1
|
Gu Y, Jin L, Wang L, Ma X, Tian M, Sohail A, Wang J, Wang D. Preparation of Baicalin Liposomes Using Microfluidic Technology and Evaluation of Their Antitumor Activity by a Zebrafish Model. ACS OMEGA 2024; 9:41289-41300. [PMID: 39398129 PMCID: PMC11465266 DOI: 10.1021/acsomega.4c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Baicalin (BCL), a well-known flavonoid molecule, has numerous therapeutic applications. However, its low water solubility and bioavailability limit its applicability. Microfluidics is a new method for liposome preparation that provides efficient and rapid control of the process, improving the stability and controllability. This study used microfluidic techniques to create baicalin liposomes (BCL-LPs), first screening for optimal total flow rates (TFR) and flow rate ratios (FRR), and then optimizing the phospholipid concentration, phospholipid-to-cholesterol ratio, and Tween-80 concentration using univariate and response surface methodology approaches. The study found that the ideal phospholipid content was 9.5%, the phospholipid-to-cholesterol ratio was 9:1 (w:w), and the Tween-80 concentration was 15%. BCL-LPs achieved 95.323% ± 0.481% encapsulation efficiency under the optimum circumstances. Characterization indicated that the BCL-LPs were spherical and uniform in size, with a mean diameter of 62.32 nm ± 0.42, a polydispersity index of 0.092 ± 0.009, and a zeta potential of -25.000 mV ± 0.216. In vitro experiments found that BCL-LPs had a better slow-release effect and stability than the BCL monomer. In zebrafish bioassays, BCL-LPs performed better than BCL monomer in terms of biological activity and bioavailability. The established method provided a feasible medicine delivery platform for BCL and could apply for the transport and encapsulation of more natural compounds, expanding the applications of drug delivery systems in healthcare and cancer therapies.
Collapse
Affiliation(s)
- Yuhao Gu
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Liqiang Jin
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Li Wang
- Jinan
Vocational College of Engineering Department: Youth League Committee, Jinan 250200, China
| | - Xianzheng Ma
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Mingfa Tian
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | | | - Jianchun Wang
- Shandong
Giant E-Tech Co., Ltd., Jinan 250102, China
| | - Daijie Wang
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| |
Collapse
|
2
|
Zhou J, Li J, Xu X, Long S, Cui N, Zhang Y, Shi L, Zhou J. Imaging gastrointestinal damage due to acute mercury poisoning using a mitochondria-targeted dual near-infrared fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134269. [PMID: 38613952 DOI: 10.1016/j.jhazmat.2024.134269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Mercury (Hg) is one of the most widespread pollutants that pose serious threats to public health and the environment. People are inevitably exposed to Hg via different routes, such as respiration, dermal contact, drinking or diet. Hg poisoning could cause gingivitis, inflammation, vomiting and diarrhea, respiratory distress or even death. Especially during the developmental stage, there is considerable harm to the brain development of young children, causing serious symptoms such as intellectual disability and motor impairments, and delayed neural development. Therefore, it's of great significance to develop a specific, quick, practical and labor-saving assay for monitoring Hg2+. Herein, a mitochondria-targeted dual (excitation 700 nm and emission 728 nm) near-infrared (NIR) fluorescent probe JZ-1 was synthesized to detect Hg2+, which is a turn-on fluorescent probe designed based on the rhodamine fluorophore thiolactone, with advantages of swift response, great selectivity, and robust anti-interference capability. Cell fluorescence imaging results showed that JZ-1 could selectively target mitochondria in HeLa cells and monitor exogenous Hg2+. More importantly, JZ-1 has been successfully used to monitor gastrointestinal damage of acute mercury poisoning in a drug-induced mouse model, which provided a great method for sensing Hg species in living subjects, as well as for prenatal diagnosis.
