1
|
Du W, Zhou B, Forjaz A, Shin SM, Wu F, Crawford AJ, Nair PR, Johnston AC, West-Foyle H, Tang A, Kim D, Fan R, Kiemen AL, Wu PH, Phillip JM, Ho WJ, Sanin DE, Wirtz D. High-motility pro-tumorigenic monocytes drive macrophage enrichment in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603739. [PMID: 39071324 PMCID: PMC11275814 DOI: 10.1101/2024.07.16.603739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/30/2024]
Abstract
Enrichment of tumor-associated macrophages (TAMΦs) in the tumor microenvironment correlates with worse clinical outcomes in triple-negative breast cancer (TNBC) patients, prompting the development of therapies to inhibit TAMΦ infiltration. However, the lackluster efficacy of CCL2-based chemotaxis blockade in clinical trials suggests that a new understanding of monocyte/macrophage infiltration may be necessary. Here we demonstrate that random migration, and not only chemotaxis, drives macrophage tumor infiltration. We identified tumor- associated monocytes (TAMos) that display a dramatically enhanced migration capability, induced rapidly by the tumor microenvironment, that drives effective tumor infiltration, in contrast to low-motility differentiated macrophages. TAMo, not TAMΦ, promotes cancer cell proliferation through activation of the MAPK pathway. IL-6 secreted both by cancer cells and TAMo themselves enhances TAMo migration by increasing dendritic protrusion dynamics and myosin- based contractility via the JAK2/STAT3 signaling pathway. Independent from CCL2 mediated chemotaxis, IL-6 driven enhanced migration and pro-proliferative effect of TAMo were validated in a syngeneic TNBC mouse model. Depletion of IL-6 in cancer cells significantly attenuated monocyte infiltration and reversed TAMo-induced cancer cell proliferation. This work reveals the critical role random migration plays in monocyte driven TAMΦ enrichment in a tumor and pinpoints IL-6 as a potential therapeutic target in combination with CCL2 to ameliorate current strategies against TAMΦ infiltration.
Collapse
|
2
|
Johnston AC, Alicea GM, Lee CC, Patel PV, Hanna EA, Vaz E, Forjaz A, Wan Z, Nair PR, Lim Y, Chen T, Du W, Kim D, Nichakawade TD, Rebecca VW, Bonifant CL, Fan R, Kiemen AL, Wu PH, Wirtz D. Engineering self-propelled tumor-infiltrating CAR T cells using synthetic velocity receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571595. [PMID: 38168186 PMCID: PMC10760159 DOI: 10.1101/2023.12.13.571595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR) T cells express antigen-specific synthetic receptors, which upon binding to cancer cells, elicit T cell anti-tumor responses. CAR T cell therapy has enjoyed success in the clinic for hematological cancer indications, giving rise to decade-long remissions in some cases. However, CAR T therapy for patients with solid tumors has not seen similar success. Solid tumors constitute 90% of adult human cancers, representing an enormous unmet clinical need. Current approaches do not solve the central problem of limited ability of therapeutic cells to migrate through the stromal matrix. We discover that T cells at low and high density display low- and high-migration phenotypes, respectively. The highly migratory phenotype is mediated by a paracrine pathway from a group of self-produced cytokines that include IL5, TNFα, IFNγ, and IL8. We exploit this finding to "lock-in" a highly migratory phenotype by developing and expressing receptors, which we call velocity receptors (VRs). VRs target these cytokines and signal through these cytokines' cognate receptors to increase T cell motility and infiltrate lung, ovarian, and pancreatic tumors in large numbers and at doses for which control CAR T cells remain confined to the tumor periphery. In contrast to CAR therapy alone, VR-CAR T cells significantly attenuate tumor growth and extend overall survival. This work suggests that approaches to the design of immune cell receptors that focus on migration signaling will help current and future CAR cellular therapies to infiltrate deep into solid tumors.
