1
|
Chan JM, Kordon AC, Wang M. Investigating the effects of the local environment on bottlebrush conformations using super-resolution microscopy. NANOSCALE 2024; 16:2409-2418. [PMID: 38230506 DOI: 10.1039/d3nr05000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The single-chain physics of bottlebrush polymers plays a key role in their macroscopic properties. Although efforts have been made to understand the behavior of single isolated bottlebrushes, studies on their behavior in crowded, application-relevant environments have been insufficient due to limitations in characterization techniques. Here, we use single-molecule localization microscopy (SMLM) to study the conformations of individual bottlebrush polymers by direct imaging. Our previous work focused on bottlebrushes in a matrix of linear polymers, where our observations suggested that their behavior was largely influenced by an entropic incompatibility between the bottlebrush side chains and the linear matrix. Instead, here we focus on systems where this effect is reduced: in solvent-swollen polymer materials and in systems entirely composed of bottlebrushes. We measure chain conformations and rigidity using persistence length (lp) as side chain molecular weight (Msc) is varied. Compared to a system of linear polymers, we observe greater flexibility of the backbone in both systems. For bottlebrushes in bottlebrush matrices, we additionally observed a scaling relationship between lp and Msc that more closely follows theoretical predictions. For the more flexible chains in both systems, we reach the edge of our resolution limit and cannot visualize the entire contour of every chain. We bypass this limitation by discussing the aspect ratios of the features within the super-resolution images.
Collapse
Affiliation(s)
- Jonathan M Chan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Avram C Kordon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
2
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Landfield H, Wang M. Determination of Hydrophobic Polymer Clustering in Concentrated Aqueous Solutions through Single-Particle Tracking Diffusion Studies. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harrison Landfield
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Chan JM, Wang M. Visualizing the Orientation of Single Polymers Induced by Spin-Coating. NANO LETTERS 2022; 22:5891-5897. [PMID: 35786930 DOI: 10.1021/acs.nanolett.2c01830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The orientation of chains within polymeric materials influences their electrical, mechanical, and thermal properties. While many techniques can infer the orientation distribution of a bulk ensemble, it is challenging to determine this information at the single-chain level, particularly in an environment of otherwise identical polymers. Here, we use single-molecule localization microscopy (SMLM) to visualize the directions of chains within spin-coated polymer films. We find a strong relationship between shear force and the degree and direction of orientation, and additionally, we reveal the effects of chain length and solvent evaporation rate. This work utilizes single-chain resolution to observe the important, though often overlooked, property of chain orientation in the common fabrication process of spin-coating.
Collapse
Affiliation(s)
- Jonathan M Chan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Manattayil JK, A S LK, Biswas R, Kim H, Raghunathan V. Focus-engineered sub-diffraction imaging in infrared-sensitive third-order sum frequency generation microscope. OPTICS EXPRESS 2022; 30:25612-25626. [PMID: 36237087 DOI: 10.1364/oe.459620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
We experimentally demonstrate sub-diffraction imaging in infrared-sensitive third-order sum frequency generation (TSFG) microscope using focal-field engineering technique. The TSFG interaction studied here makes use of two mid infrared photons and a single 1040 nm pump photon to generate up-converted visible photons. Focal field engineering scheme is implemented using a Toraldo-style single annular phase mask imprinted on the 1040 nm beam using a spatial light modulator. The effect of focal field engineered excitation beam on the non-resonant-TSFG process is studied by imaging isolated silicon sub-micron disks and periodic grating structures. Maximum reduction in the measured TSFG central-lobe size by ∼43% with energy in the central lobe of 35% is observed in the presence of phase mask. Maximum contrast improvement of 30% is observed for periodic grating structures. Furthermore, to validate the infrared sensitivity of the focus engineered TSFG microscope, we demonstrate imaging of amorphous Germanium-based guided-mode resonance structures, and polystyrene latex beads probed near the O-H vibrational region. We also demonstrate the utility of the focus engineered TSFG microscope for high resolution imaging of two-dimensional layered material. Focus-engineered TSFG process is a promising imaging modality that combines infrared selectivity with improved resolution and contrast, making it suitable for nanostructure and surface layer imaging.
Collapse
|
6
|
Chan JM, Kordon AC, Zhang R, Wang M. Direct visualization of bottlebrush polymer conformations in the solid state. Proc Natl Acad Sci U S A 2021; 118:e2109534118. [PMID: 34599105 PMCID: PMC8501853 DOI: 10.1073/pnas.2109534118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although the behavior of single chains is integral to the foundation of polymer science, a clear and convincing image of single chains in the solid state has still not been captured. For bottlebrush polymers, understanding their conformation in bulk materials is especially important because their extended backbones may explain their self-assembly and mechanical properties that have been attractive for many applications. Here, single-bottlebrush chains are visualized using single-molecule localization microscopy to study their conformations in a polymer melt composed of linear polymers. By observing bottlebrush polymers with different side chain lengths and grafting densities, we observe the relationship between molecular architecture and conformation. We show that bottlebrushes are significantly more rigid in the solid state than previously measured in solution, and the scaling relationships between persistence length and side chain length deviate from those predicted by theory and simulation. We discuss these discrepancies using mechanisms inspired by polymer-grafted nanoparticles, a conceptually similar system. Our work provides a platform for visualizing single-polymer chains in an environment made up entirely of other polymers, which could answer a number of open questions in polymer science.
Collapse
Affiliation(s)
- Jonathan M Chan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Avram C Kordon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Ruimeng Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| |
Collapse
|
7
|
Ma L, Geng J, Kolossov VL, Han Z, Pei Y, Lim SJ, Kilian KA, Smith AM. Antibody Self-Assembly Maximizes Cytoplasmic Immunostaining Accuracy of Compact Quantum Dots. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:4877-4889. [PMID: 35221487 PMCID: PMC8880911 DOI: 10.1021/acs.chemmater.1c00164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antibody conjugates of quantum dots (QDs) are expected to transform immunofluorescence staining by expanding multiplexed analysis and improving target quantification. Recently, a new generation of small QDs coated with multidentate polymers has improved QD labeling density in diverse biospecimens, but new challenges prevent their routine use. In particular, these QDs exhibit nonspecific binding to fixed cell nuclei and their antibody conjugates have random attachment orientations. This report describes four high-efficiency chemical approaches to conjugate antibodies to compact QDs. Methods include click chemistry and self-assembly through polyhistidine coordination, both with and without adaptor proteins that directionally orient antibodies. Specific and nonspecific labeling are independently analyzed after application of diverse blocking agent classes, and a new assay is developed to quantitatively measure intracellular labeling density based on microtubule stain connectivity. Results show that protein conjugation to the QD surface is required to simultaneously eliminate nonspecific binding and maintain antigen specificity. Of the four conjugation schemes, polyhistidine-based coordination of adaptor proteins with antibody self-assembly yields the highest intracellular staining density and the simplest conjugation procedure. Therefore, antibody and adaptor protein orientation, in addition to blocking optimization, are important determinants of labeling outcomes, insights that can inform translational development of these more compact nanomaterials.
