1
|
Sgouros AP, Theodorou DN. Development of a Meshless Kernel-Based Scheme for Particle-Field Brownian Dynamics Simulations. J Phys Chem B 2024; 128:6907-6921. [PMID: 38984836 PMCID: PMC11264276 DOI: 10.1021/acs.jpcb.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
We develop a meshless discretization scheme for particle-field Brownian dynamics simulations. The density is assigned on the particle level using a weighting kernel with finite support. The system's free energy density is derived from an equation of state (EoS) and includes a square gradient term. The numerical stability of the scheme is evaluated in terms of reproducing the thermodynamics (equilibrium density and compressibility) and dynamics (diffusion coefficient) of homogeneous samples. Using a reduced description to simplify our analysis, we find that numerical stability depends strictly on reduced reference compressibility, kernel range, time step in relation to the friction factor, and reduced external pressure, the latter being relevant under isobaric conditions. Appropriate parametrization yields precise thermodynamics, further improved through a simple renormalization protocol. The dynamics can be restored exactly through a trivial manipulation of the time step and friction coefficient. A semiempirical formula for the upper bound on the time step is derived, which takes into account variations in compressibility, friction factor, and kernel range. We test the scheme on realistic mesoscopic models of fluids, involving both simple (Helfand) and more sophisticated (Sanchez-Lacombe) equations of state.
Collapse
Affiliation(s)
- Aristotelis P. Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| | - Doros N. Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| |
Collapse
|
2
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
3
|
Hollborn KU, Schneider L, Müller M. Effect of Slip-Spring Parameters on the Dynamics and Rheology of Soft, Coarse-Grained Polymer Models. J Phys Chem B 2022; 126:6725-6739. [PMID: 36037428 DOI: 10.1021/acs.jpcb.2c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly coarse-grained (hCG) linear polymer models allow for accessing long time and length scales by dissipative particle dynamics (DPD). This top-down strategy exploits the universal equilibrium behavior of long, flexible macromolecules by accounting only for the relevant interactions, such as molecular connectivity, and by parametrizing their strength via coarse-grained invariants, such as the mean-squared end-to-end distance. The description of the dynamics of long, entangled polymers, however, poses a challenge because (i) the noncrossability of the molecular backbones is not enforced by the soft interactions of an hCG model and (ii) the rheology involves multiple time and length scales, such as the Rouse-like dynamics on short scales and the reptation dynamics on long scales. One popular technique to effectively mimic the effect of entanglements in linear polymer melts via hCG models is slip-springs, and quantitative agreement with simulations that explicitly account for the noncrossability of molecular contours, experiments, and theoretical predictions has been achieved by identifying the time, length, and energy scales of the hCG model and adjusting the number of slip-springs per macromolecule. In the present work, we study how the spatial extent and the mobility of slip-springs affect the dynamics and discuss their implications in the choice of the degree of coarse-graining in computationally efficient hCG models.
Collapse
Affiliation(s)
- Kai-Uwe Hollborn
- Institute for Theoretical Physics, Georg-August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ludwig Schneider
- Institute for Theoretical Physics, Georg-August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.,Pritzker School of Molecular Engineering, University of Chicago, 5640 Ellis Avenue, Chicago, Illinois 60637, United States
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Nicholson DA, Andreev M, Kearns KL, Chyasnavichyus M, Monaenkova D, Moore J, den Doelder J, Rutledge GC. Experiments and Modeling of Flow-Enhanced Nucleation in LLDPE. J Phys Chem B 2022; 126:6529-6535. [PMID: 35998645 DOI: 10.1021/acs.jpcb.2c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational and experimental framework for quantifying flow-enhanced nucleation (FEN) in polymers is presented and demonstrated for an industrial-grade linear low-density polyethylene (LLDPE). Experimentally, kinetic measurements of isothermal crystallization were performed by using fast-scanning calorimetry (FSC) for melts that were presheared at various strain rates. The effect of shear on the average conformation tensor of the melt was modeled with the discrete slip-link model (DSM). The conformation tensor was then related to the acceleration in nucleation kinetics by using an expression previously validated with nonequilibrium molecular dynamics (NEMD). The expression is based on the nematic order tensor of Kuhn segments, which can be obtained from the conformation tensor of entanglement strands. The single adjustable parameter of the model was determined by fitting to the experimental FSC data. This expression accurately describes FEN for the LLDPE, representing a significant advancement toward the development of a fully integrated processing model for crystallizable polymers.