Collapse
Affiliation(s)
- Jianjian Zhou
- School of Pharmacy, School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Jianchun Li
- School of Pharmacy, School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiaotong Xu
- School of Pharmacy, School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Shi Long
- School of Pharmacy, School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ningning Cui
- Baiq Biopharm (Shandong) Co., Ltd., Weifang 261000, China
| | - Yong Zhang
- Qilu Institute of Technology, Jinan 250200, China
| | - Lihong Shi
- School of Pharmacy, School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China.
| | - Jin Zhou
- School of Pharmacy, School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
Sun H, Xu Q, Ren M, Kong F. A water-soluble and biocompatible chitosan-based fluorescent probe for real-time monitoring formaldehyde in living cells and zebrafish. Int J Biol Macromol 2023; 250:126157. [PMID: 37549768 DOI: 10.1016/j.ijbiomac.2023.126157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Formaldehyde (HCHO) is a common environmental toxicant that can harm the human respiratory tract and nervous system when exposed for long period of time. As a carcinogen, HCHO also increases the risk of cancer in humans. HCHO can be produced endogenously in living systems and plays an essential role in physiological and biochemical reactions and pathogenesis. Therefore, monitoring the level of HCHO in vivo and in vitro has become the focus of attention. The designed naphthalene fluorophore was introduced onto modified chitosan to prepare a chitosan-based fluorescent probe (CS-FA) for HCHO detection. Compared to other small-molecule probe analogs for the detection of HCHO, the randomly coiled polymer chain of chitosan enabled CS-FA to "enrich" HCHO using the synergistic binding of hydrazino-naphthalimide recognition sites. Thus, the reaction of the analyte with the recognition site was accelerated, resulting in a faster equilibrium fluorescence response (2-3 min) and high sensitivity. In addition, the introduction of biomass material chitosan also improved the biocompatibility of the probe. Then a series of composite materials (test strips and hydrogel) were prepared based on the probe to expand the application form of the probe.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
4
|
Yan J, Wang K, Gui L, Liu X, Ji Y, Lin J, Luo M, Xu H, Lv J, Tan F, Lin L, Yuan Z. Diagnosing Orthotopic Lung Tumor Using a NTR-Activatable Near-Infrared Fluorescent Probe by Tracheal Inhalation. Anal Chem 2023; 95:14402-14412. [PMID: 37698361 DOI: 10.1021/acs.analchem.3c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Nitroreductase (NTR) is an enzyme that is upregulated under tumor-depleted oxygen conditions. The majority of studies have been conducted on NTR, but many existing fluorescent imaging tools for monitoring NTR inevitably suffer from weak targeting, low sensitivity, and simple tumor models. Research on diagnosing lung tumors has been very popular in recent years, but targeting assays in orthotopic lung tumors is still of great research value, as such models better mimic the reality of cancer in the organism. Here, we developed a novel near-infrared (NIR) fluorescent probe IR-ABS that jointly targets NTR and carbonic anhydrase IX (CAIX). IR-ABS has excellent sensitivity and selectivity and shows exceptional NTR response in spectroscopic tests. The measurements ensured that this probe has good biosafety in both cells and mice. A better NTR response was found in hypoxic tumor cells at the cellular level, distinguishing tumor cells from normal cells. In vivo experiments demonstrated that IR-ABS achieves a hypoxic response at the zebrafish level and enables rapid and accurate tumor margin distinguishment in different mouse tumor models. More importantly, we successfully applied IR-ABS for NTR detection in orthotopic lung tumor models, further combined with tracheal inhalation drug delivery to improve targeting. To the best of our knowledge, we present for the first time a near-infrared imaging method for targeting lung cancerous tumor in situ via tracheal inhalation drug delivery, in contrast to the reported literature. This NIR fluorescence diagnostic strategy for targeting orthotopic lung cancer holds exciting potential for clinical aid in cancer diagnosis.