Collapse
Affiliation(s)
- Adrian C Johnston
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | | | - Cameron C Lee
- Department of Biomedical Engineering, Johns Hopkins University
| | - Payal V Patel
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eban A Hanna
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eduarda Vaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Zeqi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Praful R Nair
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Yeongseo Lim
- Department of Biomedical Engineering, Johns Hopkins University
| | - Tina Chen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Wenxuan Du
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University
| | - Tushar D Nichakawade
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Challice L Bonifant
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Rong Fan
- Department of Biomedical Engineering, Yale University
| | - Ashley L Kiemen
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Denis Wirtz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| |
Collapse
|
3
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
4
|
Martínez-Calvo A, Trenado-Yuste C, Lee H, Gore J, Wingreen NS, Datta SS. Interfacial morphodynamics of proliferating microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563665. [PMID: 37961366 PMCID: PMC10634769 DOI: 10.1101/2023.10.23.563665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2023]
Abstract
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.
Collapse
|
5
|
Stöberl S, Balles M, Kellerer T, Rädler JO. Photolithographic microfabrication of hydrogel clefts for cell invasion studies. LAB ON A CHIP 2023; 23:1886-1895. [PMID: 36867426 DOI: 10.1039/d2lc01105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/18/2023]
Abstract
Invasion of migrating cells into surrounding tissue plays a key role in cancer metastasis and immune response. In order to assess invasiveness, most in vitro invasion assays measure the degree to which cells migrate between microchambers that provide a chemoattractant gradient across a polymeric membrane with defined pores. However, in real tissue cells experience soft, mechanically deformable microenvironments. Here we introduce RGD-functionalized hydrogel structures that present pressurized clefts for invasive migration of cells between reservoirs maintaining a chemotactic gradient. Using UV-photolithography, equally spaced blocks of polyethylene glycol-norbornene (PEG-NB) hydrogels are formed, which subsequently swell and close the interjacent gaps. The swelling ratio and final contours of the hydrogel blocks were determined using confocal microscopy confirming a swelling induced closure of the structures. The velocity profile of cancer cells transmigrating through the clefts, which we name 'sponge clamp', is found to depend on the elastic modulus as well as the gap size between the swollen blocks. The 'sponge clamp' discriminates the invasiveness of two distinct cell lines, MDA-MB-231 and HT-1080. The approach provides soft 3D-microstructures mimicking invasion conditions in extracellular matrix.
Collapse
Affiliation(s)
- Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| | - Miriam Balles
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| | - Thomas Kellerer
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
- Department of Applied Science and Mechatronics, University of Applied Science, Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| |
Collapse
|
6
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|
8
|
Maity D, Bera K, Li Y, Ge Z, Ni Q, Konstantopoulos K, Sun SX. Extracellular Hydraulic Resistance Enhances Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200927. [PMID: 36031406 PMCID: PMC9561764 DOI: 10.1002/advs.202200927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/15/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Cells migrating in vivo encounter microenvironments with varying physical properties. One such physical variable is the fluid viscosity surrounding the cell. Increased viscosity is expected to increase the hydraulic resistance experienced by the cell and decrease cell speed. The authors demonstrate that contrary to this expected result, cells migrate faster in high viscosity media on 2-dimensional substrates. Both actin dynamics and water dynamics driven by ion channel activity are examined. Results show that cells increase in area in high viscosity and actomyosin dynamics remain similar. Inhibiting ion channel fluxes in high viscosity media results in a large reduction in cell speed, suggesting that water flux contributes to the observed speed increase. Moreover, inhibiting actin-dependent vesicular trafficking that transports ion channels to the cell boundary changes ion channel spatial positioning and reduces cell speed in high viscosity media. Cells also display altered Ca2+ activity in high viscosity media, and when cytoplasmic Ca2+ is sequestered, cell speed reduction and altered ion channel positioning are observed. Taken together, it is found that the cytoplasmic actin-phase and water-phase are coupled to drive cell migration in high viscosity media, in agreement with physical modeling that also predicts the observed cell speedup in high viscosity environments.