Collapse
Affiliation(s)
- Liang Ma
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junlong Geng
- Department of Bioengineering, Carl R. Woese Institute for Genomic Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vladimir L Kolossov
- Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhiyuan Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Pei
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sung Jun Lim
- Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Division of Nanotechnology, Dalseong-Gun 42988, Republic of Korea
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; School of Materials Science and Engineering and School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew M Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, Department of Bioengineering, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Maier J, Weller T, Thelakkat M, Köhler J. Long-term switching of single photochromic triads based on dithienylcyclopentene and fluorophores at cryogenic temperatures. J Chem Phys 2021; 155:014901. [PMID: 34241405 DOI: 10.1063/5.0056815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photochromic molecules can be reversibly converted between two bistable forms by light. These systems have been intensively studied for applications as molecular memories, sensing devices, or super-resolution optical microscopy. Here, we study the long-term switching behavior of single photochromic triads under oxygen-free conditions at 10 K. The triads consist of a photochromic unit that is covalently linked to two strong fluorophores that were employed for monitoring the light-induced conversions of the switch via changes in the fluorescence intensity from the fluorophores. As dyes we use either perylene bisimide or boron-dipyrromethen, and as photochromic switch we use dithienylcyclopentene (DCP). Both types of triads showed high fatigue resistance allowing for up to 6000 switching cycles of a single triad corresponding to time durations in the order of 80 min without deterioration. Long-term analysis of the switching cycles reveals that the probability that an intensity change in the emission from the dyes can be assigned to an externally stimulated conversion of the DCP (rather than to stochastic blinking of the dye molecules) amounts to 0.7 ± 0.1 for both types of triads. This number is far too low for optical data storage using single triads and implications concerning the miniaturization of optical memories based on such systems will be discussed. Yet, together with the high fatigue resistance, this number is encouraging for applications in super-resolution optical microscopy on frozen biological samples.
Collapse
Affiliation(s)
- Johannes Maier
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Tina Weller
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Paasila PJ, Fok SYY, Flores‐Rodriguez N, Sajjan S, Svahn AJ, Dennis CV, Holsinger RMD, Kril JJ, Becker TS, Banati RB, Sutherland GT, Graeber MB. Ground state depletion microscopy as a tool for studying microglia-synapse interactions. J Neurosci Res 2021; 99:1515-1532. [PMID: 33682204 PMCID: PMC8251743 DOI: 10.1002/jnr.24819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 01/09/2023]
Abstract
Ground state depletion followed by individual molecule return microscopy (GSDIM) has been used in the past to study the nanoscale distribution of protein co-localization in living cells. We now demonstrate the successful application of GSDIM to archival human brain tissue sections including from Alzheimer's disease cases as well as experimental tissue samples from mouse and zebrafish larvae. Presynaptic terminals and microglia and their cell processes were visualized at a resolution beyond diffraction-limited light microscopy, allowing clearer insights into their interactions in situ. The procedure described here offers time and cost savings compared to electron microscopy and opens the spectrum of molecular imaging using antibodies and super-resolution microscopy to the analysis of routine formalin-fixed paraffin sections of archival human brain. The investigation of microglia-synapse interactions in dementia will be of special interest in this context.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Sandra Y. Y. Fok
- Biomedical Imaging FacilityMark Wainwright Analytical CentreUniversity of New South Wales SydneyKensingtonNSWAustralia
| | - Neftali Flores‐Rodriguez
- Charles Perkins CentreSydney Microscopy and MicroanalysisThe University of SydneyCamperdownNSWAustralia
| | - Sujata Sajjan
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Adam J. Svahn
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Claude V. Dennis
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - R. M. Damian Holsinger
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Jillian J. Kril
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Thomas S. Becker
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Richard B. Banati
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
- Life SciencesAustralian Nuclear Science and Technology OrganisationKirraweeNSWAustralia
| | - Greg T. Sutherland
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Manuel B. Graeber
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
10
|
Improved resolution in single-molecule localization microscopy using QD-PAINT. Exp Mol Med 2021; 53:384-392. [PMID: 33654221 PMCID: PMC8080769 DOI: 10.1038/s12276-021-00572-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 01/31/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) has allowed the observation of various molecular structures in cells beyond the diffraction limit using organic dyes. In principle, the SMLM resolution depends on the precision of photoswitching fluorophore localization, which is inversely correlated with the square root of the number of photons released from the individual fluorophores. Thus, increasing the photon number by using highly bright fluorophores, such as quantum dots (QDs), can theoretically fundamentally overcome the current resolution limit of SMLM. However, the use of QDs in SMLM has been challenging because QDs have no photoswitching property, which is essential for SMLM, and they exhibit nonspecificity and multivalency, which complicate their use in fluorescence imaging. Here, we present a method to utilize QDs in SMLM to surpass the resolution limit of the current SMLM utilizing organic dyes. We confer monovalency, specificity, and photoswitchability on QDs by steric exclusion via passivation and ligand exchange with ptDNA, PEG, and casein as well as by DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) via automatic thermally driven hybridization between target-bound docking and dye-bound complementary imager strands. QDs are made monovalent and photoswitchable to enable SMLM and show substantially better photophysical properties than Cy3, with higher fluorescence intensity and an improved resolution factor. QD-PAINT displays improved spatial resolution with a narrower full width at half maximum (FWHM) than DNA-PAINT with Cy3. In summary, QD-PAINT shows great promise as a next-generation SMLM method for overcoming the limited resolution of the current SMLM.