Collapse
Affiliation(s)
- Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Yingying Ji
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingxuan Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Fang Tan
- Third Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, 650000 Kunming, Yunnan Province, China
| | - Liangting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| |
Collapse
|
5
|
Tang YJ, Shuldiner EG, Karmakar S, Winslow MM. High-Throughput Identification, Modeling, and Analysis of Cancer Driver Genes In Vivo. Cold Spring Harb Perspect Med 2023; 13:a041382. [PMID: 37277208 PMCID: PMC10317066 DOI: 10.1101/cshperspect.a041382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The vast number of genomic and molecular alterations in cancer pose a substantial challenge to uncovering the mechanisms of tumorigenesis and identifying therapeutic targets. High-throughput functional genomic methods in genetically engineered mouse models allow for rapid and systematic investigation of cancer driver genes. In this review, we discuss the basic concepts and tools for multiplexed investigation of functionally important cancer genes in vivo using autochthonous cancer models. Furthermore, we highlight emerging technical advances in the field, potential opportunities for future investigation, and outline a vision for integrating multiplexed genetic perturbations with detailed molecular analyses to advance our understanding of the genetic and molecular basis of cancer.
Collapse
Affiliation(s)
- Yuning J Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Emily G Shuldiner
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Saswati Karmakar
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
6
|
Parvez S, Brandt ZJ, Peterson RT. Large-scale F0 CRISPR screens in vivo using MIC-Drop. Nat Protoc 2023; 18:1841-1865. [PMID: 37069311 PMCID: PMC10419324 DOI: 10.1038/s41596-023-00821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/26/2023] [Indexed: 04/19/2023]
Abstract
The zebrafish is a powerful model system for studying animal development, for modeling genetic diseases, and for large-scale in vivo functional genetics. Because of its ease of use and its high efficiency in targeted gene perturbation, CRISPR-Cas9 has recently gained prominence as the tool of choice for genetic manipulation in zebrafish. However, scaling up the technique for high-throughput in vivo functional genetics has been a challenge. We recently developed a method, Multiplexed Intermixed CRISPR Droplets (MIC-Drop), that makes large-scale CRISPR screening in zebrafish possible. Here, we outline the step-by-step protocol for performing functional genetic screens in zebrafish by using MIC-Drop. MIC-Drop uses multiplexed single-guide RNAs to generate biallelic mutations in injected zebrafish embryos, allowing genetic screens to be performed in F0 animals. Combining microfluidics and DNA barcoding enables simultaneous targeting of tens to hundreds of genes from a single injection needle, while also enabling retrospective and rapid identification of the genotype responsible for an observed phenotype. The primary target audiences for MIC-Drop are developmental biologists, zebrafish geneticists, and researchers interested in performing in vivo functional genetic screens in a vertebrate model system. MIC-Drop will also prove useful in the hands of chemical biologists seeking to identify targets of small molecules that cause phenotypic changes in zebrafish. By using MIC-Drop, a typical screen of 100 genes can be conducted within 2-3 weeks by a single user.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Zachary J Brandt
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Randall T Peterson
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
8
|
Watson S, LaVigne CA, Xu L, Surdez D, Cyrta J, Calderon D, Cannon MV, Kent MR, Silvius KM, Kucinski JP, Harrison EN, Murchison W, Rakheja D, Tirode F, Delattre O, Amatruda JF, Kendall GC. VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis. Cell Rep 2023; 42:112013. [PMID: 36656711 PMCID: PMC10054615 DOI: 10.1016/j.celrep.2023.112013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Clinical sequencing efforts are rapidly identifying sarcoma gene fusions that lack functional validation. An example is the fusion of transcriptional coactivators, VGLL2-NCOA2, found in infantile rhabdomyosarcoma. To delineate VGLL2-NCOA2 tumorigenic mechanisms and identify therapeutic vulnerabilities, we implement a cross-species comparative oncology approach with zebrafish, mouse allograft, and patient samples. We find that VGLL2-NCOA2 is sufficient to generate mesenchymal tumors that display features of immature skeletal muscle and recapitulate the human disease. A subset of VGLL2-NCOA2 zebrafish tumors transcriptionally cluster with embryonic somitogenesis and identify VGLL2-NCOA2 developmental programs, including a RAS family GTPase, ARF6. In VGLL2-NCOA2 zebrafish, mouse, and patient tumors, ARF6 is highly expressed. ARF6 knockout suppresses VGLL2-NCOA2 oncogenic activity in cell culture, and, more broadly, ARF6 is overexpressed in adult and pediatric sarcomas. Our data indicate that VGLL2-NCOA2 is an oncogene that leverages developmental programs for tumorigenesis and that reactivation or persistence of ARF6 could represent a therapeutic opportunity.