Collapse
Affiliation(s)
- Debonil Maity
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Kaustav Bera
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Yizeng Li
- Department of Biomedical EngineeringBinghamton University, State University of New YorkBinghamtonNYUSA
| | - Zhuoxu Ge
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Qin Ni
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Sean X. Sun
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Center for Cell DynamicsJohns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
9
|
Tortorici M, Brauer E, Thiele M, Duda GN, Petersen A. Characterizing cell recruitment into isotropic and anisotropic biomaterials by quantification of spatial density gradients in vitro. Front Bioeng Biotechnol 2022; 10:939713. [PMID: 35992332 PMCID: PMC9389461 DOI: 10.3389/fbioe.2022.939713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The success of cell-free in situ tissue engineering approaches depends on an appropriate recruitment of autologous cells from neighboring tissues. This identifies cellular migration as a critical parameter for the pre-clinical characterization of biomaterials. Here, we present a new method to quantify both the extent and the spatial anisotropy of cell migration in vitro. For this purpose, a cell spheroid is used as a cell source to provide a high number of cells for cellular invasion and, at the same time, to guarantee a controlled and spatially localized contact to the material. Therefore, current limitations of assays based on 2D cell sources can be overcome. We tested the method on three biomaterials that are in clinical use for soft tissue augmentation in maxilla-facial surgery and a substrate used for 3D in vitro cell culture. The selected biomaterials were all collagen-derived, but differed in their internal architecture. The analysis of cellular isodensity profiles within the biomaterials allowed the identification of the extent and the preferential directions of migration, as well as their relation to the biomaterials and their specific pore morphologies. The higher cell density within the biomaterials resulting from the here-introduced cell spheroid assay compared to established 2D cell layer assays suggests a better representation of the in vivo situation. Consequently, the presented method is proposed to advance the pre-clinical evaluation of cell recruitment into biomaterials, possibly leading to an improved prediction of the regeneration outcome.
Collapse
Affiliation(s)
- Martina Tortorici
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ansgar Petersen,
| |
Collapse
|
10
|
Merino-Casallo F, Gomez-Benito MJ, Martinez-Cantin R, Garcia-Aznar JM. A mechanistic protrusive-based model for 3D cell migration. Eur J Cell Biol 2022; 101:151255. [PMID: 35843121 DOI: 10.1016/j.ejcb.2022.151255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cell migration is essential for a variety of biological processes, such as embryogenesis, wound healing, and the immune response. After more than a century of research-mainly on flat surfaces-, there are still many unknowns about cell motility. In particular, regarding how cells migrate within 3D matrices, which more accurately replicate in vivo conditions. We present a novel in silico model of 3D mesenchymal cell migration regulated by the chemical and mechanical profile of the surrounding environment. This in silico model considers cell's adhesive and nuclear phenotypes, the effects of the steric hindrance of the matrix, and cells ability to degradate the ECM. These factors are crucial when investigating the increasing difficulty that migrating cells find to squeeze their nuclei through dense matrices, which may act as physical barriers. Our results agree with previous in vitro observations where fibroblasts cultured in collagen-based hydrogels did not durotax toward regions with higher collagen concentrations. Instead, they exhibited an adurotactic behavior, following a more random trajectory. Overall, cell's migratory response in 3D domains depends on its phenotype, and the properties of the surrounding environment, that is, 3D cell motion is strongly dependent on the context.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ruben Martinez-Cantin
- Robotics, Perception and Real Time Group (RoPeRT), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Computer Science and System Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
11
|
Abstract
Migration is an essential cellular process that regulates human organ development and homeostasis as well as disease initiation and progression. In cancer, immune and tumor cell migration is strongly associated with immune cell infiltration, immune escape, and tumor cell metastasis, which ultimately account for more than 90% of cancer deaths. The biophysics and molecular regulation of the migration of cancer and immune cells have been extensively studied separately. However, accumulating evidence indicates that, in the tumor microenvironment, the motilities of immune and cancer cells are highly interdependent via secreted factors such as cytokines and chemokines. Tumor and immune cells constantly express these soluble factors, which produce a tightly intertwined regulatory network for these cells' respective migration. A mechanistic understanding of the reciprocal regulation of soluble factor-mediated cell migration can provide critical information for the development of new biomarkers of tumor progression and of tumor response to immuno-oncological treatments. We review the biophysical andbiomolecular basis for the migration of immune and tumor cells and their associated reciprocal regulatory network. We also describe ongoing attempts to translate this knowledge into the clinic.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Praful Nair
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adrian Johnston
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pei-Hsun Wu
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Denis Wirtz
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA,Department of Oncology, Department of Pathology, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Geiger F, Schnitzler LG, Brugger MS, Westerhausen C, Engelke H. Directed invasion of cancer cell spheroids inside 3D collagen matrices oriented by microfluidic flow in experiment and simulation. PLoS One 2022; 17:e0264571. [PMID: 35231060 PMCID: PMC8887745 DOI: 10.1371/journal.pone.0264571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Invasion is strongly influenced by the mechanical properties of the extracellular matrix. Here, we use microfluidics to align fibers of a collagen matrix and study the influence of fiber orientation on invasion from a cancer cell spheroid. The microfluidic setup allows for highly oriented collagen fibers of tangential and radial orientation with respect to the spheroid, which can be described by finite element simulations. In invasion experiments, we observe a strong bias of invasion towards radial as compared to tangential fiber orientation. Simulations of the invasive behavior with a Brownian diffusion model suggest complete blockage of migration perpendicularly to fibers allowing for migration exclusively along fibers. This slows invasion toward areas with tangentially oriented fibers down, but does not prevent it.