Collapse
|
11
|
Lee C, Xu EZ, Liu Y, Teitelboim A, Yao K, Fernandez-Bravo A, Kotulska AM, Nam SH, Suh YD, Bednarkiewicz A, Cohen BE, Chan EM, Schuck PJ. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 2021; 589:230-235. [PMID: 33442042 DOI: 10.1038/s41586-020-03092-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials1. Photon avalanching enables technologies such as optical phase-conjugate imaging2, infrared quantum counting3 and efficient upconverted lasing4-6. However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates6,7, limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures-small, Tm3+-doped upconverting nanocrystals-and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging7 with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods8-10, ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging7,11,12 and optical and environmental sensing13-15.
Collapse
Affiliation(s)
- Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emma Z Xu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yawei Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kaiyuan Yao
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Angel Fernandez-Bravo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.,Centre of Biophotonics, University of St Andrews, St Andrews, UK
| | - Agata M Kotulska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), DaeJeon, South Korea
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), DaeJeon, South Korea. .,School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, South Korea.
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland.
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Qiang Z, Wang M. 100th Anniversary of Macromolecular Science Viewpoint: Enabling Advances in Fluorescence Microscopy Techniques. ACS Macro Lett 2020; 9:1342-1356. [PMID: 35638626 DOI: 10.1021/acsmacrolett.0c00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past few decades there has been a revolution in the field of optical microscopy with emerging capabilities such as super-resolution and single-molecule fluorescence techniques. Combined with the classical advantages of fluorescence imaging, such as chemical labeling specificity, and noninvasive sample preparation and imaging, these methods have enabled significant advances in our polymer community. This Viewpoint discusses several of these capabilities and how they can uniquely offer information where other characterization techniques are limited. Several examples are highlighted that demonstrate the ability of fluorescence microscopy to understand key questions in polymer science such as single-molecule diffusion and orientation, 3D nanostructural morphology, and interfacial and multicomponent dynamics. Finally, we briefly discuss opportunities for further advances in techniques that may allow them to make an even greater contribution in polymer science.
Collapse
Affiliation(s)
- Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Zhang Y, Raymo FM. Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods Appl Fluoresc 2020; 8:032002. [PMID: 32325443 DOI: 10.1088/2050-6120/ab8c5c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photochemical reactions can be designed to convert either irreversibly or reversibly a nonemissive reactant into an emissive product. The irreversible disconnection of a photocleavable group from an emissive chromophore or the reversible interconversion of a photochromic component is generally exploited to implement these operating principles for fluorescence switching. In both instances, the interplay of activating radiation, to convert the nonemissive state into the emissive species, and exciting radiation, to produce fluorescence from the latter, can be exploited to switch fluorescence on in a given area of interest at a precise interval of time. Such a level of spatiotemporal control provides the opportunity to reconstruct sub-diffraction images with resolution at the nanometer level. Indeed, closely-spaced emitters can be switched on under photochemical control at distinct intervals of time and localized independently at the single-molecule level. In combination with appropriate intracellular targeting strategies, some of these photoactivatable fluorophores can be switched and localized inside live cells to permit the visualization of sub-cellular structures with a spatial resolution that would be impossible to achieve with conventional fluorophores. As a result, photoactivatable fluorophores can become invaluable probes for the implementation of super-resolution imaging schemes aimed at the elucidation of the fundamental factors controlling cellular functions at the molecular level.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, FL, United States of America
| | | |
Collapse
|
14
|
Zhang Y, Raymo FM. Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores. Bioconjug Chem 2020; 31:1052-1062. [PMID: 32150390 DOI: 10.1021/acs.bioconjchem.0c00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
15
|
A method for the reconstruction of multifocal structured illumination microscopy data with high efficiency. Sci Rep 2019; 9:13378. [PMID: 31527605 PMCID: PMC6746813 DOI: 10.1038/s41598-019-49762-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022] Open
Abstract
We present and demonstrate an efficient method for the reconstruction of profiles acquired by multifocal structured illumination microscopy (MSIM) utilizing few raw images. Firstly, we propose a method to produce nine raw multifocal images with enhanced modulation depth to accomplish the uniform illumination of the sample. Then, combing with the parameter of the arrays, we perform the standard construct reconstruction procedure of structured illumination microscopy (SIM) row by row and column by column. Finally, we combine these restored images together to obtain the final image with enhanced resolution and good contrast. Based on theoretical analysis and numerical simulations, this method shows great potential in the field of the image reconstruction of MSIM data.
Collapse
|
16
|
Cheng X, Anthony TP, West CA, Hu Z, Sundaresan V, McLeod AJ, Masiello DJ, Willets KA. Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods. J Phys Chem Lett 2019; 10:1394-1401. [PMID: 30840464 DOI: 10.1021/acs.jpclett.9b00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single-molecule fluorescence microscopy is used to follow dynamic ligand reorganization on the surface of single plasmonic gold nanorods. Fluorescently labeled DNA is attached to gold nanorods via a gold-thiol bond using a low-pH loading method. No fluorescence activity is initially observed from the fluorescent labels on the nanorod surface, which we attribute to a collapsed geometry of DNA on the metal. Upon several minutes of laser illumination, a marked increase in fluorescence activity is observed, suggesting that the ligand shell reorganizes from a collapsed, quenched geometry to an upright, ordered geometry. The ligand reorganization is facilitated by plasmon-mediated photothermal heating, as verified by controls using an external heat source and simulated by coupled optical and heat diffusion modeling. Using super-resolution image reconstruction, we observe spatial variations in which ligand reorganization occurs at the single-particle level. The results suggest the possibility of nonuniform plasmonic heating, which would be hidden with traditional ensemble-averaged measurements.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Taryn P Anthony
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Claire A West
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Zhongwei Hu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Vignesh Sundaresan
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Aaron J McLeod
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - David J Masiello
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Katherine A Willets
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
17
|
Isaacoff BP, Li Y, Lee SA, Biteen JS. SMALL-LABS: Measuring Single-Molecule Intensity and Position in Obscuring Backgrounds. Biophys J 2019; 116:975-982. [PMID: 30846363 DOI: 10.1016/j.bpj.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/27/2019] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Single-molecule and super-resolution imaging relies on successful, sensitive, and accurate detection of the emission from fluorescent molecules. Yet, despite the widespread adoption of super-resolution microscopies, single-molecule data processing algorithms can fail to provide accurate measurements of the brightness and position of molecules in the presence of backgrounds that fluctuate significantly over time and space. Thus, samples or experiments that include obscuring backgrounds can severely, or even completely, hinder this process. To date, no general data analysis approach to this problem has been introduced that is capable of removing obscuring backgrounds for a wide variety of experimental modalities. To address this need, we present the Single-Molecule Accurate LocaLization by LocAl Background Subtraction (SMALL-LABS) algorithm, which can be incorporated into existing single-molecule and super-resolution analysis packages to accurately locate and measure the intensity of single molecules, regardless of the shape or brightness of the background. Accurate background subtraction is enabled by separating the foreground from the background based on differences in the temporal variations of the foreground and the background (i.e., fluorophore blinking, bleaching, or moving). We detail the function of SMALL-LABS here, and we validate the SMALL-LABS algorithm on simulated data as well as real data from single-molecule imaging in living cells.
