1
|
Huang Y, Du Z, Lai Z, Wen D, Huang L, He M, Wu Z, Li H, OuYang H, Wu W, Kan A, Shi M. Single-Nucleus and Spatial Transcriptome Profiling Delineates the Multicellular Ecosystem in Hepatocellular Carcinoma After Hepatic Arterial Infusion Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405749. [PMID: 39686623 PMCID: PMC11791974 DOI: 10.1002/advs.202405749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/08/2024] [Indexed: 12/18/2024]
Abstract
Hepatic arterial infusion chemotherapy (HAIC) has emerged as a promising treatment strategy for hepatocellular carcinoma (HCC), but a detailed understanding of the multicellular ecosystem after HAIC treatment is lacking. Here, we collected tumor samples from treatment-naïve primary and post-HAIC HCC, and integrated single-nucleus RNA sequencing with spatial transcriptomics to characterize the tumor ecosystem in the post-HAIC HCC. Increased fractions and enhanced cellular communication of CD4+ T, CD20+ B, and dendritic cell subtypes were identified in post-HAIC tumors. Moreover, it is substantiated that HAIC promoted tertiary lymphoid structures (TLS) formation, and addressed the roles of TLSs as spatial niches of cellular communication. Specifically, intermediate exhausted CD8+ T cells expressing Granzyme-K and PD-1 (PD-1+CD8+ Tex-int) expanded following HAIC and exhibited a functionally antitumor phenotype. PD-1+CD8+ Tex-int accumulated in the TLS vicinity and disseminated throughout the tumor microenvironment, demonstrating potential as an effective biomarker for HAIC-based treatment in HCC. This study provides valuable resources and biological insights in the cellular underpinnings of HAIC treatment.
Collapse
Affiliation(s)
- YeXing Huang
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - ZeFeng Du
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - ZhiCheng Lai
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - DongSheng Wen
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - LiChang Huang
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - MinKe He
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - ZiChao Wu
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - HuiFang Li
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - HanYue OuYang
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - WenChao Wu
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - Anna Kan
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - Ming Shi
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| |
Collapse
|
2
|
Di Donato M, Cristiani CM, Capone M, Garofalo C, Madonna G, Passacatini LC, Ottaviano M, Ascierto PA, Auricchio F, Carbone E, Migliaccio A, Castoria G. Role of the androgen receptor in melanoma aggressiveness. Cell Death Dis 2025; 16:34. [PMID: 39837817 PMCID: PMC11751086 DOI: 10.1038/s41419-025-07350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Malignant melanoma represents the fifth most common cancer in the world and its incidence is rising. Novel therapies targeting receptor tyrosine kinases, kinases and immune checkpoints have been employed with a significant improvement of the overall survival and long-term disease containment. Nevertheless, the disease often progresses and becomes resistant to the therapies. As such, the discovery of new targets and drugs for advanced melanoma still remains a difficult task. Gender disparities, with a female advantage in melanoma incidence and outcome, have been reported. Although emerging studies support the pro-tumorigenic role of androgen/androgen receptor axis in melanoma, the molecular bases of such evidence are still under intense investigation. We now report that ligand activation of the androgen receptor drives melanoma invasiveness and its escape from natural killer-mediated cytotoxic effect. By combining different experimental approaches, we observe that melanoma escape is mediated by the androgen-triggered shedding of the surface molecule MICA. Specific blockade of ADAM10 or androgen receptor impairs the androgen-induced MICA shedding and melanoma immune-escape. Further, the increase in MICA serum levels correlates with a poor outcome in melanoma patients treated with the anti-PD-1 monoclonal antibody, pembrolizumab. At last, melanoma cells depleted of the androgen receptor become more responsive to the most commonly used immunocheckpoint inhibitors, suggesting that the receptor dampens the immunotherapy efficacy. Taken together, our findings identify the androgen receptor as a diagnostic guidance in melanoma and support the repositioning of AR blockers in clinical management of patients.