Collapse
Affiliation(s)
- Sarah Watson
- Institut Curie Research Center, Paris Sciences et Lettres (PSL) Research University, INSERM U830, 75005 Paris, France; Institut Curie, Paris Sciences et Lettres (PSL) Research University, Medical Oncology Department, 75005 Paris, France
| | - Collette A LaVigne
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Didier Surdez
- Institut Curie Research Center, Paris Sciences et Lettres (PSL) Research University, INSERM U830, 75005 Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), 8008 Zürich, Switzerland
| | - Joanna Cyrta
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Department of Pathology, 75005 Paris, France
| | - Delia Calderon
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA; Molecular, Cellular, and Developmental Biology Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew V Cannon
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Matthew R Kent
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Katherine M Silvius
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jack P Kucinski
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA; Molecular, Cellular, and Developmental Biology Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA
| | - Emma N Harrison
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Whitney Murchison
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Rakheja
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Franck Tirode
- University Lyon, Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, INSERM 1052, CNRS 5286, Centre LéonBérard, 69008 Lyon, France
| | - Olivier Delattre
- Institut Curie Research Center, Paris Sciences et Lettres (PSL) Research University, INSERM U830, 75005 Paris, France; Institut Curie, SIREDO Pediatric Center, 75005 Paris, France; Institut Curie Hospital Group, Unité de Génétique Somatique, 75005 Paris, France
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Departments of Pediatrics and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Genevieve C Kendall
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
9
|
Zebrafish Embryos Display Characteristic Bioelectric Signals during Early Development. Cells 2022; 11:cells11223586. [PMID: 36429015 PMCID: PMC9688842 DOI: 10.3390/cells11223586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Bioelectricity is defined as endogenous electrical signaling mediated by the dynamic distribution of charged molecules. Recently, increasing evidence has revealed that cellular bioelectric signaling is critical for regulating embryonic development, regeneration, and congenital diseases. However, systematic real-time in vivo dynamic electrical activity monitoring of whole organisms has been limited, mainly due to the lack of a suitable model system and voltage measurement tools for in vivo biology. Here, we addressed this gap by utilizing a genetically stable zebrafish line, Tg (ubiquitin: ASAP1), and ASAP1 (Accelerated sensor of action potentials 1), a genetically encoded voltage indicator (GEVI). With light-sheet microscopy, we systematically investigated cell membrane potential (Vm) signals during different embryonic stages. We found cells of zebrafish embryos showed local membrane hyperpolarization at the cleavage furrows during the cleavage period of embryogenesis. This signal appeared before cytokinesis and fluctuated as it progressed. In contrast, whole-cell transient hyperpolarization was observed during the blastula and gastrula stages. These signals were generally limited to the superficial blastomere, but they could be detected within the deeper cells during the gastrulation period. Moreover, the zebrafish embryos exhibit tissue-level cell Vm signals during the segmentation period. Middle-aged somites had strong and dynamic Vm fluctuations starting at about the 12-somite stage. These embryonic stage-specific characteristic cellular bioelectric signals suggest that they might play a diverse role in zebrafish embryogenesis that could underlie human congenital diseases.
Collapse
|
10
|
Zhang T, Wu S, Qin H, Wu H, Liu X, Li B, Zheng X. An Optically Controlled Virtual Microsensor for Biomarker Detection In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205760. [PMID: 36074977 DOI: 10.1002/adma.202205760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Current technologies for the real-time analysis of biomarkers in vivo, such as needle-type microelectrodes and molecular imaging methods based on exogenous contrast agents, are still facing great challenges in either invasive detection or lack of active control of the imaging probes. In this study, by combining the design concepts of needle-type microelectrodes and the fluorescence imaging method, a new technique is developed for detecting biomarkers in vivo, named as "optically controlled virtual microsensor" (OCViM). OCViM is established by the organic integration of a specially shaped laser beam and fluorescent nanoprobe, which serve as the virtual handle and sensor tip, respectively. The laser beam can trap and manipulate the nanoprobe in a programmable manner, and meanwhile excite it to generate fluorescence emission for biosensing. On this basis, fully active control of the nanoprobe is achieved noninvasively in vivo, and multipoint detection can be realized at sub-micrometer resolution by shifting a nanoprobe among multiple positions. By using OCViM, the overexpression and heterogenous distribution of biomarkers in the thrombus is studied in living zebrafish, which is further utilized for the evaluation of antithrombotic drugs. OCViM may provide a powerful tool for the mechanism study of thrombus progression and the evaluation of antithrombotic drugs.