Collapse
Affiliation(s)
- Florian Geiger
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas G. Schnitzler
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Manuel S. Brugger
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Stiftung der Deutschen Wirtschaft (sdw) gGmbH, Berlin, Germany
| | - Christoph Westerhausen
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany
- Center for NanoScience (CeNS), Munich, Germany
- * E-mail: (CW); (HE)
| | - Hanna Engelke
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for NanoScience (CeNS), Munich, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- * E-mail: (CW); (HE)
| |
Collapse
|
13
|
Mon Père NV, de Buyl P, de Buyl S. Brownian motion in a growing population of ballistic particles. Phys Rev E 2022; 105:034133. [PMID: 35428114 DOI: 10.1103/physreve.105.034133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate the motility of a growing population of cells in a idealized setting: We consider a system of hard disks in which new particles are added according to prescribed growth kinetics, thereby dynamically changing the number density. As a result, the expected Brownian motion of the hard disks is modified. We compute the density-dependent friction of the hard disks and insert it in an effective Langevin equation to describe the system, assuming that the intercollision time is smaller than the timescale of the growth. We find that the effective Langevin description captures the changes in motility, in agreement with the simulation results. Our framework can be extended to other systems in which the transport coefficient varies with time.
Collapse
Affiliation(s)
- Nathaniel V Mon Père
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Pierre de Buyl
- Royal Meteorological Institute of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium and KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200d - box 2415, 3001 Leuven, Belgium
| | - Sophie de Buyl
- Applied Physics Research Group, Physics Department, Vrije Universiteit Brussel, 1050 Brussels, Belgium and Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel-Université libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Cheung BCH, Hodgson L, Segall JE, Wu M. Spatial and temporal dynamics of RhoA activities of single breast tumor cells in a 3D environment revealed by a machine learning-assisted FRET technique. Exp Cell Res 2022; 410:112939. [PMID: 34813733 PMCID: PMC8714707 DOI: 10.1016/j.yexcr.2021.112939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023]
Abstract
One of the hallmarks of cancer cells is their exceptional ability to migrate within the extracellular matrix (ECM) for gaining access to the circulatory system, a critical step of cancer metastasis. RhoA, a small GTPase, is known to be a key molecular switch that toggles between actomyosin contractility and lamellipodial protrusion during cell migration. Current understanding of RhoA activity in cell migration has been largely derived from studies of cells plated on a two-dimensional (2D) substrate using a FRET biosensor. There has been increasing evidence that cells behave differently in a more physiologically relevant three-dimensional (3D) environment. However, studies of RhoA activities in 3D have been hindered by low signal-to-noise ratio in fluorescence imaging. In this paper, we present a a machine learning-assisted FRET technique to follow the spatiotemporal dynamics of RhoA activities of single breast tumor cells (MDA-MB-231) migrating in a 3D as well as a 2D environment. We found that RhoA activity is more polarized along the long axis of the cell for single cells migrating on 2D fibronectin-coated glass versus those embedded in 3D collagen matrices. In particular, RhoA activities of cells in 2D exhibit a distinct front-to-back and back-to-front movement during migration in contrast to those in 3D. Finally, regardless of dimensionality, RhoA polarization is found to be moderately correlated with cell shape.