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences - 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Mariaelena Capone
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Gabriele Madonna
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | | | - Margaret Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Ferdinando Auricchio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Ennio Carbone
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
3
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed 2024; 6:1509924. [PMID: 39726634 PMCID: PMC11669675 DOI: 10.3389/fgeed.2024.1509924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine. Moreover, the current status of CRISPR therapeutics in clinical trials is discussed. Finally, we address the persisting challenges and prospects of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Rahin Shareef Hamad
- Nursing Department, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahra Kakamin Hamad
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Jeong I, Park S, Park J, Kim OK. Adipose tissue-derived extracellular vesicles from obese mice suppressed splenocyte-mediated pancreatic cancer cell death. Food Nutr Res 2024; 68:10545. [PMID: 39376903 PMCID: PMC11457911 DOI: 10.29219/fnr.v68.10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/09/2024] Open
Abstract
Background Obesity is a risk factor for pancreatic cancer and negatively contributes to the immune system. However, the mechanisms by which obesity mediates these actions are still poorly understood. Recent studies have demonstrated that extracellular vesicles (EVs) are key mediators of communication between cells and may influence various aspects of cancer progression. Objectives We aim to explore the influence of EVs derived from adipose tissue of obese mice on cytokine production within the interactions between cancer cells and immune cells. Design We isolated EVs from the adipose tissue of both C57BL6/J mice and Ob/Ob mice. Subsequently, we treated EVs with Panc02 cells, the murine ductal pancreatic cancer cell line, which were co-cultured with splenocytes. Viability and SMAD4 gene expression were examined in Panc02 cells, and cytokine concentrations of IL-6, IL-4, IL-12, and IL-12p70 were measured in the cultured medium. Results Interestingly, we observed a significant reduction in splenocyte-mediated Panc02 cell death when treated with EVs derived from the adipose tissue of Ob/Ob mice, compared to those from C57BL6/J mice. Additionally, EVs from Ob/Ob mice-derived adipose tissue significantly increased the levels of IL-4, IL-2, and IL-12p70 in the culture media of Panc02 cells co-cultured with splenocytes, compared to EVs from C57BL6/J mice-derived adipose tissue. Conclusion Adipose tissue-derived EVs from obese mice suppressed splenocyte-mediated Panc02 cell death and upregulated IL-4, IL-2, and IL-12p70 in cultured medium.
Collapse
Affiliation(s)
| | | | - Jinbum Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Maity D, Sivakumar N, Kamat P, Zamponi N, Min C, Du W, Jayatilaka H, Johnston A, Starich B, Agrawal A, Riley D, Venturutti L, Melnick A, Cerchietti L, Walston J, Phillip JM. Profiling Dynamic Patterns of Single-Cell Motility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400918. [PMID: 39136147 PMCID: PMC11481225 DOI: 10.1002/advs.202400918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/21/2024] [Indexed: 10/17/2024]
Abstract
Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations.