Collapse
Affiliation(s)
- David A Nicholson
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marat Andreev
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kenneth L Kearns
- The Dow Chemical Company, Midland, Michigan 48642, United States
| | | | - Daria Monaenkova
- The Dow Chemical Company, Midland, Michigan 48642, United States
| | - Jonathan Moore
- The Dow Chemical Company, Midland, Michigan 48642, United States
| | - Jaap den Doelder
- Dow Benelux BV, 4530 AA Terneuzen, The Netherlands.,Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Gregory C Rutledge
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Dietz JD, Kröger M, Hoy RS. Validation and Refinement of Unified Analytic Model for Flexible and Semiflexible Polymer Melt Entanglement. Macromolecules 2022; 55:3613-3626. [PMID: 35571224 PMCID: PMC9097689 DOI: 10.1021/acs.macromol.1c02597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Indexed: 11/28/2022]
Abstract
We combine molecular dynamics simulations and topological analyses (TA) to validate and refine a recently proposed unified analytic model [Hoy, R. S.; Kröger, M. Phys. Rev. Lett. 2020, 124, 147801] for the reduced entanglement length, tube diameter, and plateau modulus of polymer melts. While the functional forms of the previously published expressions are insensitive to the choice of the TA method and N e -estimator, obtaining better statistics and eliminating all known sources of systematic error in the N e -estimation alters their numerical coefficients. Our revised expressions quantitatively match bead-spring simulation data over the entire range of chain stiffnesses for which systems remain isotropic, semiquantitatively match all available experimental data for flexible, semiflexible, and stiff polymer melts (including new data for conjugated polymers that lie in a previously unpopulated stiffness regime), and outperform previously developed unified scaling theories.
Collapse
Affiliation(s)
- Joseph D. Dietz
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Robert S. Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
6
|
Mechanisms of DNA Mobilization and Sequestration. Genes (Basel) 2022; 13:genes13020352. [PMID: 35205396 PMCID: PMC8872102 DOI: 10.3390/genes13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
The entire genome becomes mobilized following DNA damage. Understanding the mechanisms that act at the genome level requires that we embrace experimental and computational strategies to capture the behavior of the long-chain DNA polymer, which is the building block for the chromosome. Long-chain polymers exhibit constrained, sub-diffusive motion in the nucleus. Cross-linking proteins, including cohesin and condensin, have a disproportionate effect on genome organization in their ability to stabilize transient interactions. Cross-linking proteins can segregate the genome into sub-domains through polymer–polymer phase separation (PPPS) and can drive the formation of gene clusters through small changes in their binding kinetics. Principles from polymer physics provide a means to unravel the mysteries hidden in the chains of life.
Collapse
|
7
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
8
|
Becerra D, Córdoba A, Schieber JD. Examination of Nonuniversalities in Entangled Polymer Melts during the Start-Up of Steady Shear Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diego Becerra
- Department of Chemical Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrés Córdoba
- Department of Chemical Engineering, Universidad de Concepción, Concepción 4030000, Chile
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jay D. Schieber
- Department of Chemical and Biological Engineering, Department of Physics, Department of Applied Mathematics, and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
9
|
Paiva FL, Secchi AR, Calado V, Maia J, Khani S. Shear Flow and Relaxation Behaviors of Entangled Viscoelastic Nanorod-Stabilized Immiscible Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felipe L. Paiva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
- School of Chemistry, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rua Horácio Macedo 2030, Rio de Janeiro, RJ 21941-909, Brazil
| | - Argimiro R. Secchi
- Chemical Engineering Graduate Program (COPPE), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rua Horácio Macedo 2030, Rio de Janeiro, RJ 21941-909, Brazil
| | - Verônica Calado
- School of Chemistry, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rua Horácio Macedo 2030, Rio de Janeiro, RJ 21941-909, Brazil
| | - João Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Shaghayegh Khani
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Steenbakkers RJA, Andreev M, Schieber JD. Thermodynamically consistent incorporation of entanglement spatial fluctuations in the slip-link model. Phys Rev E 2021; 103:022501. [PMID: 33736108 DOI: 10.1103/physreve.103.022501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/09/2020] [Indexed: 11/07/2022]
Abstract
We evaluate the thermodynamic consistency of the anisotropic mobile slip-link model for entangled flexible polymers. The level of description is that of a single chain, whose interactions with other chains are coarse grained to discrete entanglements. The dynamics of the model consist of the motion of entanglements through space and of the chain through the entanglements, as well as the creation and destruction of entanglements, which are implemented in a mean-field way. Entanglements are modeled as discrete slip links, whose spatial positions are confined by quadratic potentials. The confinement potentials move with the macroscopic velocity field, hence the entanglements fluctuate around purely affine motion. We allow for anisotropy of these fluctuations, described by a set of shape tensors. By casting the model in the form of the general equation for the nonequilibrium reversible-irreversible coupling from nonequilibrium thermodynamics, we show that (i) since the confinement potentials contribute to the chain free energy, they must also contribute to the stress tensor, (ii) these stress contributions are of two kinds: one related to the virtual springs connecting the slip links to the centers of the confinement potentials and the other related to the shape tensors, and (iii) these two kinds of stress contributions cancel each other if the confinement potentials become anisotropic in flow, according to a lower-convected evolution of the confinement strength or, equivalently, an upper-convected evolution of the shape tensors of the entanglement spatial fluctuations. In previous publications, we have shown that this cancellation is necessary for the model to obey the stress-optical rule and the Green-Kubo relation, and simultaneously to agree with plateau modulus predictions of multichain models and simulations.