Collapse
Affiliation(s)
- Brian CH Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA,Corresponding author:
| |
Collapse
|
15
|
Scott M, Żychaluk K, Bearon RN. A mathematical framework for modelling 3D cell motility: applications to glioblastoma cell migration. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:333-354. [PMID: 34189581 DOI: 10.1093/imammb/dqab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/26/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022]
Abstract
The collection of 3D cell tracking data from live images of micro-tissues is a recent innovation made possible due to advances in imaging techniques. As such there is increased interest in studying cell motility in 3D in vitro model systems but a lack of rigorous methodology for analysing the resulting data sets. One such instance of the use of these in vitro models is in the study of cancerous tumours. Growing multicellular tumour spheroids in vitro allows for modelling of the tumour microenvironment and the study of tumour cell behaviours, such as migration, which improves understanding of these cells and in turn could potentially improve cancer treatments. In this paper, we present a workflow for the rigorous analysis of 3D cell tracking data, based on the persistent random walk model, but adaptable to other biologically informed mathematical models. We use statistical measures to assess the fit of the model to the motility data and to estimate model parameters and provide confidence intervals for those parameters, to allow for parametrization of the model taking correlation in the data into account. We use in silico simulations to validate the workflow in 3D before testing our method on cell tracking data taken from in vitro experiments on glioblastoma tumour cells, a brain cancer with a very poor prognosis. The presented approach is intended to be accessible to both modellers and experimentalists alike in that it provides tools for uncovering features of the data set that may suggest amendments to future experiments or modelling attempts.
Collapse
Affiliation(s)
- M Scott
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - K Żychaluk
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - R N Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| |
Collapse
|
16
|
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
17
|
Joyner K, Yang S, Duncan GA. Microrheology for biomaterial design. APL Bioeng 2020; 4:041508. [PMID: 33415310 PMCID: PMC7775114 DOI: 10.1063/5.0013707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
Microrheology analyzes the microscopic behavior of complex materials by measuring the diffusion and transport of embedded particle probes. This experimental method can provide valuable insight into the design of biomaterials with the ability to connect material properties and biological responses to polymer-scale dynamics and interactions. In this review, we discuss how microrheology can be harnessed as a characterization method complementary to standard techniques in biomaterial design. We begin by introducing the core principles and instruments used to perform microrheology. We then review previous studies that incorporate microrheology in their design process and highlight biomedical applications that have been supported by this approach. Overall, this review provides rationale and practical guidance for the utilization of microrheological analysis to engineer novel biomaterials.
Collapse
Affiliation(s)
- Katherine Joyner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
18
|
Paez JI, Farrukh A, Valbuena-Mendoza R, Włodarczyk-Biegun MK, Del Campo A. Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8062-8072. [PMID: 31999422 DOI: 10.1021/acsami.0c00709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Thiol-maleimide and thiol-vinylsulfone cross-linked hydrogels are widely used systems in 3D culture models, in spite of presenting uncomfortable reaction kinetics for cell encapsulation: too fast (seconds for thiol-maleimide) or too slow (minutes-hours for thiol-vinylsulfone). Here, we introduce the thiol-methylsulfone reaction as alternative cross-linking chemistry for cell encapsulation, particularized for PEG-hydrogels. The thiol-methylsulfone reaction occurs at high conversion and at intermediate reaction speed (seconds-minutes) under physiological pH range. These properties allow easy mixing of hydrogel precursors and cells to render homogeneous cell-laden gels at comfortable experimental time scales. The resulting hydrogels are cytocompatible and show comparable hydrolytic stability to thiol-vinylsulfone gels. They allow direct bioconjugation of thiol-derivatized ligands and tunable degradation kinetics by cross-linking with degradable peptide sequences. 3D cell culture of two cell types, fibroblasts and human umbilical vein endothelial cells (HUVECs), is demonstrated.