Collapse
Affiliation(s)
- Debonil Maity
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
| | - Nikita Sivakumar
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
| | - Pratik Kamat
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
| | - Nahuel Zamponi
- Department of MedicineDivision of Hematology and Medical OncologyWeill Cornell MedicineNew York10065USA
| | - Chanhong Min
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
| | - Wenxuan Du
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
| | - Hasini Jayatilaka
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
| | - Adrian Johnston
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
| | - Bartholomew Starich
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
| | - Anshika Agrawal
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
| | - Deanna Riley
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
| | - Leandro Venturutti
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaCentre for Lymphoid CancerBritish Columbia Cancer Research Institute VancouverBritish ColumbiaV6T 1Z4Canada
| | - Ari Melnick
- Department of MedicineDivision of Hematology and Medical OncologyWeill Cornell MedicineNew York10065USA
| | - Leandro Cerchietti
- Department of MedicineDivision of Hematology and Medical OncologyWeill Cornell MedicineNew York10065USA
| | - Jeremy Walston
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
- Department of MedicineGeriatrics and GerontologyJohns Hopkins School of MedicineBaltimoreMD21224USA
| | - Jude M. Phillip
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21212USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21212USA
- Department of OncologySidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMD21287USA
| |
Collapse
|
7
|
Cheng X, Cao Y, Liu X, Li Y, Li Q, Gao D, Yu Q. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med 2024; 14:e70036. [PMID: 39350478 PMCID: PMC11442492 DOI: 10.1002/ctm2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuke Cao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiangyi Liu
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuanheng Li
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Li
- Department of Oncologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Dian Gao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
8
|
Tachachartvanich P, Sangsuwan R, Navasumrit P, Ruchirawat M. Assessment of immunomodulatory effects of five commonly used parabens on human THP-1 derived macrophages: Implications for ecological and human health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173823. [PMID: 38851341 DOI: 10.1016/j.scitotenv.2024.173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Parabens are widely used as broad-spectrum anti-microbials and preservatives in food, cosmetics, pharmaceuticals, and personal care products. Studies suggest that the utilization of parabens has substantially increased over the past years, particularly during the global pandemic of coronavirus disease 2019 (COVID-19). Although parabens are generally recognized as safe by the U.S. FDA, some concerns have been raised regarding the potential health effects of parabens associated with immunotoxicity. Herein, we comprehensively investigated several key characteristics of immunotoxicants of five commonly used parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl parabens) in human THP-1 derived macrophages, which are effector cells serving as a first line of host defense against pathogens and tumor immunosurveillance. The results indicate parabens, at concentrations found in humans and biota, significantly dampened macrophage chemotaxis and secretion of major pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10), corroborating the mRNA expression profile. Furthermore, some parabens were found to markedly alter macrophage adhesion and cell surface expression of costimulatory molecules, CD80+ and CD86+, and significantly increase macrophage phagocytosis. Collectively, these findings heighten awareness of potential immunotoxicity posed by paraben exposure at biologically relevant concentrations, providing implications for human health and ecological risks associated with immune dysfunctions.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Rapeepat Sangsuwan
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
9
|
Du W, Zhou B, Forjaz A, Shin SM, Wu F, Crawford AJ, Nair PR, Johnston AC, West-Foyle H, Tang A, Kim D, Fan R, Kiemen AL, Wu PH, Phillip JM, Ho WJ, Sanin DE, Wirtz D. High-motility pro-tumorigenic monocytes drive macrophage enrichment in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603739. [PMID: 39071324 PMCID: PMC11275814 DOI: 10.1101/2024.07.16.603739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enrichment of tumor-associated macrophages (TAMΦs) in the tumor microenvironment correlates with worse clinical outcomes in triple-negative breast cancer (TNBC) patients, prompting the development of therapies to inhibit TAMΦ infiltration. However, the lackluster efficacy of CCL2-based chemotaxis blockade in clinical trials suggests that a new understanding of monocyte/macrophage infiltration may be necessary. Here we demonstrate that random migration, and not only chemotaxis, drives macrophage tumor infiltration. We identified tumor- associated monocytes (TAMos) that display a dramatically enhanced migration capability, induced rapidly by the tumor microenvironment, that drives effective tumor infiltration, in contrast to low-motility differentiated macrophages. TAMo, not TAMΦ, promotes cancer cell proliferation through activation of the MAPK pathway. IL-6 secreted both by cancer cells and TAMo themselves enhances TAMo migration by increasing dendritic protrusion dynamics and myosin- based contractility via the JAK2/STAT3 signaling pathway. Independent from CCL2 mediated chemotaxis, IL-6 driven enhanced migration and pro-proliferative effect of TAMo were validated in a syngeneic TNBC mouse model. Depletion of IL-6 in cancer cells significantly attenuated monocyte infiltration and reversed TAMo-induced cancer cell proliferation. This work reveals the critical role random migration plays in monocyte driven TAMΦ enrichment in a tumor and pinpoints IL-6 as a potential therapeutic target in combination with CCL2 to ameliorate current strategies against TAMΦ infiltration.