Collapse
Affiliation(s)
| | - Yilai Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Stephen A Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
18
|
Cohen EAK, Abraham AV, Ramakrishnan S, Ober RJ. Resolution limit of image analysis algorithms. Nat Commun 2019; 10:793. [PMID: 30770826 PMCID: PMC6377644 DOI: 10.1038/s41467-019-08689-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
The resolution of an imaging system is a key property that, despite many advances in optical imaging methods, remains difficult to define and apply. Rayleigh’s and Abbe’s resolution criteria were developed for observations with the human eye. However, modern imaging data is typically acquired on highly sensitive cameras and often requires complex image processing algorithms to analyze. Currently, no approaches are available for evaluating the resolving capability of such image processing algorithms that are now central to the analysis of imaging data, particularly location-based imaging data. Using methods of spatial statistics, we develop a novel algorithmic resolution limit to evaluate the resolving capabilities of location-based image processing algorithms. We show how insufficient algorithmic resolution can impact the outcome of location-based image analysis and present an approach to account for algorithmic resolution in the analysis of spatial location patterns. The resolution limitations when using the ubiquitous algorithms that process images obtained using modern techniques are not straightforward to define. Here, the authors examine the performance of localization algorithms and use spatial statistics to provide a metric for assessing the resolution limit of such algorithms.
Collapse
Affiliation(s)
- Edward A K Cohen
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| | - Anish V Abraham
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Sreevidhya Ramakrishnan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Raimund J Ober
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA. .,Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
19
|
Kläsener K, Yang J, Reth M. Study B Cell Antigen Receptor Nano-Scale Organization by In Situ Fab Proximity Ligation Assay. Methods Mol Biol 2018; 1707:171-181. [PMID: 29388107 DOI: 10.1007/978-1-4939-7474-0_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The B cell antigen receptor (BCR) is found to be non-randomly organized at nano-scale distances on the B cell surface. Studying the organization and relocalization of the BCR is thus likely to provide new clues to understand the activation of the BCR. Indeed, with the in situ Fab proximity ligation assay (Fab-PLA), we now obtain proofs for the dissociation activation of BCRs and start to gain insight into how the relocalization of B cell surface signaling molecules could activate the cells. This chapter describes our methods to study the nano-scale organization of B cell surface receptors and co-receptors with Fab-PLA.
Collapse
Affiliation(s)
- Kathrin Kläsener
- Department of Molecular Immunology, BIOSS Centre for Biological Signaling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jianying Yang
- Department of Molecular Immunology, BIOSS Centre for Biological Signaling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany. .,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Michael Reth
- Department of Molecular Immunology, BIOSS Centre for Biological Signaling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany. .,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
20
|
Smith L, Kohli M, Smith AM. Expanding the Dynamic Range of Fluorescence Assays through Single-Molecule Counting and Intensity Calibration. J Am Chem Soc 2018; 140:13904-13912. [PMID: 30215524 DOI: 10.1021/jacs.8b08879] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surface capture assays can measure fluorescently labeled analytes across a 1000-fold concentration range and at the sub-nanomolar level, but many biological molecules exhibit 1,000,000-fold variations in abundance down to the femtomolar level. The goal of this work is to expand the dynamic range of fluorescence assays by using imaging to combine molecular counting with single-molecule calibration of ensemble intensities. We evaluate optical limits imposed by surface-captured fluorescent labels, compare performances of different fluorophore classes, and use detector acquisition parameters to span wide ranges of fluorescence irradiance. We find that the fluorescent protein phycoerythrin provides uniquely suitable properties with exceptionally intense and homogeneous single-fluorophore brightness that can overcome arbitrary spot detection threshold biases. Major limitations imposed by nonspecifically bound fluorophores were then overcome using rolling circle amplification to densely label cancer-associated miRNA biomarkers, allowing accurate single-molecule detection and calibration across nearly 5 orders of magnitude of concentration with a detection limit of 29 fM. These imaging and molecular counting strategies can be widely applied to expand the limit of detection and dynamic range of a variety of surface fluorescence assays.
Collapse
Affiliation(s)
| | - Manish Kohli
- Department of Oncology , Mayo Clinic , Rochester , Minnesota 55905 , United States
| | | |
Collapse
|
21
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
22
|
Beliveau BJ, Boettiger AN, Nir G, Bintu B, Yin P, Zhuang X, Wu CT. In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT. Methods Mol Biol 2018; 1663:231-252. [PMID: 28924672 DOI: 10.1007/978-1-4939-7265-4_19] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OligoSTORM and OligoDNA-PAINT meld the Oligopaint technology for fluorescent in situ hybridization (FISH) with, respectively, Stochastic Optical Reconstruction Microscopy (STORM) and DNA-based Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) to enable in situ single-molecule super-resolution imaging of nucleic acids. Both strategies enable ≤20 nm resolution and are appropriate for imaging nanoscale features of the genomes of a wide range of species, including human, mouse, and fruit fly (Drosophila).
