular senescence via dysregulation of MTOR and mitochondrial integrity. To illuminate the role of lamin B1 in COPD pathogenesis, lamin B1 protein levels, MTOR activation, mitochondrial mass, and cellular senescence were evaluated in CS extract (CSE)-treated human bronchial epithelial cells (HBEC), CS-exposed mice, and COPD lungs. We showed that lamin B1 was reduced by exposure to CSE and that autophagy was responsible for lamin B1 degradation in HBEC. Lamin B1 reduction was linked to MTOR activation through DEP domain-containing MTOR-interacting protein (DEPTOR) downregulation, resulting in accelerated cellular senescence. Aberrant MTOR activation was associated with increased mitochondrial mass, which can be attributed to peroxisome proliferator-activated receptor γ coactivator-1β-mediated mitochondrial biogenesis. CS-exposed mouse lungs and COPD lungs also showed reduced lamin B1 and DEPTOR protein levels, along with MTOR activation accompanied by increased mitochondrial mass and cellular senescence. Antidiabetic metformin prevented CSE-induced HBEC senescence and mitochondrial accumulation via increased DEPTOR expression. These findings suggest that lamin B1 reduction is not only a hallmark of lung aging but is also involved in the progression of cellular senescence during COPD pathogenesis through aberrant MTOR signaling.
Collapse
Affiliation(s)
- Nayuta Saito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Saburo Ito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazuya Tsubouchi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Akihiko Ito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takayuki Nakano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; and
| | - Yusuke Hosaka
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Akihiro Ichikawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Masahiro Yoshida
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yusuke Kurita
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kenji Kobayashi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Mitsuo Hashimoto
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yumi Kaneko
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hisatoshi Asano
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Makoto Odaka
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takashi Ohtsuka
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toshiaki Morikawa
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Katsutoshi Nakayama
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|