Collapse
|
10
|
Zhu Y, Xiang M, Brulois KF, Lazarus NH, Pan J, Butcher EC. Endothelial cell Notch signaling programs cancer-associated fibroblasts to promote tumor immune evasion. RESEARCH SQUARE 2024:rs.3.rs-4538031. [PMID: 38947054 PMCID: PMC11213189 DOI: 10.21203/rs.3.rs-4538031/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Stromal cells within the tumor tissue promote immune evasion as a critical strategy for cancer development and progression, but the underlying mechanisms remain poorly understood. In this study, we explore the role of endothelial cells (ECs) in the regulation of the immunosuppressive tumor microenvironment. Using mouse pancreatic ductal adenocarcinoma (PDAC) models, we found that canonical Notch signaling in endothelial cells suppresses the recruitment of antitumor T cells and promotes tumor progression by inhibiting the pro-inflammatory functions of cancer-associated fibroblasts (CAFs). Abrogation of endothelial Notch signaling modulates EC-derived angiocrine factors to enhance the pro-inflammatory activities of CAFs, which drive CXCL9/10-CXCR3-mediated T cell recruitment to inhibit tumor growth. Additionally, abrogation of endothelial Notch unleashed interferon gamma responses in the tumor microenvironment, upregulated PDL1 expression on tumor cells, and sensitized PDAC to PD1-based immunotherapy. Collectively, these data uncover a pivotal role of endothelial cells in shaping the immunosuppressive microenvironment, and suggest the potential of targeting EC-CAF interaction as a novel therapeutic modality to boost antitumor immunity.
Collapse
Affiliation(s)
- Yu Zhu
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Kevin F. Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicole H. Lazarus
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Junliang Pan
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Eugene C. Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
11
|
Charan M, Jones TH, Ahirwar DK, Acharya N, Subramaniam VV, Ganju RK, Song JW. Induced electric fields inhibit breast cancer growth and metastasis by modulating the immune tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589256. [PMID: 38659909 PMCID: PMC11042207 DOI: 10.1101/2024.04.14.589256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite tremendous advances in oncology, metastatic triple-negative breast cancer remains difficult to treat and manage with established therapies. Here, we show in mice with orthotopic triple-negative breast tumors that alternating (100 kHz), and low intensity (<1 mV/cm) induced electric fields (iEFs) significantly reduced primary tumor growth and distant lung metastases. Non-contact iEF treatment can be delivered safely and non-invasively in vivo via a hollow, rectangular solenoid coil. We discovered that iEF treatment enhances anti-tumor immune responses at both the primary breast and secondary lung sites. In addition, iEF reduces immunosuppressive TME by reducing effector CD8+ T cell exhaustion and the infiltration of immunosuppressive immune cells. Furthermore, iEF treatment reduced lung metastasis by increasing CD8+ T cells and reducing immunosuppressive Gr1+ neutrophils in the lung microenvironment. We also observed that iEFs reduced the metastatic potential of cancer cells by inhibiting epithelial-to-mesenchymal transition. By introducing a non-invasive and non-toxic electrotherapeutic for inhibiting metastatic outgrowth and enhancing anti-tumor immune response in vivo, treatment with iEF technology could add to a paradigm-shifting strategy for cancer therapy.
