1
|
Haidar AF, Belet A, Goderis B, Léonard AF, Gommes CJ. Small-Angle Scattering Indicates Equilibrium Instead of Metastable Capillary Condensation in SBA-15 Mesoporous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17444-17453. [PMID: 39110604 DOI: 10.1021/acs.langmuir.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Questions about the origin of the adsorption/desorption hysteresis in mesoporous materials are as old as sorption experiments themselves. The historical conception that underlines most existing methods to extract pore size distributions from sorption data assumes that adsorption is a metastable process and that desorption takes place at thermodynamic equilibrium. In this work, we measure nitrogen and argon sorption on a series of 14 SBA-15 ordered mesoporous silicas and use small-angle X-ray scattering to independently determine their pore sizes. We find that capillary condensation systematically occurs close to thermodynamic equilibrium according to a Derjaguin-Broekhoff-de Boer calculation. Our analysis suggests that many earlier works have significantly underestimated the actual pore size in SBA-15 materials. It also highlights the critical role of the reference isotherm used to calibrate the fluid-solid interaction in the models.
Collapse
Affiliation(s)
- Ali F Haidar
- Department of Chemical Engineering, University of Liège B6A, Allée du Six Août 3, B-4000 Liège, Belgium
| | - Artium Belet
- Department of Chemical Engineering, University of Liège B6A, Allée du Six Août 3, B-4000 Liège, Belgium
| | - Bart Goderis
- Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexandre F Léonard
- CARPOR, Department of Chemical Engineering, University of Liège B6A, Allée du Six Août 3, B-4000 Liège, Belgium
| | - Cedric J Gommes
- Department of Chemical Engineering, University of Liège B6A, Allée du Six Août 3, B-4000 Liège, Belgium
| |
Collapse
|
2
|
Baldo AP, Ilgen AG, Leung K. Deprotonation of formic, acetic acids and bicarbonate ion in slit silica nanopores at infinite dilution and in the presence of electrolytes. J Colloid Interface Sci 2024; 674:482-489. [PMID: 38941940 DOI: 10.1016/j.jcis.2024.05.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/30/2024]
Abstract
Dielectric effects and the coupled electrostatics between the nanoconfined and the internal/external aqueous media contribute to the observed deviations of chemistry within the nanoconfined environment when compared with unconfined systems. A systematic understanding has remained elusive, especially with respect to background salt concentration and boundary condition effects like the nanopore surface chemistry and the reference state used to calculate free energies. We utilize molecular dynamics simulations along with thermodynamic integration to determine the free energy difference associated with acid-base chemistry in 2 nm and 4 nm slit pores open to a bulk-like reservoir. pKa increases are predicted when confining acetic acid, formic acid, and bicarbonate in the slits at infinite dilution conditions. We find that confinement weakens the acids, and the modulation of outer pore surface dipole magnitudes can tune the pKa shift values, suggesting that purely "intrinsic" electrostatic effect on confinement may not exist. At sufficiently high salt concentrations, the dielectric/electrostatic effects on pKa values diminish due to charge screening effects. These discoveries enable future modifications of nanopore chemistries to achieve desirable properties for industrial applications.
Collapse
Affiliation(s)
- Anthony P Baldo
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA.
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Kevin Leung
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA
| |
Collapse
|
3
|
Aptekarev T, Furman G, Badar F, Sokolovsky V, Xia Y. Study of the collagen tissue nanostructure by analyzing the echo decay obtained using the MRI technique. SOFT MATTER 2024; 20:4282-4290. [PMID: 38757720 PMCID: PMC11211971 DOI: 10.1039/d4sm00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The multicomponent relaxation observed in nuclear magnetic resonance experiments in biological tissues makes it difficult to establish a correlation between specific relaxation times and tissue structural parameters. The analysis of a nanostructure (the characteristic size of 10-1000 nm) is usually based on formulas for relaxation times which depend on structural parameters at the atomic or molecular levels in the size range of 0.1-5 nm. We have recently developed an analysis method in which relaxation times' anisotropy in a sample is explicitly related to its structure of nanocavities containing a liquid or gas. However, the method is based on the analysis of experimental data on the anisotropy of relaxation times obtained by using the standard NMR technique and rotating the sample relative to a magnetic field and requires a series of experiments. In the present study, to address this challenge, we develop a new method of analysis of a multi-exponential magnetic resonance signal that does not require determining relaxation times and eliminates the sample rotation and the necessity of a series of experiments. Using the magnetic resonance imaging (MRI) technique, the total signal from the whole sample was obtained as a sum of the signals (echo decays) from all voxels. In contrast to previous research, the volumes of nanocavities and their angular distribution can be obtained by analyzing a single total signal for the entire cartilage. In addition, within the framework of this approach, it is possible to identify the reason for the multicomponent nature of relaxation. The proposed method for analyzing a single multi-exponential signal (transverse relaxation) was implemented on cartilage. Using the signal, three anatomical zones of cartilage were studied, revealing significant structural differences between them. The proposed method not only avoids the need for sample rotation but also enables repeated application of layer-by-layer magnetic resonance imaging with micron resolution. The study results allow us to suggest that water molecules contributing to the echo decay are more likely located in nanocavities formed by the fibrillar structure rather than inside the fibrils.