Collapse
Affiliation(s)
- Julieta I Paez
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Aleeza Farrukh
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Rocío Valbuena-Mendoza
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| |
Collapse
|
19
|
Ghosh D, Mejia Pena C, Quach N, Xuan B, Lee AH, Dawson MR. Senescent mesenchymal stem cells remodel extracellular matrix driving breast cancer cells to a more-invasive phenotype. J Cell Sci 2020; 133:jcs232470. [PMID: 31932504 PMCID: PMC6983709 DOI: 10.1242/jcs.232470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are essential for the regenerative process; however, biological aging and environmental stress can induce senescence - an irreversible state of growth arrest - that not only affects the behavior of cells but also disrupts their ability to restore tissue integrity. While abnormal tissue properties, including increased extracellular matrix stiffness, are linked with the risk of developing breast cancer, the role and contribution of senescent MSCs to the disease progression to malignancy are not well understood. Here, we investigated senescence-associated biophysical changes in MSCs and how this influences cancer cell behavior in a 3D matrix interface model. Although senescent MSCs were far less motile than pre-senescent MSCs, they induced an invasive breast cancer phenotype, characterized by increased spheroid growth and cell invasion in collagen gels. Further analysis of collagen gels using second-harmonic generation showed increased collagen density when senescent MSCs were present, suggesting that senescent MSCs actively remodel the surrounding matrix. This study provides direct evidence of the pro-malignant effects of senescent MSCs in tumors.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
| | - Carolina Mejia Pena
- Brown University, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI 02912, USA
| | - Nhat Quach
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
| | - Botai Xuan
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
| | - Amy H Lee
- Brown University, Center for Biomedical Engineering, Providence, PI 02912, USA
| | - Michelle R Dawson
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
- Brown University, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI 02912, USA
- Brown University, Center for Biomedical Engineering, Providence, PI 02912, USA
| |
Collapse
|
20
|
Fiber stiffness, pore size and adhesion control migratory phenotype of MDA-MB-231 cells in collagen gels. PLoS One 2019; 14:e0225215. [PMID: 31721794 PMCID: PMC6853323 DOI: 10.1371/journal.pone.0225215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022] Open
Abstract
Cancer cell migration is influenced by cellular phenotype and behavior as well as by the mechanical and chemical properties of the environment. Furthermore, many cancer cells show plasticity of their phenotype and adapt it to the properties of the environment. Here, we study the influence of fiber stiffness, confinement, and adhesion properties on cancer cell migration in porous collagen gels. Collagen gels with soft fibers abrogate migration and promote a round, non-invasive phenotype. Stiffer collagen fibers are inherently more adhesive and lead to the existence of an adhesive phenotype and in general confined migration due to adhesion. Addition of TGF-β lowers adhesion, eliminates the adhesive phenotype and increases the amount of highly motile amoeboid phenotypes. Highest migration speeds and longest displacements are achieved in stiff collagen fibers in pores of about cell size by amoeboid phenotypes. This elucidates the influence of the mechanical properties of collagen gels on phenotype and subsequently migration and shows that stiff fibers, cell sized pores, and low adhesion, are optimal conditions for an amoeboid phenotype and efficient migration.
Collapse
|
21
|
Miermont A, Lee SWL, Adriani G, Kamm RD. Quantitative screening of the effects of hyper-osmotic stress on cancer cells cultured in 2- or 3-dimensional settings. Sci Rep 2019; 9:13782. [PMID: 31551497 PMCID: PMC6760113 DOI: 10.1038/s41598-019-50198-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
The maintenance of precise cell volume is critical for cell survival. Changes in extracellular osmolarity affect cell volume and may impact various cellular processes such as mitosis, mitochondrial functions, DNA repair as well as cell migration and proliferation. Much of what we know about the mechanisms of cell osmoregulation comes from in vitro two-dimensional (2D) assays that are less physiologically relevant than three-dimensional (3D) in vitro or in vivo settings. Here, we developed a microfluidic model to study the impact of hyper-osmotic stress on the migration, proliferation and ion channel/transporter expression changes of three metastatic cell lines (MDA-MB-231, A549, T24) in 2D versus 3D environments. We observed a global decrease in cell migration and proliferation upon hyper-osmotic stress treatment, with similar responses between 2D and 3D conditions. Specific ion channels/aquaporins are over-expressed in metastatic cells and play a central role during osmo-regulation. Therefore, the effects of hyper-osmotic stress on two transporters, aquaporin 5 (AQP5) and the transient receptor potential cation channel (TRPV4), was investigated. While hyper-osmotic stress had no major impact on the transporters of cells cultured in 2D, cells embedded in collagen gel (3D) decreased their AQP5 expression and exhibited a reduction in intra-cellular translocation of TRPV4. Furthermore, cell dispersion from T24 aggregates embedded in 3D collagen gel decreased with higher levels of hyper-osmotic stress. In conclusion, this study provides evidence on the impact of hyper-osmotic stress on various aspects of metastatic cell progression and highlights the importance of having a 3D cell culture platform in investigating molecular players involved in cancer cell migration.