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alistair N Boettiger
- Howard Hughes Medical Institute, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Guy Nir
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Tian L, Zhang L, Gao M, Deng Z, Gui L. A Handy Liquid Metal Based Non-Invasive Electrophoretic Particle Microtrap. MICROMACHINES 2018; 9:mi9050221. [PMID: 30424154 PMCID: PMC6187542 DOI: 10.3390/mi9050221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 06/09/2023]
Abstract
A handy liquid metal based non-invasive particle microtrap was proposed and demonstrated in this work. This kind of microtrap can be easily designed and fabricated at any location of a microfluidic chip to perform precise particle trapping and releasing without disturbing the microchannel itself. The microsystem demonstrated in this work utilized silicon oil as the continuous phase and fluorescent particles (PE-Cy5, SPHEROTM Fluorescent Particles, BioLegend, San Diego, CA, USA, 10.5 μm) as the target particles. To perform the particle trapping, the micro system utilized liquid-metal-filled microchannels as noncontact electrodes to generate different patterns of electric field inside the fluid channel. According to the experimental results, the target particle can be selectively trapped and released by switching the electric field patterns. For a better understanding the control mechanism, a numerical simulation of the electric field was performed to explain the trapping mechanism. In order to verify the model, additional experiments were performed and are discussed.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China.
| | - Lunjia Zhang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China.
| | - Meng Gao
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China.
| | - Zhongshan Deng
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China.
| | - Lin Gui
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China.
| |
Collapse
|
24
|
Zhou Y, Zammit P, Carles G, Harvey AR. Computational localization microscopy with extended axial range. OPTICS EXPRESS 2018; 26:7563-7577. [PMID: 29609310 DOI: 10.1364/oe.26.007563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
A new single-aperture 3D particle-localization and tracking technique is presented that demonstrates an increase in depth range by more than an order of magnitude without compromising optical resolution and throughput. We exploit the extended depth range and depth-dependent translation of an Airy-beam PSF for 3D localization over an extended volume in a single snapshot. The technique is applicable to all bright-field and fluorescence modalities for particle localization and tracking, ranging from super-resolution microscopy through to the tracking of fluorescent beads and endogenous particles within cells. We demonstrate and validate its application to real-time 3D velocity imaging of fluid flow in capillaries using fluorescent tracer beads. An axial localization precision of 50 nm was obtained over a depth range of 120μm using a 0.4NA, 20× microscope objective. We believe this to be the highest ratio of axial range-to-precision reported to date.
Collapse
|
25
|
Zhang J, Zhou J, Pan R, Jiang D, Burgess JD, Chen HY. New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sens 2018; 3:242-250. [PMID: 29276834 DOI: 10.1021/acssensors.7b00711] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Junyu Zhou
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Rongrong Pan
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Dechen Jiang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - James D. Burgess
- Department
of Medical Laboratory, Imaging, and Radiologic Sciences, College of
Allied Health Sciences, Augusta University, Augusta, Georgia 30912, United States
| | - Hong-Yuan Chen
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| |
Collapse
|
26
|
Abstract
Genetic recombination occurs in all organisms and is vital for genome stability. Indeed, in humans, aberrant recombination can lead to diseases such as cancer. Our understanding of homologous recombination is built upon more than a century of scientific inquiry, but achieving a more complete picture using ensemble biochemical and genetic approaches is hampered by population heterogeneity and transient recombination intermediates. Recent advances in single-molecule and super-resolution microscopy methods help to overcome these limitations and have led to new and refined insights into recombination mechanisms, including a detailed understanding of DNA helicase function and synaptonemal complex structure. The ability to view cellular processes at single-molecule resolution promises to transform our understanding of recombination and related processes.
Collapse
|
27
|
Molecular Counting with Localization Microscopy: A Bayesian Estimate Based on Fluorophore Statistics. Biophys J 2017; 112:1777-1785. [PMID: 28494949 DOI: 10.1016/j.bpj.2017.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Superresolved localization microscopy has the potential to serve as an accurate, single-cell technique for counting the abundance of intracellular molecules. However, the stochastic blinking of single fluorophores can introduce large uncertainties into the final count. Here we provide a theoretical foundation for applying superresolved localization microscopy to the problem of molecular counting based on the distribution of blinking events from a single fluorophore. We also show that by redundantly tagging single molecules with multiple, blinking fluorophores, the accuracy of the technique can be enhanced by harnessing the central limit theorem. The coefficient of variation then, for the number of molecules M estimated from a given number of blinks B, scales like ∼1/Nl, where Nl is the mean number of labels on a target. As an example, we apply our theory to the challenging problem of quantifying the cell-to-cell variability of plasmid copy number in bacteria.
Collapse
|
28
|
Nome RA, Costa AF, Lepkoski J, Monteiro GA, Hayashi JG, Cordeiro CMB. Characterizing Slow Photochemical Reaction Kinetics by Enhanced Sampling of Rare Events with Capillary Optical Fibers and Kramers' Theory. ACS OMEGA 2017; 2:2719-2727. [PMID: 30023675 PMCID: PMC6044631 DOI: 10.1021/acsomega.7b00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/17/2017] [Indexed: 06/08/2023]
Abstract
Characterization of slow chemical reactions is essential for assessing catalytic efficiency in chemistry and biology. Traditionally, chemical reaction rates are obtained from population relaxation kinetics measurements and the Arrhenius equation. Unfortunately, it is difficult to use this approach to characterize reactions wherein concentrations change slowly. Thus, it is interesting to see whether a dynamical view of chemical reactions may be used to obtain the reaction rates of slow processes. In the present work, we perform Brownian dynamics simulations of an asymmetric double-well potential to investigate how enhanced sampling of barrier crossing at transition states improves the characterization of reaction rate constants. We then present the design of a liquid-filled capillary optical fiber-based fluorescence spectrometer, which, like rare events, is also based on Poissonian statistics. We use the instrument to characterize the slow photochemical degradation kinetics of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) in o-dichlorobenzene. We have employed in situ optical microscopy measurements and electrodynamics simulations to characterize the excitation beam profile inside a liquid-filled capillary fiber. We compare the cuvette and capillary fiber sample holders and show that the MEH-PPV fluorescence line shape is independent of the sample holder, as expected. We characterize the photochemical degradation kinetics of MEH-PPV in o-dichlorobenzene solutions placed in the cuvette versus that in the capillary fiber. We observe small and slow changes in the time-dependent fluorescence spectra when the degradation reaction is performed in the cuvette. On the other hand, we are able to characterize reactant-concentration decay and product-concentration buildup from the time-dependent fluorescence spectra recorded during photochemical degradation of MEH-PPV performed inside the capillary optical fiber. Ultrafast optically heterodyne-detected optical Kerr effect spectroscopy and multimode Brownian oscillator analysis provide further insights into the role of bath oscillator modes of friction in the mechanism of MEH-PPV photochemical degradation. Overall, the work presented herein shows that slow photochemical degradation kinetics of MEH-PPV can be successfully and efficiently assessed in the capillary fiber fluorescence spectrometer.