Collapse
Affiliation(s)
- Theodore Aptekarev
- Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Gregory Furman
- Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Farid Badar
- Physics Department, Oakland University, Rochester, MI, USA
| | | | - Yang Xia
- Physics Department, Oakland University, Rochester, MI, USA
| |
Collapse
|
4
|
Kim N, Oh W, Knust KN, Zazyki Galetto F, Su X. Molecularly Selective Polymer Interfaces for Electrochemical Separations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16685-16700. [PMID: 37955994 DOI: 10.1021/acs.langmuir.3c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The molecular design of polymer interfaces has been key for advancing electrochemical separation processes. Precise control of molecular interactions at electrochemical interfaces has enabled the removal or recovery of charged species with enhanced selectivity, capacity, and stability. In this Perspective, we provide an overview of recent developments in polymer interfaces applied to liquid-phase electrochemical separations, with a focus on their role as electrosorbents as well as membranes in electrodialysis systems. In particular, we delve into both the single-site and macromolecular design of redox polymers and their use in heterogeneous electrochemical separation platforms. We highlight the significance of incorporating both redox-active and non-redox-active moieties to tune binding toward ever more challenging separations, including structurally similar species and even isomers. Furthermore, we discuss recent advances in the development of selective ion-exchange membranes for electrodialysis and the critical need to control the physicochemical properties of the polymer. Finally, we share perspectives on the challenges and opportunities in electrochemical separations, ranging from the need for a comprehensive understanding of binding mechanisms to the continued innovation of electrochemical architectures for polymer electrodes.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wangsuk Oh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle N Knust
- Department of Chemistry, Millikin University, 1184 W. Main Street, Decatur, Illinois 62522, United States
| | - Fábio Zazyki Galetto
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianopolis SC 88040-900, Brazil
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Fernandes Pape Brito JC, Miletto I, Marchese L, Ali D, Azim MM, Mathisen K, Gianotti E. Hierarchical SAPO-34 Catalysts as Host for Cu Active Sites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5694. [PMID: 37629985 PMCID: PMC10456513 DOI: 10.3390/ma16165694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Cu-containing hierarchical SAPO-34 catalysts were synthesized by the bottom-up method using different mesoporogen templates: CTAB encapsulated within ordered mesoporous silica nanoparticles (MSNs) and sucrose. A high fraction of the Cu centers exchanged in the hierarchical SAPO-34 architecture with high mesopore surface area and volume was achieved when CTAB was embedded within ordered mesoporous silica nanoparticles. Physicochemical characterization was performed by using structural and spectroscopic techniques to elucidate the properties of hierarchical SAPO-34 before and after Cu introduction. The speciation of the Cu sites, investigated by DR UV-Vis, and the results of the catalytic tests indicated that the synergy between the textural properties of the hierarchical SAPO-34 framework, the high Cu loading, and the coordination and localization of the Cu sites in the hierarchical architecture is the key point to obtaining good preliminary results in the NO selective catalytic reduction with hydrocarbons (HC-SCR).
Collapse
Affiliation(s)
- Julio C. Fernandes Pape Brito
- Department for Sustainable Development and Ecological Transition, Università del Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Ivana Miletto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Leonardo Marchese
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria, Italy;
| | - Daniel Ali
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Muhammad Mohsin Azim
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Karina Mathisen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Enrica Gianotti
- Department for Sustainable Development and Ecological Transition, Università del Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| |
Collapse
|
6
|
Aptekarev T, Furman G, Sokolovsky V, Panich A, Xia Y. Multicomponents of spin-spin relaxation, anisotropy of the echo decay, and nanoporous sample structure. RESEARCH SQUARE 2023:rs.3.rs-2893081. [PMID: 37214947 PMCID: PMC10197777 DOI: 10.21203/rs.3.rs-2893081/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have experimentally and theoretically investigated multicomponent 1H nuclear magnetic resonance (NMR) echo decays in a-Si:H films containing anisotropic nanopores, in which randomly moving hydrogen molecules are entrapped. The experimental results are interpreted within the framework of the previously developed theory, in which a nanoporous material is represented as a set of nanopores containing liquid or gas, and the relaxation rate is determined by the dipole-dipole spin interaction, considering the restricted motion of molecules inside the pores. Previously, such characteristics of a nanostructure as the average volume of pores and their orientation distribution were determined from the angular dependences of the spin-spin and spin-lattice relaxation times. We propose a new approach to the analysis of the NMR signal, the main advantage of which is the possibility of obtaining nanostructure parameters from a single decay of the echo signal. In this case, there is no need to analyze the anisotropy of the relaxation time T 2 , the determination of which is a rather complicated problem in multicomponent decays. Despite multicomponent signals, the fitting parameter associated with the size and shape of nanopores is determined quite accurately. This made it possible to determine the size and shape of nanopores in a-Si:H films, herewith our estimates are in good agreement with the results obtained by other methods. The fitting of the decays also provides information about the nanostructure of the sample, such as the standard deviations of the angular distribution of pores and the polar and azimuthal angles of the average direction of the pore axes relative to the sample axis, with reasonable accuracy. The approach makes it possible to quantitatively determine the parameters of the non-spherical nanoporous structure from NMR data in a non-destructive manner.