Collapse
Affiliation(s)
- Agnes Miermont
- Stem Genomics, IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Sharon Wei Ling Lee
- BioSystems and Micromechanics, IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Immunology Network (SIgN), Biomedical Sciences Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Biomedical Sciences Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
22
|
Perduns R, Volk J, Plum M, Gutzki F, Kaever V, Geurtsen W. Effects of HEMA on Nrf2-related gene expression using a newly developed 3D co-culture model of the oral mucosa. Dent Mater 2019; 35:1214-1226. [PMID: 31146961 DOI: 10.1016/j.dental.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE 2-Hydroxyethyl methacrylate (HEMA) is a component of many resin-modified materials and elutes from dental restorations into the oral cavity. Objective of our investigation was to determine the impact of HEMA on oral keratinocytes (OKF6/TERT2) and gingival fibroblasts (HGFs) in a newly established 3D co-culture model (3D-CCM) and to analyze the permeability of OKF6/TERT2 cells for HEMA. METHODS Well-characterized 3D-CCMs, consisting of confluent OKF6/TERT2 cells on cell culture inserts above HGF-containing collagen gels, were treated supra-epithelial with HEMA. Mass spectrometry was used to measure the supra- and sub-epithelial distribution of HEMA after 24 h. The impact of HEMA on nuclear factor erythroid 2-related factor 2 (Nrf2) target genes was measured by qRT-PCR and western blot analysis. RESULTS Mass spectrometry showed that HEMA was evenly distributed above and below the keratinocyte layer after 24 h. Analyzed target genes of Nrf2 were induced in both cell types on the mRNA-level but less pronounced in HGFs. On the protein-level, both cell types showed similar effects: At 5 mM HEMA, heme oxygenase-1 was induced 5.1-fold in OKF6/TERT2 cells and 4.1-fold in HGFs. NAD(P)H quinone dehydrogenase-1 was approximately induced 1.85-fold in both cell types. SIGNIFICANCE Our 3D-CCM is suitable to analyze the biocompatibility of dental materials due to an improved simulation of the oral mucosa compared to monolayer cultures. Our results indicate that HEMA is able to penetrate a dense layer of keratinocytes and to activate the cellular oxidative defense response. This may be due to the activation of the Nrf2-pathway in both cell types.
Collapse
Affiliation(s)
- Renke Perduns
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Melanie Plum
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Frank Gutzki
- Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
23
|
Abstract
Ordered microgel networks have undergone extensive research and shown translational promise in tissue engineering, precision and regenerative medicine, controlled delivery, optics and electronics, etc. Here, we introduce a new low-cost and efficient synthesizer for ordered microgel networks. The gel precursor microdroplets are formulated and incubated in a microfluidics tubing system to obtain tailorable and reproducible microgels, which are then patterned into networks under the precise spatiotemporal control of the tubing system and integrated either by crosslinking the microgel interfaces or by forming lipid bilayers at the interfaces. The system can synthesize ordered networks out of heterogeneous microgels by withdrawing multi-phase cell-laden or acellular gel precursors into the tubing and gelation, or out of homogeneous microgels by simultaneously injecting gel precursors and immiscible oil into the tubing and gelation. The ordered gel networks are synthesized at the tubing outlet or within a piece of enlarging tubing, where the microgels are collided and glued in defined sequences.
Collapse
Affiliation(s)
- Shaohua Ma
- Shenzhen Engineering Laboratory for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China.
| |
Collapse
|
24
|
Hui J, Pang SW. Cell migration on microposts with surface coating and confinement. Biosci Rep 2019; 39:BSR20181596. [PMID: 30674640 PMCID: PMC6379512 DOI: 10.1042/bsr20181596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Understanding cell migration in a 3D microenvironment is essential as most cells encounter complex 3D extracellular matrix (ECM) in vivo Although interactions between cells and ECM have been studied previously on 2D surfaces, cell migration studies in 3D environment are still limited. To investigate cell migration under various degrees of confinements and coating conditions, 3D platforms with micropost arrays and controlled fibronectin (FN) protein coating were developed. MC3T3-E1 cells spread and contacted the top surface of microposts if FN was coated on top. When FN was coated all over the microposts, cells were trapped between microposts with 3 μm spacing and barely moved. As the spacing between microposts increased from 3 to 5 μm, cells became elongated with limited cell movement of 0.18 μm/min, slower than the cell migration speed of 0.40 μm/min when cells moved on top. When cells were trapped in between the microposts, cell nuclei were distorted and actin filaments formed along the sidewalls of microposts. With the addition of a top cover to introduce cell confinement, the cell migration speed was 0.23 and 0.84 μm/min when the channel height was reduced from 20 to 10 μm, respectively. Cell traction force was monitored at on the top and bottom microposts with 10 μm channel height. These results show that the MC3T3-E1 cell morphology, migration speed, and movement position were affected by surface coating and physical confinement, which will provide significant insights for in vivo cell migration within a 3D ECM.