Collapse
Affiliation(s)
- René A. Nome
- Institute
of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Amanda F. Costa
- Institute
of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Jessica Lepkoski
- Institute
of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Gabriel A. Monteiro
- Institute
of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Juliano G. Hayashi
- Institute
of Physics Gleb Wataghin, State University
of Campinas, Campinas, SP 13083-859, Brazil
| | - Cristiano M. B. Cordeiro
- Institute
of Physics Gleb Wataghin, State University
of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
29
|
von Diezmann A, Shechtman Y, Moerner WE. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. Chem Rev 2017; 117:7244-7275. [PMID: 28151646 PMCID: PMC5471132 DOI: 10.1021/acs.chemrev.6b00629] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.
Collapse
Affiliation(s)
| | - Yoav Shechtman
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
30
|
Lu J, Zong S, Wang Z, Chen C, Zhang Y, Cui Y. Yolk-shell type nanoprobe with excellent fluorescence 'blinking' behavior for optical super resolution imaging. NANOTECHNOLOGY 2017; 28:265701. [PMID: 28593936 DOI: 10.1088/1361-6528/aa7536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new yolk-shell type nanoprobe for super-resolution imaging is demonstrated. Using the proposed nanoprobe and single molecule localization based super resolution imaging strategy, intracellular nanoparticle tracking and super-resolution imaging are realized. The localization precision is about 50 nm and single-molecule localization microscopy using the proposed nanoprobe requires only one single excitation laser and no specific imaging buffer.
Collapse
Affiliation(s)
- Ju Lu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
High-Resolution Image Stitching as a Tool to Assess Tissue-Level Protein Distribution and Localization. Methods Mol Biol 2017. [PMID: 28502007 DOI: 10.1007/978-1-4939-6990-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
High-resolution microscopy has traditionally come at the expense of field of view, resulting in suboptimal interpretation of protein distribution throughout large or complex samples. Likewise, a low-resolution microscopic approach inhibits the ability of researchers to precisely localize proteins of interest at the subcellular level. Until recently, the ability to combine the strengths of these approaches was limited and technically impractical for most laboratories to implement. Continued advances in microscope automation, sophisticated software applications, and modern workstations have enabled expansion of such combinatorial approaches to researchers outside computationally focused fields. Through image stitching, researchers can acquire large field-of-view, multidimensional datasets, at the diffraction limit of high-numerical aperture objectives to effectively map protein distribution in large samples with high precision. Here, we outline a protocol for acquisition of such datasets with the purpose of introducing inexperienced researchers to the methodology of large image stitching using the widely available technology of laser point-scanning confocal microscopy in combination with basic microscope automation and freely available software for post-acquisition processing.
Collapse
|
32
|
Cremer C, Szczurek A, Schock F, Gourram A, Birk U. Super-resolution microscopy approaches to nuclear nanostructure imaging. Methods 2017; 123:11-32. [PMID: 28390838 DOI: 10.1016/j.ymeth.2017.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
The human genome has been decoded, but we are still far from understanding the regulation of all gene activities. A largely unexplained role in these regulatory mechanisms is played by the spatial organization of the genome in the cell nucleus which has far-reaching functional consequences for gene regulation. Until recently, it appeared to be impossible to study this problem on the nanoscale by light microscopy. However, novel developments in optical imaging technology have radically surpassed the limited resolution of conventional far-field fluorescence microscopy (ca. 200nm). After a brief review of available super-resolution microscopy (SRM) methods, we focus on a specific SRM approach to study nuclear genome structure at the single cell/single molecule level, Spectral Precision Distance/Position Determination Microscopy (SPDM). SPDM, a variant of localization microscopy, makes use of conventional fluorescent proteins or single standard organic fluorophores in combination with standard (or only slightly modified) specimen preparation conditions; in its actual realization mode, the same laser frequency can be used for both photoswitching and fluorescence read out. Presently, the SPDM method allows us to image nuclear genome organization in individual cells down to few tens of nanometer (nm) of structural resolution, and to perform quantitative analyses of individual small chromatin domains; of the nanoscale distribution of histones, chromatin remodeling proteins, and transcription, splicing and repair related factors. As a biomedical research application, using dual-color SPDM, it became possible to monitor in mouse cardiomyocyte cells quantitatively the effects of ischemia conditions on the chromatin nanostructure (DNA). These novel "molecular optics" approaches open an avenue to study the nuclear landscape directly in individual cells down to the single molecule level and thus to test models of functional genome architecture at unprecedented resolution.
Collapse
Affiliation(s)
- Christoph Cremer
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany; Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany. http://www.optics.imb-mainz.de
| | - Aleksander Szczurek
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Florian Schock
- Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany
| | - Amine Gourram
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Udo Birk
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany; Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
34
|
Systems Structural Biology Analysis of Ligand Effects on ERα Predicts Cellular Response to Environmental Estrogens and Anti-hormone Therapies. Cell Chem Biol 2016; 24:35-45. [PMID: 28042045 DOI: 10.1016/j.chembiol.2016.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022]
Abstract
Environmental estrogens and anti-hormone therapies for breast cancer have diverse tissue- and signaling-pathway-selective outcomes, but how estrogen receptor alpha (ERα) mediates this phenotypic diversity is poorly understood. We implemented a statistical approach to allow unbiased, parallel analyses of multiple crystal structures, and identified subtle perturbations of ERα structure by different synthetic and environmental estrogens. Many of these perturbations were in the sub-Å range, within the noise of the individual structures, but contributed significantly to the activities of synthetic and environmental estrogens. Combining structural perturbation data from many structures with quantitative cellular activity profiles of the ligands enabled identification of structural rules for ligand-specific allosteric signaling-predicting activity from structure. This approach provides a framework for understanding the diverse effects of environmental estrogens and for guiding iterative medicinal chemistry efforts to generate improved breast cancer therapies, an approach that can be applied to understanding other ligand-regulated allosteric signaling pathways.