Collapse
Affiliation(s)
- Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
11
|
Li Y, Lee AQ, Lu Z, Sun Y, Lu JW, Ren Z, Zhang N, Liu D, Gong Z. Systematic Characterization of the Disruption of Intestine during Liver Tumor Progression in the xmrk Oncogene Transgenic Zebrafish Model. Cells 2022; 11:cells11111810. [PMID: 35681505 PMCID: PMC9180660 DOI: 10.3390/cells11111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
The crosstalk between tumors and their local microenvironment has been well studied, whereas the effect of tumors on distant tissues remains understudied. Studying how tumors affect other tissues is important for understanding the systemic effect of tumors and for improving the overall health of cancer patients. In this study, we focused on the changes in the intestine during liver tumor progression, using a previously established liver tumor model through inducible expression of the oncogene xmrk in zebrafish. Progressive disruption of intestinal structure was found in the tumor fish, displaying villus damage, thinning of bowel wall, increase in goblet cell number, decrease in goblet cell size and infiltration of eosinophils, most of which were observed phenotypes of an inflammatory intestine. Intestinal epithelial cell renewal was also disrupted, with decreased cell proliferation and increased cell death. Analysis of intestinal gene expression through RNA-seq suggested deregulation of genes related to intestinal function, epithelial barrier and homeostasis and activation of pathways in inflammation, epithelial mesenchymal transition, extracellular matrix organization, as well as hemostasis. Gene set enrichment analysis showed common gene signatures between the intestine of liver tumor fish and human inflammatory bowel disease, the association of which with cancer has been recently noticed. Overall, this study represented the first systematic characterization of the disruption of intestine under the liver tumor condition and suggested targeting intestinal inflammation as a potential approach for managing cancer cachexia.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Zhiyuan Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Na Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| |
Collapse
|
12
|
Weiss JM, Lumaquin-Yin D, Montal E, Suresh S, Leonhardt CS, White RM. Shifting the focus of zebrafish toward a model of the tumor microenvironment. eLife 2022; 11:69703. [PMID: 36538362 PMCID: PMC9767465 DOI: 10.7554/elife.69703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells exist in a complex ecosystem with numerous other cell types in the tumor microenvironment (TME). The composition of this tumor/TME ecosystem will vary at each anatomic site and affects phenotypes such as initiation, metastasis, and drug resistance. A mechanistic understanding of the large number of cell-cell interactions between tumor and TME requires models that allow us to both characterize as well as genetically perturb this complexity. Zebrafish are a model system optimized for this problem, because of the large number of existing cell-type-specific drivers that can label nearly any cell in the TME. These include stromal cells, immune cells, and tissue resident normal cells. These cell-type-specific promoters/enhancers can be used to drive fluorophores to facilitate imaging and also CRISPR cassettes to facilitate perturbations. A major advantage of the zebrafish is the ease by which large numbers of TME cell types can be studied at once, within the same animal. While these features make the zebrafish well suited to investigate the TME, the model has important limitations, which we also discuss. In this review, we describe the existing toolset for studying the TME using zebrafish models of cancer and highlight unique biological insights that can be gained by leveraging this powerful resource.
Collapse
Affiliation(s)
- Joshua M Weiss
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Dianne Lumaquin-Yin
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Emily Montal
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Shruthy Suresh
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Carl S Leonhardt
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States,Department of Medicine, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
13
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|