Collapse
|
12
|
Sneider A, Liu Y, Starich B, Du W, Marar C, Faqih N, Ciotti GE, Kim JH, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl M, Vij R, Russo GC, Nair P, Gómez-de-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TSK, Wirtz D. Small extracellular vesicles promote stiffness-mediated metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.01.545937. [PMID: 37425743 PMCID: PMC10327142 DOI: 10.1101/2023.07.01.545937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissue stiffness is a critical prognostic factor in breast cancer and is associated with metastatic progression. Here we show an alternative and complementary hypothesis of tumor progression whereby physiological matrix stiffness affects the quantity and protein cargo of small EVs produced by cancer cells, which in turn drive their metastasis. Primary patient breast tissue produces significantly more EVs from stiff tumor tissue than soft tumor adjacent tissue. EVs released by cancer cells on matrices that model human breast tumors (25 kPa; stiff EVs) feature increased adhesion molecule presentation (ITGα 2 β 1 , ITGα 6 β 4 , ITGα 6 β 1 , CD44) compared to EVs from softer normal tissue (0.5 kPa; soft EVs), which facilitates their binding to extracellular matrix (ECM) protein collagen IV, and a 3-fold increase in homing ability to distant organs in mice. In a zebrafish xenograft model, stiff EVs aid cancer cell dissemination through enhanced chemotaxis. Moreover, normal, resident lung fibroblasts treated with stiff and soft EVs change their gene expression profiles to adopt a cancer associated fibroblast (CAF) phenotype. These findings show that EV quantity, cargo, and function depend heavily on the mechanical properties of the extracellular microenvironment.
Collapse
|
13
|
Johnston AC, Alicea GM, Lee CC, Patel PV, Hanna EA, Vaz E, Forjaz A, Wan Z, Nair PR, Lim Y, Chen T, Du W, Kim D, Nichakawade TD, Rebecca VW, Bonifant CL, Fan R, Kiemen AL, Wu PH, Wirtz D. Engineering self-propelled tumor-infiltrating CAR T cells using synthetic velocity receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571595. [PMID: 38168186 PMCID: PMC10760159 DOI: 10.1101/2023.12.13.571595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR) T cells express antigen-specific synthetic receptors, which upon binding to cancer cells, elicit T cell anti-tumor responses. CAR T cell therapy has enjoyed success in the clinic for hematological cancer indications, giving rise to decade-long remissions in some cases. However, CAR T therapy for patients with solid tumors has not seen similar success. Solid tumors constitute 90% of adult human cancers, representing an enormous unmet clinical need. Current approaches do not solve the central problem of limited ability of therapeutic cells to migrate through the stromal matrix. We discover that T cells at low and high density display low- and high-migration phenotypes, respectively. The highly migratory phenotype is mediated by a paracrine pathway from a group of self-produced cytokines that include IL5, TNFα, IFNγ, and IL8. We exploit this finding to "lock-in" a highly migratory phenotype by developing and expressing receptors, which we call velocity receptors (VRs). VRs target these cytokines and signal through these cytokines' cognate receptors to increase T cell motility and infiltrate lung, ovarian, and pancreatic tumors in large numbers and at doses for which control CAR T cells remain confined to the tumor periphery. In contrast to CAR therapy alone, VR-CAR T cells significantly attenuate tumor growth and extend overall survival. This work suggests that approaches to the design of immune cell receptors that focus on migration signaling will help current and future CAR cellular therapies to infiltrate deep into solid tumors.