Collapse
Affiliation(s)
- Rudi J A Steenbakkers
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, USA.,Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, USA
| | - Marat Andreev
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, USA.,Department of Physics, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, USA.,Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, USA.,Department of Physics, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, USA.,Department of Applied Mathematics, Illinois Institute of Technology, 10 West 32nd Street, Chicago, Illinois 60616, USA
| |
Collapse
|
11
|
Ricarte RG, Shanbhag S. Unentangled Vitrimer Melts: Interplay between Chain Relaxation and Cross-link Exchange Controls Linear Rheology. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02530] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ralm G. Ricarte
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Sachin Shanbhag
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
12
|
Behbahani AF, Schneider L, Rissanou A, Chazirakis A, Bačová P, Jana PK, Li W, Doxastakis M, Polińska P, Burkhart C, Müller M, Harmandaris VA. Dynamics and Rheology of Polymer Melts via Hierarchical Atomistic, Coarse-Grained, and Slip-Spring Simulations. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02583] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alireza F. Behbahani
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Greece
| | - Ludwig Schneider
- Institute for Theoretical Physics, Georg-August University Göttingen, Goettingen 37077, Germany
| | - Anastassia Rissanou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Greece
| | - Anthony Chazirakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Greece
| | - Petra Bačová
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Greece
| | - Pritam Kumar Jana
- Institute for Theoretical Physics, Georg-August University Göttingen, Goettingen 37077, Germany
| | - Wei Li
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - Craig Burkhart
- The Goodyear Tire and Rubber Company, 142 Goodyear Blvd., Akron, Ohio 44305, United States
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Goettingen 37077, Germany
| | - Vagelis A. Harmandaris
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
13
|
Wu Z, Kalogirou A, De Nicola A, Milano G, Müller‐Plathe F. Atomistic hybrid
particle‐field
molecular dynamics combined with
slip‐springs
: Restoring entangled dynamics to simulations of polymer melts. J Comput Chem 2020; 42:6-18. [DOI: 10.1002/jcc.26428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Zhenghao Wu
- Eduard‐Zintl‐Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Darmstadt Germany
| | - Andreas Kalogirou
- Eduard‐Zintl‐Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Darmstadt Germany
| | - Antonio De Nicola
- Department of Organic Materials Science Yamagata University Yamagata‐ken Japan
| | - Giuseppe Milano
- Department of Organic Materials Science Yamagata University Yamagata‐ken Japan
| | - Florian Müller‐Plathe
- Eduard‐Zintl‐Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Darmstadt Germany
| |
Collapse
|
14
|
Hussain S, Haji-Akbari A. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J Chem Phys 2020; 152:060901. [DOI: 10.1063/1.5127780] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
15
|
Andreev M, Nicholson D, Kotula A, Moore J, den Doelder J, Rutledge GC. Rheology of Crystallizing LLDPE. JOURNAL OF RHEOLOGY 2020; 64:10.1122/8.0000110. [PMID: 34131354 PMCID: PMC8200930 DOI: 10.1122/8.0000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 06/12/2023]
Abstract
Polymer crystallization occurs in many plastic manufacturing processes, from injection molding to film blowing. Linear low-density polyethylene (LLDPE) is one of the most commonly processed polymers, wherein the type and extent of short-chain branching (SCB) may be varied to influence crystallization. In this work, we report simultaneous measurements of the rheology and Raman spectra, using a Rheo-Raman microscope, for two industrial-grade LLDPEs undergoing crystallization. These polymers are characterized by broad polydispersity, SCB and the presence of polymer chain entanglements. The rheological behavior of these entangled LLDPE melts is modeled as a function of crystallinity using a slip-link model. The partially crystallized melt is represented by a blend of linear chains with either free or crosslinked ends, wherein the crosslinks represent attachment to growing crystallites, and a modulus shift factor that increases with degree of crystallinity. In contrast to our previous application of the slip-link model to isotactic polypropylene (iPP), in which the introduction of only bridging segments with crosslinks at both ends was sufficient to describe the available data, for these LLDPEs we find it necessary to introduce dangling segments, with crosslinks at only one end. The model captures quantitatively the evolution of viscosity and elasticity with crystallization over the whole range of frequencies in the linear regime for two LLDPE grades.