Collapse
|
35
|
Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, Chapman CT, Henry AI, Schatz GC, Van Duyne RP. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem Rev 2016; 117:7583-7613. [PMID: 28610424 DOI: 10.1021/acs.chemrev.6b00552] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.
Collapse
Affiliation(s)
- Alyssa B Zrimsek
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Naihao Chiang
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Michael Mattei
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Stephanie Zaleski
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Michael O McAnally
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Craig T Chapman
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Anne-Isabelle Henry
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Richard P Van Duyne
- Department of Chemistry, ‡Applied Physics Program, and §Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
37
|
Zaleski S, Wilson AJ, Mattei M, Chen X, Goubert G, Cardinal MF, Willets KA, Van Duyne RP. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Acc Chem Res 2016; 49:2023-30. [PMID: 27602428 DOI: 10.1021/acs.accounts.6b00327] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical events: single-molecule SERS (SMSERS), superlocalization SERS imaging, and tip-enhanced Raman spectroscopy (TERS). While all of the studies we discuss probe model redox dye systems, the experiments described herein push the study of nanoscale electrochemistry toward the fundamental limit, in terms of both chemical sensitivity and spatial resolution. The second half of this Account discusses current experimental strategies for studying nanoelectrochemistry with SERS techniques, which includes relevant electrochemically and optically active molecules, substrates, and substrate functionalization methods. In particular, we highlight the wide variety of SERS-active substrates and optically active molecules that can be implemented for EC-SERS, as well as the need to carefully characterize both the electrochemistry and resultant EC-SERS response of each new redox-active molecule studied. Finally, we conclude this Account with our perspective on the future directions of studying nanoscale electrochemistry with SERS/TERS, which includes the integration of SECM with TERS and the use of theoretical methods to further describe the fundamental intricacies of single-molecule, single-site electrochemistry at the nanoscale.
Collapse
Affiliation(s)
- Stephanie Zaleski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Andrew J. Wilson
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael Mattei
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xu Chen
- Program
in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Guillaume Goubert
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M. Fernanda Cardinal
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Program
in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Dai M, Jungmann R, Yin P. Optical imaging of individual biomolecules in densely packed clusters. NATURE NANOTECHNOLOGY 2016; 11:798-807. [PMID: 27376244 PMCID: PMC5014615 DOI: 10.1038/nnano.2016.95] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/09/2016] [Indexed: 05/15/2023]
Abstract
Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10-20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (∼5 nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumulation for imaging in nanoscale topography)-a super-resolution fluorescence microscopy technique that exploits programmable transient oligonucleotide hybridization-on synthetic DNA nanostructures. We examined the effects of a high photon count, high blinking statistics and an appropriate blinking duty cycle on imaging quality, and developed a software-based drift correction method that achieves <1 nm residual drift (root mean squared) over hours. This allowed us to image a densely packed triangular lattice pattern with ∼5 nm point-to-point distance and to analyse the DNA origami structural offset with ångström-level precision (2 Å) from single-molecule studies. By combining the approach with multiplexed exchange-PAINT imaging, we further demonstrated an optical nanodisplay with 5 × 5 nm pixel size and three distinct colours with <1 nm cross-channel registration accuracy.
Collapse
Affiliation(s)
- Mingjie Dai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Biophysics Program, Harvard University, Boston, MA 02115
| | - Ralf Jungmann
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 2016; 536:210-4. [PMID: 27462810 PMCID: PMC5002394 DOI: 10.1038/nature19058] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 06/27/2016] [Indexed: 12/29/2022]
Abstract
Synaptic transmission is maintained by a delicate, sub-synaptic molecular architecture, and even mild alterations in synapse structure drive functional changes during experience-dependent plasticity and pathological disorders. Key to this architecture is how the distribution of presynaptic vesicle fusion sites corresponds to the position of receptors in the postsynaptic density. However, while it has long been recognized that this spatial relationship modulates synaptic strength, it has not been precisely described, owing in part to the limited resolution of light microscopy. Using localization microscopy, here we show that key proteins mediating vesicle priming and fusion are mutually co-enriched within nanometre-scale subregions of the presynaptic active zone. Through development of a new method to map vesicle fusion positions within single synapses in cultured rat hippocampal neurons, we find that action-potential-evoked fusion is guided by this protein gradient and occurs preferentially in confined areas with higher local density of Rab3-interacting molecule (RIM) within the active zones. These presynaptic RIM nanoclusters closely align with concentrated postsynaptic receptors and scaffolding proteins, suggesting the existence of a trans-synaptic molecular 'nanocolumn'. Thus, we propose that the nanoarchitecture of the active zone directs action-potential-evoked vesicle fusion to occur preferentially at sites directly opposing postsynaptic receptor-scaffold ensembles. Remarkably, NMDA receptor activation triggered distinct phases of plasticity in which postsynaptic reorganization was followed by trans-synaptic nanoscale realignment. This architecture suggests a simple organizational principle of central nervous system synapses to maintain and modulate synaptic efficiency.
Collapse
|
40
|
Chou CK, Tsou PH, Hsu JL, Lee HH, Wang YN, Kameoka J, Hung MC. Analysis of Individual Signaling Complexes by mMAPS, a Flow-Proteometric System. ACTA ACUST UNITED AC 2016; 114:20.11.1-20.11.22. [PMID: 27038387 DOI: 10.1002/0471142727.mb2011s114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signal transduction is essential for maintaining normal cell physiological functions, and deregulation of signaling can lead to diseases such as diabetes and cancers. Some of the major players in signal delivery are molecular complexes composed of proteins and nucleic acids. This unit describes a technique called microchannel for multiparameter analysis of proteins in a single complex (mMAPS) for analyzing and quantifying individual target signaling complexes. mMAPS is a flow-proteometric system that allows detection of individual proteins or complexes flowing through a microfluidic channel. Specific target proteins and nucleic acids labeled by fluorescent tags are harvested from tissues or cultured cells for analysis by the mMAPS system. Overall, mMAPS enables both detection of multiple components within a single complex and direct quantification of different populations of molecular complexes in one setting in a short timeframe and requiring very low sample input.