Collapse
Affiliation(s)
- Adrian C Johnston
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | | | - Cameron C Lee
- Department of Biomedical Engineering, Johns Hopkins University
| | - Payal V Patel
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eban A Hanna
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eduarda Vaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Zeqi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Praful R Nair
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Yeongseo Lim
- Department of Biomedical Engineering, Johns Hopkins University
| | - Tina Chen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Wenxuan Du
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University
| | - Tushar D Nichakawade
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Challice L Bonifant
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Rong Fan
- Department of Biomedical Engineering, Yale University
| | - Ashley L Kiemen
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Denis Wirtz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| |
Collapse
|
14
|
Zaer M, Moeinzadeh A, Abolhassani H, Rostami N, Tavakkoli Yaraki M, Seyedi SA, Nabipoorashrafi SA, Bashiri Z, Moeinabadi-Bidgoli K, Moradbeygi F, Farmani AR, Hossein-Khannazer N. Doxorubicin-loaded Niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: A 3D printing approach. Int J Biol Macromol 2023; 253:126808. [PMID: 37689301 DOI: 10.1016/j.ijbiomac.2023.126808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Despite many efforts, breast cancer remains one of the deadliest cancers and its treatment faces challenges related to cancer drug side effects and metastasis. Combining 3D printing and nanocarriers has created new opportunities in cancer treatment. In this work, 3D-printed gelatin-alginate nanocomposites containing doxorubicin-loaded niosomes (Nio-DOX@GT-AL) were recruited as an advanced potential pH-sensitive drug delivery system. Morphology, degradation, drug release, flow cytometry, cell cytotoxicity, cell migration, caspase activity, and gene expression of nanocomposites and controls (Nio-DOX and Free-DOX) were evaluated. Results show that the obtained niosome has a spherical shape and size of 60-80 nm. Sustained drug release and biodegradability were presented by Nio-DOX@GT-AL and Nio-DOX. Cytotoxicity analysis revealed that the engineered Nio-DOX@GT-AL scaffold had 90 % cytotoxicity against breast cancer cells (MCF-7), whereas exhibited <5 % cytotoxicity against the non-tumor breast cell line (MCF-10A), which was significantly more than the antitumor effect of the control samples. Scratch-assay as an indicator cell migration demonstrated a reduction of almost 60 % of the covered surface. Gene expression could provide an explanation for the antitumor effect of engineered nanocarriers, which significantly reduced metastasis-promoting genes (Bcl2, MMP-2, and MMP-9), and significantly enhanced the expression and activity of genes that promote apoptosis (CASP-3, CASP-8, and CASP-9). Also, considerable inhibition of metastasis-associated genes (Bax and p53) was observed. Moreover, flow-cytometry data demonstrated that Nio-DOX@GT-AL decreased necrosis and enhanced apoptosis drastically. The findings of this research can confirm that employing 3D-printing and niosomal formulation can be an effective strategy in designing novel nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Neda Rostami
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Sidiropoulos DN, Ho WJ, Jaffee EM, Kagohara LT, Fertig EJ. Systems immunology spanning tumors, lymph nodes, and periphery. CELL REPORTS METHODS 2023; 3:100670. [PMID: 38086385 PMCID: PMC10753389 DOI: 10.1016/j.crmeth.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
The immune system defines a complex network of tissues and cell types that orchestrate responses across the body in a dynamic manner. The local and systemic interactions between immune and cancer cells contribute to disease progression. Lymphocytes are activated in lymph nodes, traffic through the periphery, and impact cancer progression through their interactions with tumor cells. As a result, therapeutic response and resistance are mediated across tissues, and a comprehensive understanding of lymphocyte dynamics requires a systems-level approach. In this review, we highlight experimental and computational methods that can leverage the study of leukocyte trafficking through an immunomics lens and reveal how adaptive immunity shapes cancer.
Collapse
Affiliation(s)
- Dimitrios N Sidiropoulos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Won Jin Ho
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Luciane T Kagohara
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA.
| | - Elana J Fertig
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Wirtz D, Du W, Zhu J, Wu Y, Kiemen A, Wan Z, Hanna E, Sun S. Mechano-induced homotypic patterned domain formation by monocytes. RESEARCH SQUARE 2023:rs.3.rs-3372987. [PMID: 37790337 PMCID: PMC10543314 DOI: 10.21203/rs.3.rs-3372987/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Matrix stiffness and corresponding mechano-signaling play indispensable roles in cellular phenotypes and functions. How tissue stiffness influences the behavior of monocytes, a major circulating leukocyte of the innate system, and how it may promote the emergence of collective cell behavior is less understood. Here, using tunable collagen-coated hydrogels of physiological stiffness, we show that human primary monocytes undergo a dynamic local phase separation to form highly regular, reversible, multicellular, multi-layered domains on soft matrix. Local activation of the β2 integrin initiates inter-cellular adhesion, while global soluble inhibitory factors maintain the steady state domain pattern over days. Patterned domain formation generated by monocytes is unique among other key immune cells, including macrophages, B cells, T cells, and NK cells. While inhibiting their phagocytic capability, domain formation promotes monocytes' survival. We develop a computational model based on the Cahn-Hilliard equation of phase separation, combined with a Turing mechanism of local activation and global inhibition suggested by our experiments, and provides experimentally validated predictions of the role of seeding density and both chemotactic and random cell migration on domain pattern formation. This work reveals that, unlike active matters, cells can generate complex cell phases by exploiting their mechanosensing abilities and combined short-range interactions and long-range signals to enhance their survival.