Collapse
Affiliation(s)
- Marat Andreev
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - David Nicholson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Anthony Kotula
- National Institute of Standards and Technology, Gaithersburg, MD
| | | | - Jaap den Doelder
- Dow Benelux BV, Terneuzen, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology. Eindhoven, The Netherlands
| | - Gregory C Rutledge
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
16
|
Hall R, Desai PS, Kang BG, Huang Q, Lee S, Chang T, Venerus DC, Mays J, Ntetsikas K, Polymeropoulos G, Hadjichristidis N, Larson RG. Assessing the Range of Validity of Current Tube Models through Analysis of a Comprehensive Set of Star–Linear 1,4-Polybutadiene Polymer Blends. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Beom-Goo Kang
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - Sanghoon Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taihyun Chang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - David C. Venerus
- Department of Chemical and Biological Engineering and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Jimmy Mays
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Konstantinos Ntetsikas
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Polymeropoulos
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
17
|
Sgouros AP, Vogiatzis GG, Megariotis G, Tzoumanekas C, Theodorou DN. Multiscale Simulations of Graphite-Capped Polyethylene Melts: Brownian Dynamics/Kinetic Monte Carlo Compared to Atomistic Calculations and Experiment. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01379] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A. P. Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| | - G. G. Vogiatzis
- Department of Mechanical Engineering, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - G. Megariotis
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| | - C. Tzoumanekas
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| | - D. N. Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| |
Collapse
|
18
|
Shanbhag S. Mathematical foundations of an ultra coarse-grained slip link model. J Chem Phys 2019; 151:044903. [PMID: 31370523 DOI: 10.1063/1.5111032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The master equation underlying ecoSLM, an ultra-coarse-grained slip link model, is presented. In the absence of constraint release, the equilibrium and dynamic properties of the discrete master equation for large chains are found to be virtually identical to the continuous Fokker-Planck equation for Brownian particles diffusing in a potential. A single-chain microscopic model with repulsion between adjacent slip links is described. It is approximately consistent with the quadratic fluctuation potential used in ecoSLM. Mapping ecoSLM with fine-grained slip link models or experiments requires specification of an effective friction as a function of molecular weight. Methods to accomplish this are discussed. Collectively, the mathematical framework described provides an interface for fine-grained slip link models to potentially use ecoSLM for extreme coarse-graining.