Collapse
Affiliation(s)
- Jianan Hui
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
- Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
- Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Lee G, Han SB, Lee JH, Kim HW, Kim DH. Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. ACS Biomater Sci Eng 2019; 5:3735-3752. [PMID: 33405888 DOI: 10.1021/acsbiomaterials.8b01230] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
The cellular microenvironment plays an important role in regulating cancer progress. Cancer can physically and chemically remodel its surrounding extracellular matrix (ECM). Critical cellular behaviors such as recognition of matrix geometry and rigidity, cell polarization and motility, cytoskeletal reorganization, and proliferation can be changed as a consequence of these ECM alternations. Here, we present an overview of cancer mechanobiology in detail, focusing on cancer microenvironmental sensing of exogenous cues and quantification of cancer-substrate interactions. In addition, mechanics of metastasis classified with tumor progression will be discussed. The mechanism underlying cancer mechanosensation and tumor progression may provide new insights into therapeutic strategies to alleviate cancer malignancy.
Collapse
Affiliation(s)
- GeonHui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
26
|
Hui J, Pang S. Cell traction force in a confined microenvironment with double-sided micropost arrays. RSC Adv 2019; 9:8575-8584. [PMID: 35518671 PMCID: PMC9061871 DOI: 10.1039/c8ra10170a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional (3D) cell migrations are regulated by force interactions between cells and a 3D extracellular matrix (ECM). Mapping the 3D traction force generated by cells on the surrounding ECM with controlled confinement and contact area will be useful in understanding cell migration. In this study, double-sided micropost arrays were fabricated. The cell traction force was mapped by microposts on the top and bottom of opposing surfaces with a controlled separating distance to create different confinements. The density of micropost arrays was modified to investigate the effect of cell contact area on 3D traction force development. Using MC3T3-E1 osteoblastic cells, the leading traction force was found to increase with additional contact surface on the top. Summing force vectors on both surfaces, a large force imbalance was found from the leading to trailing regions for fast migrating cells. With 10 μm separation and densely arranged microposts, the traction force on the top surface was the largest at 28.6 ± 2.5 nN with the highest migration speed of 0.61 ± 0.07 μm min−1. Decreasing the density of the top micropost arrays resulted in a reduced traction force on the top and lower migration speed. With 15 μm separation, the cell traction force on the top and migration speed further decreased simultaneously. These results revealed traction force development on 3D ECM with varied degrees of confinement and contact area, which is important in regulating 3D cell migration. Double-sided micropost arrays to monitor three-dimensional cell traction force development over time on top and bottom surfaces with controlled confinement and contact area.![]()
Collapse
Affiliation(s)
- Jianan Hui
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| | - Stella W. Pang
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| |
Collapse
|
27
|
Oliveira VDM, Neri RCDA, Monte FTDD, Roberto NA, Costa HMS, Assis CRD, Santos JF, Bezerra RS, Porto ALF. Crosslink-free collagen from Cichla ocellaris: Structural characterization by FT-IR spectroscopy and densitometric evaluation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/28/2022]
|
28
|
Harris MJ, Wirtz D, Wu PH. Dissecting cellular mechanics: Implications for aging, cancer, and immunity. Semin Cell Dev Biol 2018; 93:16-25. [PMID: 30359779 DOI: 10.1016/j.semcdb.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/13/2023]
Abstract
Cells are dynamic structures that must respond to complex physical and chemical signals from their surrounding environment. The cytoskeleton is a key mediator of a cell's response to the signals of both the extracellular matrix and other cells present in the local microenvironment and allows it to tune its own mechanical properties in response to these cues. A growing body of evidence suggests that altered cellular viscoelasticity is a strong indicator of disease state; including cancer, laminopathy (genetic disorders of the nuclear lamina), infection, and aging. Here, we review recent work on the characterization of cell mechanics in disease and discuss the implications of altered viscoelasticity in regulation of immune responses. Finally, we provide an overview of techniques for measuring the mechanical properties of cells deeply embedded within tissues.
Collapse
Affiliation(s)
- Michael J Harris
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Pei-Hsun Wu
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|