Collapse
Affiliation(s)
- Chao-Kai Chou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.,These authors contributed equally to this work
| | - Pei-Hsiang Tsou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,These authors contributed equally to this work
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Jun Kameoka
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
41
|
Flynn AD, Yin H. Lipid-Targeting Peptide Probes for Extracellular Vesicles. J Cell Physiol 2016; 231:2327-32. [PMID: 26909741 DOI: 10.1002/jcp.25354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles released from cells are under intense investigation for their roles in cell-cell communication and cancer progression. However, individual vesicles have been difficult to probe as their small size renders them invisible by conventional light microscopy. However, as a consequence of their small size these vesicles possess highly curved lipid membranes that offer an unconventional target for curvature-sensing probes. In this article, we present a strategy for using peptide-based biosensors to detect highly curved membranes and the negatively charged membrane lipid phosphatidylserine, we delineate several assays used to validate curvature- and lipid-targeting mechanisms, and we explore potential applications in probing extracellular vesicles released from sources such as apoptotic cells, cancer cells, or activated platelets. J. Cell. Physiol. 231: 2327-2332, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aaron D Flynn
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.,BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Hang Yin
- BioFrontiers Institute, University of Colorado, Boulder, Colorado.,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| |
Collapse
|
42
|
Guigas G, Weiss M. Effects of protein crowding on membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:2441-2450. [PMID: 26724385 DOI: 10.1016/j.bbamem.2015.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Cellular membranes are typically decorated with a plethora of embedded and adsorbed macromolecules, e.g. proteins, that participate in numerous vital processes. With typical surface densities of 30,000 proteins per μm(2) cellular membranes are indeed crowded places that leave only few nanometers of private space for individual proteins. Here, we review recent advances in our understanding of protein crowding in membrane systems. We first give a brief overview on state-of-the-art approaches in experiment and simulation that are frequently used to study crowded membranes. After that, we review how crowding can affect diffusive transport of proteins and lipids in membrane systems. Next, we discuss lipid and protein sorting in crowded membrane systems, including effects like protein cluster formation, phase segregation, and lipid droplet formation. Subsequently, we highlight recent progress in uncovering crowding-induced conformational changes of membranes, e.g. membrane budding and vesicle formation. Finally, we give a short outlook on potential future developments in the field of crowded membrane systems. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Gernot Guigas
- Experimental Physics I, Universitaetsstr. 30, Bayreuth University, D-95440 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Universitaetsstr. 30, Bayreuth University, D-95440 Bayreuth, Germany.
| |
Collapse
|
43
|
Abstract
As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many talented scientists all over the world have extended our knowledge of the nanoscale and many microscopic mechanisms previously hidden by ensemble averaging.
Collapse
Affiliation(s)
- W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
44
|
Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. NATURE PHOTONICS 2015; 9:563-571. [PMID: 27293480 PMCID: PMC4900467 DOI: 10.1038/nphoton.2015.140] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/06/2015] [Indexed: 05/19/2023]
Abstract
In the field of biomedical optics, optical scattering has traditionally limited the range of imaging within tissue to a depth of one millimetre. A recently developed class of wavefront-shaping techniques now aims to overcome this limit and achieve diffraction-limited control of light beyond one centimetre. By manipulating the spatial profile of an optical field before it enters a scattering medium, it is possible to create a micrometre-scale focal spot deep within tissue. To successfully operate in vivo, these wavefront-shaping techniques typically require feedback from within the biological sample. This Review summarizes recently developed 'guidestar' mechanisms that provide feedback for intra-tissue focusing. Potential applications of guidestar-assisted focusing include optogenetic control over neurons, targeted photodynamic therapy and deep tissue imaging.
Collapse
Affiliation(s)
- Roarke Horstmeyer
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
45
|
Moerner WEWE. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). Angew Chem Int Ed Engl 2015. [PMID: 26088273 DOI: 10.1103/revmodphys.87.1183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.
Collapse
Affiliation(s)
- W E William E Moerner
- Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
| |
Collapse
|
46
|
Moerner WEWE. Spektroskopie, Visualisierung und Photomanipulation einzelner Moleküle: die Grundlage für superhochauflösende Mikroskopie (Nobel-Aufsatz). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Moerner WEWE. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). Angew Chem Int Ed Engl 2015; 54:8067-93. [PMID: 26088273 DOI: 10.1002/anie.201501949] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/10/2022]
Abstract
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.
Collapse
Affiliation(s)
- W E William E Moerner
- Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
| |
Collapse
|
48
|
Blythe KL, Titus EJ, Willets KA. Objective-Induced Point Spread Function Aberrations and Their Impact on Super-Resolution Microscopy. Anal Chem 2015; 87:6419-24. [PMID: 26011175 DOI: 10.1021/acs.analchem.5b01848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study demonstrates how different microscope objectives can lead to asymmetric imaging aberrations in the point spread function of dipolar emitters, which can adversely affect the quality of fit in super-resolution imaging. Luminescence from gold nanorods was imaged with four different objectives to measure the diffraction-limited emission and characterize deviations from the expected dipolar emission patterns. Each luminescence image was fit to a three-dipole emission model to generate fit residuals that visually relay aberrations in the point spread function caused by the different microscope objectives. Output parameters from the fit model were compared to experimentally measured values, and we find that while some objectives provide high quality fits across all nanorods studied, others show significant aberrations and are inappropriate for super-resolution imaging. This work presents a simple and robust strategy for quickly assessing the quality of point spread functions produced by different microscope objectives.
Collapse
Affiliation(s)
- Karole L Blythe
- Department of Chemistry, The University of Texas at Austin, 102 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Eric J Titus
- Department of Chemistry, The University of Texas at Austin, 102 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Katherine A Willets
- Department of Chemistry, The University of Texas at Austin, 102 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
49
|
|
50
|
Moreau M, Cochard P. [Nobel Prize in Chemistry 2014 - from microscopy to nanoscopy: a revolution in resolution]. Med Sci (Paris) 2014; 30:1169-76. [PMID: 25537048 DOI: 10.1051/medsci/20143012021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marc Moreau
- Centre de Biologie du Développement,UMR 5547 CNRS-Université Paul Sabatier (Toulouse 3), 118, route de Narbonne, 31062 Toulouse Cedex 4, France
| | - Philippe Cochard
- Centre de Biologie du Développement,UMR 5547 CNRS-Université Paul Sabatier (Toulouse 3), 118, route de Narbonne, 31062 Toulouse Cedex 4, France
| |
Collapse
|