Collapse
Affiliation(s)
- Sachin Shanbhag
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
19
|
Karatrantos A, Composto RJ, Winey KI, Kröger M, Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers (Basel) 2019; 11:E876. [PMID: 31091725 PMCID: PMC6571671 DOI: 10.3390/polym11050876] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022] Open
Abstract
This review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent. Models with soft potentials or slip-springs can estimate accurately the tube model predictions in polymer melts enabling us to reach larger length scales and simulate well entangled polymers. However, in polymer nanocomposites, reptational polymer diffusion is more complicated due to nanoparticle fillers size, loading, geometry and polymer-nanoparticle interactions.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| |
Collapse
|
20
|
Xi L. Molecular simulation for predicting the rheological properties of polymer melts. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1605600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li Xi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Affiliation(s)
- Sachin Shanbhag
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306-4120, United States
| |
Collapse
|
22
|
Moghadam S, Saha Dalal I, Larson RG. Slip-Spring and Kink Dynamics Models for Fast Extensional Flow of Entangled Polymeric Fluids. Polymers (Basel) 2019; 11:E465. [PMID: 30960449 PMCID: PMC6473671 DOI: 10.3390/polym11030465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
We combine a slip-spring model with an 'entangled kink dynamics' (EKD) model for strong uniaxial extensional flows (with Rouse Weissenberg number W i R ≫ 1 ) of long ( M w > 1 Mkg / mol for polystyrene) entangled polymers in solutions and melts. The slip-spring model captures the dynamics up to the formation of a 'kinked' or folded state, while the kink dynamics simulation tracks the dynamics from that point forward to complete extension. We show that a single-chain slip-spring model using affine motion of the slip-spring anchor points produces unrealistically high tension near the center of the chain once the Hencky strain exceeds around unity or so, exceeding the maximum tension that a chain entangled with a second chain is able to support. This unrealistic tension is alleviated by pairing the slip links on one chain with those on a second chain, and allowing some of the large tension on one of the two to be transferred to the second chain, producing non-affine motion of each. This explicit pairing of entanglements mimics the entanglement pairing also used in the EKD model, and allows the slip spring simulations to be carried out to strains high enough for the EKD model to become valid. We show that results nearly equivalent to those from paired chains are obtained in a single-chain slip-spring simulation by simply specifying that the tension in a slip spring cannot exceed the theoretical maximum value of ζ ' ϵ ˙ L 2 / 8 where ζ ' , ϵ ˙ and L are the friction per unit length, strain rate and contour length of the chain, respectively. The effects of constraint release (CR) and regeneration of entanglements is also studied and found to have little effect on the chain statistics up to the formation of the kinked state. The resulting hybrid model provides a fast, simple, simulation method to study the response of high molecular weight ( M w > 1 Mkg / mol ) polymers in fast flows ( W i R ≫ 1 ), where conventional simulation techniques are less applicable due to computational cost.
Collapse
Affiliation(s)
- Soroush Moghadam
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Indranil Saha Dalal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Liu L, den Otter WK, Briels WJ. Coarse-Grained Simulations of Three-Armed Star Polymer Melts and Comparison with Linear Chains. J Phys Chem B 2018; 122:10210-10218. [DOI: 10.1021/acs.jpcb.8b03104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Liu
- Department of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
| | | | - Wim J. Briels
- Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany
| |
Collapse
|
24
|
Megariotis G, Vogiatzis GG, Sgouros AP, Theodorou DN. Slip Spring-Based Mesoscopic Simulations of Polymer Networks: Methodology and the Corresponding Computational Code. Polymers (Basel) 2018; 10:E1156. [PMID: 30961081 PMCID: PMC6404024 DOI: 10.3390/polym10101156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
In previous work by the authors, a new methodology was developed for Brownian dynamics/kinetic Monte Carlo (BD/kMC) simulations of polymer melts. In this study, this methodology is extended for dynamical simulations of crosslinked polymer networks in a coarse-grained representation, wherein chains are modeled as sequences of beads, each bead encompassing a few Kuhn segments. In addition, the C++ code embodying these simulations, entitled Engine for Mesoscopic Simulations for Polymer Networks (EMSIPON) is described in detail. A crosslinked network of cis-1,4-polyisoprene is chosen as a test system. From the thermodynamic point of view, the system is fully described by a Helmholtz energy consisting of three explicit contributions: entropic springs, slip springs and non-bonded interactions. Entanglements between subchains in the network are represented by slip springs. The ends of the slip springs undergo thermally activated hops between adjacent beads along the chain backbones, which are tracked by kinetic Monte Carlo simulation. In addition, creation/destruction processes are included for the slip springs at dangling subchain ends. The Helmholtz energy of non-bonded interactions is derived from the Sanchez⁻Lacombe equation of state. The isothermal compressibility of the polymer network is predicted from equilibrium density fluctuations in very good agreement with the underlying equation of state and with experiment. Moreover, the methodology and the corresponding C++ code are applied to simulate elongational deformations of polymer rubbers. The shear stress relaxation modulus is predicted from equilibrium simulations of several microseconds of physical time in the undeformed state, as well as from stress-strain curves of the crosslinked polymer networks under deformation.