Collapse
|
17
|
Du W, Zhu J, Wu Y, Kiemen AL, Sun SX, Wirtz D. Mechano-induced homotypic patterned domain formation by monocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550819. [PMID: 37546904 PMCID: PMC10402173 DOI: 10.1101/2023.07.27.550819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Matrix stiffness and corresponding mechano-signaling play indispensable roles in cellular phenotypes and functions. How tissue stiffness influences the behavior of monocytes, a major circulating leukocyte of the innate system, and how it may promote the emergence of collective cell behavior is less understood. Here, using tunable collagen-coated hydrogels of physiological stiffness, we show that human primary monocytes undergo a dynamic local phase separation to form highly patterned multicellular multi-layered domains on soft matrix. Local activation of the β2 integrin initiates inter-cellular adhesion, while global soluble inhibitory factors maintain the steady-state domain pattern over days. Patterned domain formation generated by monocytes is unique among other key immune cells, including macrophages, B cells, T cells, and NK cells. While inhibiting their phagocytic capability, domain formation promotes monocytes' survival. We develop a computational model based on the Cahn-Hilliard equation, which includes combined local activation and global inhibition mechanisms of intercellular adhesion suggested by our experiments, and provides experimentally validated predictions of the role of seeding density and both chemotactic and random cell migration on pattern formation.
Collapse
|
18
|
CEACAM1 Is a Prognostic Biomarker and Correlated with Immune Cell Infiltration in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2023; 2023:3606362. [PMID: 36712923 PMCID: PMC9876685 DOI: 10.1155/2023/3606362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Background CEACAM1 has been shown to be aberrantly expressed in a variety of tumors, and modulation of CEACAM1-related signaling pathways has been suggested as a novel approach for cancer immunotherapy in recent years. However, its role in clear cell renal cell carcinoma (ccRCC) is unclear. Methods The relationship between CEACAM1 and ccRCC was demonstrated based on data from TCGA, GEO, and HPA databases. And the relationship between clinicopathological features and CEACAM1 expression was also assessed. Survival curve analysis was performed to analyze the prognostic relationship between CEACAM1 expression and ccRCC. Protein interaction network analysis was used to analyze the relationship between CEACAM1 and microenvironment-related proteins. In addition, the immunomodulatory role of CEACAM1 in ccRCC was assessed by analyzing CEACAM1 and immune cell infiltration. Results The expression of CEACAM1 was lower in ccRCC tissues than in adjacent normal tissues, and its expression level was negatively correlated with tumor size status (P < 0.001), metastasis status (P = 0.009), pathological stage (P = 0.002), gender (P < 0.001), histological grade (P < 0.001), and primary therapy outcome (P = 0.045) of ccRCC. Survival curve analysis showed that ccRCC patients with lower CEACAM1 expression exhibited shorter overall survival (P < 0.001), and CEACAM1 interacted with microenvironmental molecules such as fibronectin and integrins. Furthermore, immune infiltration analysis showed that CEACAM1 expression correlated with CD8+ and CD4+ T cells, macrophage, neutrophil, and dendritic cell infiltration in ccRCC. Conclusions CEACAM1 expression correlates with progression, prognosis, and immune cell infiltration in ccRCC patients, and it may be a promising prognostic biomarker and therapeutic target for ccRCC.
Collapse
|