Collapse
Affiliation(s)
- Grigorios Megariotis
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| | - Georgios G Vogiatzis
- Polymer Technology, Department of Mechanical Engineering, Eindhoven University of Technology, PO BOX 513, 5600MB Eindhoven, The Netherlands.
| | - Aristotelis P Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| |
Collapse
|
25
|
Efficient Determination of Slip-Link Parameters from Broadly Polydisperse Linear Melts. Polymers (Basel) 2018; 10:polym10080908. [PMID: 30960833 PMCID: PMC6403776 DOI: 10.3390/polym10080908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
We investigate the ability of a coarse-grained slip-link model and a simple double reptation model to describe the linear rheology of polydisperse linear polymer melts. Our slip-link model is a well-defined mathematical object that can describe the equilibrium dynamics and non-linear rheology of flexible polymer melts with arbitrary polydispersity and architecture with a minimum of inputs: the molecular weight of a Kuhn step, the entanglement activity, and Kuhn step friction. However, this detailed model is computationally expensive, so we also examine predictions of the cheaper double reptation model, which is restricted to only linear rheology near the terminal zone. We report the storage and loss moduli for polydisperse polymer melts and compare with experimental measurements from small amplitude oscillatory shear. We examine three chemistries: polybutadiene, polypropylene and polyethylene. We also use a simple double reptation model to estimate parameters for the slip-link model and examine under which circumstances this simplified model works. The computational implementation of the slip-link model is accelerated with the help of graphics processing units, which allow us to simulate in parallel large ensembles made of up to 50,000 chains. We show that our simulation can predict the dynamic moduli for highly entangled polymer melts over nine decades of frequency. Although the double reptation model performs well only near the terminal zone, it does provide a convenient and inexpensive way to estimate the entanglement parameter for the slip-link model from polydisperse data.
Collapse
|
26
|
Stephanou PS, Kröger M. From intermediate anisotropic to isotropic friction at large strain rates to account for viscosity thickening in polymer solutions. J Chem Phys 2018; 148:184903. [PMID: 29764144 DOI: 10.1063/1.5019337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to be peculiar in the sense that for entangled polymer melts it monotonically decreases-whereas for concentrated polymer solutions it increases-with increasing strain rate beyond the inverse Rouse time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supplemented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as the polymer concentration decreases, and the model is seen to capture the experimentally observed behavior. Additional refinements may supplement the present model to capture very strong flows. We furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its capacity to improve our microscopic understanding of the rheology of entangled polymer melts and concentrated polymer solutions.
Collapse
Affiliation(s)
- Pavlos S Stephanou
- Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
27
|
Ramírez-Hernández A, Peters BL, Schneider L, Andreev M, Schieber JD, Müller M, Kröger M, de Pablo JJ. A Detailed Examination of the Topological Constraints of Lamellae-Forming Block Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Brandon L. Peters
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ludwig Schneider
- Institut für Theoretische Physik, Georg-August Universität, 37077 Göttingen, Germany
| | - Marat Andreev
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jay D. Schieber
- Center for Molecular Study of Condensed Soft Matter, Department of Chemical and Biological Engineering and Department of Physics, Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August Universität, 37077 Göttingen, Germany
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Juan J. de Pablo
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Xu WS, Carrillo JMY, Lam CN, Sumpter BG, Wang Y. Molecular Dynamics Investigation of the Relaxation Mechanism of Entangled Polymers after a Large Step Deformation. ACS Macro Lett 2018; 7:190-195. [PMID: 35610891 DOI: 10.1021/acsmacrolett.7b00900] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The chain retraction hypothesis of the tube model for nonlinear polymer rheology has been challenged by the recent small-angle neutron scattering (SANS) experiment (Wang, Z.; Lam, C. N.; Chen, W.-R.; Wang, W.; Liu, J.; Liu, Y.; Porcar, L.; Stanley, C. B.; Zhao, Z.; Hong, K.; Wang, Y., Fingerprinting Molecular Relaxation in Deformed Polymers. Phys. Rev. X 2017, 7, 031003). In this work, we further examine the microscopic relaxation mechanism of entangled polymer melts after a large step uniaxial extension by using large-scale molecular dynamics simulation. We show that the unique structural features associated with the chain retraction mechanism of the tube model are absent in our simulations, in agreement with the previous experimental results. In contrast to SANS experiments, molecular dynamics simulations allow us to accurately and unambiguously determine the evolution of the radius of gyration tensor of a long polymer chain after a large step deformation. Contrary to the prediction of the tube model, our simulations reveal that the radius of gyration in the perpendicular direction to stretching increases monotonically toward its equilibrium value throughout the stress relaxation. These results provide a critical step in improving our understanding of nonlinear rheology of entangled polymers.
Collapse
Affiliation(s)
- Wen-Sheng Xu
- Center for Nanophase Materials Sciences and ‡Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences and ‡Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Christopher N. Lam
- Center for Nanophase Materials Sciences and ‡Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences and ‡Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences and ‡Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
29
|
Koski JP, Ferrier RC, Krook NM, Chao H, Composto RJ, Frischknecht AL, Riggleman RA. Comparison of Field-Theoretic Approaches in Predicting Polymer Nanocomposite Phase Behavior. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jason P. Koski
- Sandia National
Laboratories, Albuquerque, New Mexico 87185, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Sgouros AP, Megariotis G, Theodorou DN. Slip-Spring Model for the Linear and Nonlinear Viscoelastic Properties of Molten Polyethylene Derived from Atomistic Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00694] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. P. Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA),GR-15780 Athens, Greece
| | - G. Megariotis
- School of Chemical Engineering, National Technical University of Athens (NTUA),GR-15780 Athens, Greece
| | - D. N. Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA),GR-15780 Athens, Greece
| |
Collapse
|
31
|
Ramírez-Hernández A, Peters BL, Schneider L, Andreev M, Schieber JD, Müller M, de Pablo JJ. A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation. J Chem Phys 2017; 146:014903. [PMID: 28063448 DOI: 10.1063/1.4972582] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coarse grained simulation approaches provide powerful tools for the prediction of the equilibrium properties of polymeric systems. Recent efforts have sought to develop coarse-graining strategies capable of predicting the non-equilibrium behavior of entangled polymeric materials. Slip-link and slip-spring models, in particular, have been shown to be capable of reproducing several key aspects of the linear response and rheology of polymer melts. In this work, we extend a previously proposed multi-chain slip-spring model in a way that correctly incorporates the effects of the fluctuating environment in which polymer segments are immersed. The model is used to obtain the equation of state associated with the slip-springs, and the results are compared to those of related numerical approaches and an approximate analytical expression. The model is also used to examine a polymer melt confined into a thin film, where an inhomogeneous distribution of polymer segments is observed, and the corresponding inhomogeneities associated with density fluctuations are reflected on the spatial slip-spring distribution.
Collapse
Affiliation(s)
- Abelardo Ramírez-Hernández
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Brandon L Peters
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ludwig Schneider
- Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
| | - Marat Andreev
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
| | - Juan J de Pablo
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| |
Collapse
|
32
|
Dell ZE, Schweizer KS. Segment-scale, force-level theory of mesoscopic dynamic localization and entropic elasticity in entangled chain polymer liquids. J Chem Phys 2017; 146:134901. [PMID: 28390385 DOI: 10.1063/1.4978774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We develop a segment-scale, force-based theory for the breakdown of the unentangled Rouse model and subsequent emergence of isotropic mesoscopic localization and entropic elasticity in chain polymer liquids in the absence of ergodicity-restoring anisotropic reptation or activated hopping motion. The theory is formulated in terms of a conformational N-dynamic-order-parameter generalized Langevin equation approach. It is implemented using a universal field-theoretic Gaussian thread model of polymer structure and closed at the level of the chain dynamic second moment matrix. The physical idea is that the isotropic Rouse model fails due to the dynamical emergence, with increasing chain length, of time-persistent intermolecular contacts determined by the combined influence of local uncrossability, long range polymer connectivity, and a self-consistent treatment of chain motion and the dynamic forces that hinder it. For long chain melts, the mesoscopic localization length (identified as the tube diameter) and emergent entropic elasticity predictions are in near quantitative agreement with experiment. Moreover, the onset chain length scales with the semi-dilute crossover concentration with a realistic numerical prefactor. Distinctive novel predictions are made for various off-diagonal correlation functions that quantify the full spatial structure of the dynamically localized polymer conformation. As the local excluded volume constraint and/or intrachain bonding spring are softened to allow chain crossability, the tube diameter is predicted to swell until it reaches the radius-of-gyration at which point mesoscopic localization vanishes in a discontinuous manner. A dynamic phase diagram for such a delocalization transition is constructed, which is qualitatively consistent with simulations and the classical concept of a critical entanglement degree of polymerization.
Collapse
Affiliation(s)
- Zachary E Dell
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Masubuchi Y, Amamoto Y. Orientational Cross-Correlation in Entangled Binary Blends in Primitive Chain Network Simulations. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuichi Masubuchi
- National Composite Center, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshifumi Amamoto
- National Composite Center, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
34
|
Desai PS, Kang BG, Katzarova M, Hall R, Huang Q, Lee S, Shivokhin M, Chang T, Venerus DC, Mays J, Schieber JD, Larson RG. Challenging Tube and Slip-Link Models: Predicting the Linear Rheology of Blends of Well-Characterized Star and Linear 1,4-Polybutadienes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02641] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Beom-Goo Kang
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37966, United States
| | | | | | | | - Sanghoon Lee
- Department
of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | | | - Taihyun Chang
- Department
of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | | | - Jimmy Mays
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37966, United States
| | | | | |
Collapse
|
35
|
Stephanou PS, Tsimouri IC, Mavrantzas VG. Flow-Induced Orientation and Stretching of Entangled Polymers in the Framework of Nonequilibrium Thermodynamics. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Pavlos S. Stephanou
- Department
of Materials, Polymer Physics, ETH Zurich, Leopold-Ruzicka-Weg 4, HCP F 45.2, CH-8093 Zurich, Switzerland
| | - Ioanna Ch. Tsimouri
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR26504, Greece
- Department
of Mechanical and Process Engineering, Particle Technology Laboratory,
Institute of Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
| |
Collapse
|
36
|
Karim M, Indei T, Schieber JD, Khare R. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations. Phys Rev E 2016; 93:012501. [PMID: 26871112 DOI: 10.1103/physreve.93.012501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/07/2022]
Abstract
Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012)PLEEE81539-375510.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length d_{T}, in addition to those length scales already relevant: monomer bead size d, probe size R, polymer radius of gyration R_{g}, simulation box size L, shear wave penetration length Δ, and wave period Λ. Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d≳Λ; medium inertia is important and IGSER is required when R≳Λ; and the probe should not experience hydrodynamic interaction with its periodic images, L≳Δ. These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as M_{w}^{3}. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness L_{S} of the shell around the particle that contains the added mass, L_{S}>d. We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.
Collapse
Affiliation(s)
- Mir Karim
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409, USA
| | - Tsutomu Indei
- Center for Molecular Study of Condensed Soft Matter, and Department of Chemical and Biological Engineering, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, Illinois 60616, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, and Department of Chemical and Biological Engineering, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, Illinois 60616, USA.,Department of Physics, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, USA.,Department of Applied Mathematics, Illinois Institute of Technology, 10 West 32nd Street, Chicago, Illinois 60616, USA
| | - Rajesh Khare
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409, USA
| |
Collapse
|
37
|
Ramírez-Hernández A, Peters BL, Andreev M, Schieber JD, de Pablo JJ. A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology. J Chem Phys 2015; 143:243147. [DOI: 10.1063/1.4936878] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abelardo Ramírez-Hernández
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Brandon L. Peters
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Marat Andreev
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jay D. Schieber
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J. de Pablo
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
38
|
Affiliation(s)
- Vaidyanathan Sethuraman
- Department
of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dylan Kipp
- Department
of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- Department
of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
39
|
Andreev M, Schieber JD. Accessible and Quantitative Entangled Polymer Rheology Predictions, Suitable for Complex Flow Calculations. Macromolecules 2015. [DOI: 10.1021/ma502525x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marat Andreev
- Department of Physics, ‡Center for Molecular
Study of Condensed Soft Matter, and §Department of
Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Jay D. Schieber
- Department of Physics, ‡Center for Molecular
Study of Condensed Soft Matter, and §Department of
Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
40
|
Sussman DM, Tung WS, Winey KI, Schweizer KS, Riggleman RA. Entanglement Reduction and Anisotropic Chain and Primitive Path Conformations in Polymer Melts under Thin Film and Cylindrical Confinement. Macromolecules 2014. [DOI: 10.1021/ma501193f] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel M. Sussman
- Department of Physics and Astronomy, ‡Department of Materials
Science
and Engineering, and §Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Materials Science, Chemistry, and Chemical & Biomolecular Engineering and ⊥Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Wei-Shao Tung
- Department of Physics and Astronomy, ‡Department of Materials
Science
and Engineering, and §Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Materials Science, Chemistry, and Chemical & Biomolecular Engineering and ⊥Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Karen I. Winey
- Department of Physics and Astronomy, ‡Department of Materials
Science
and Engineering, and §Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Materials Science, Chemistry, and Chemical & Biomolecular Engineering and ⊥Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Department of Physics and Astronomy, ‡Department of Materials
Science
and Engineering, and §Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Materials Science, Chemistry, and Chemical & Biomolecular Engineering and ⊥Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Robert A. Riggleman
- Department of Physics and Astronomy, ‡Department of Materials
Science
and Engineering, and §Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Materials Science, Chemistry, and Chemical & Biomolecular Engineering and ⊥Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|