Collapse
Affiliation(s)
- Theodore Aptekarev
- Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Gregory Furman
- Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Alexander Panich
- Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yang Xia
- Physics Department, Oakland University, Rochester, MI, US
| |
Collapse
|
7
|
Eurov D, Kurdyukov D. Special Issue "Application Progress and Insights of Nanoporous Materials". Int J Mol Sci 2023; 24:ijms24097718. [PMID: 37175427 PMCID: PMC10178314 DOI: 10.3390/ijms24097718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Application Progress and Insights of Nanoporous Materials is an open Special Issue in International Journal of Molecular Sciences, which aims to publish original research and review papers concerning fundamental and applied aspects of nanoporous materials of various composition and morphology, investigation of their properties and underlying mechanisms for fabrication of porous media with the desired characteristics [...].
Collapse
|
8
|
Furman G, Sokolovsky V, Panich A, Xia Y. Nanostructure of hydrogenated amorphous silicon (a-Si:H) films studied by nuclear magnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107434. [PMID: 37080070 DOI: 10.1016/j.jmr.2023.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The aim of this work is to investigate the nanostructures of nanoporous materials by studying the anisotropy of the nuclear spin-spin and spin-lattice relaxations of the guest molecules trapped in the pores. The nuclear magnetic resonance (NMR) data are analyzed in the framework of the theory of the nuclear relaxation dominated by the dipole-dipole interactions in gas or liquid species contained in nanopores. A distinctive feature of this theory is the establishment of a relationship between the degree of orientation ordering of nanopores in the host matrix and their characteristic volume and the anisotropy of the NMR relaxation times. In this work the complex experimental and theoretical approach was applied to study the nanostructure of hydrogenated amorphous silicon (a-Si:H) films. A feature of this study is the simultaneous investigation of the three (T1, T1ρ, and T2) NMR relaxation times, for the same sample. This allows us to determine not only the degree of orientation ordering of nanopores but also to estimate their size (∼1 nm) and correlation times of the nanopore fluctuations. The obtained results demonstrate that the developed approach is effective in studying details of nanostructure of different nanoporous materials.
Collapse
Affiliation(s)
- Gregory Furman
- Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel; Education Department, Tel Hai College, Tel Hai, Upper Galilee, Israel.
| | | | - Alexander Panich
- Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yang Xia
- Physics Department, Oakland University, Rochester, MI, United States
| |
Collapse
|
9
|
Li J, Li J, Chen Y, Chen J. Strengthening Modulus and Softening Strength of Nanoporous Gold in Multiaxial Tension: Insights from Molecular Dynamics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4381. [PMID: 36558234 PMCID: PMC9785641 DOI: 10.3390/nano12244381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The functionalized applications of nanoporous metals place clear requirements on their basic mechanical properties, yet there is a lack of research on the mechanical response under multiaxial loading conditions. In this work, the mechanical behaviors of nanoporous gold under multiaxial tension are investigated via molecular dynamics simulations. The mechanical properties under different loading conditions are compared and the microstructure evolution is analyzed to clarify the deformation mechanisms of nanoporous gold in biaxial and triaxial tension. It is found that the modulus of nanoporous gold in multiaxial tension is strengthened and the strength is softened compared to uniaxial tension. The failure of nanoporous gold in multiaxial tension is dominated by the progressive yielding, necking, and rupture of ligaments along the multiple uniaxial loading directions. The dislocation activity under multiaxial loads is more intense and more prone to plastic deformation, ultimately resulting in lower strength and smaller failure strain. The findings provide more insight into the understanding of the deformation mechanisms of nanoporous metals under complex stress states.
Collapse
Affiliation(s)
| | | | | | - Jian Chen
- Correspondence: ; Tel.: +86-199-7200-3708
| |
Collapse
|
10
|
Zhang Y, Li N, Yang M, Hou C, Huo D. An ultrasensitive electrochemical biosensor for simultaneously detect microRNA-21 and microRNA-155 based on specific interaction of antimonide quantum dot with RNA. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhao L, Zhang Q, He C, Chen Q, Zhang BJ. Quantitative Structure-Property Relationship Analysis for the Prediction of Propylene Adsorption Capacity in Pure Silicon Zeolites at Various Pressure Levels. ACS OMEGA 2022; 7:33895-33907. [PMID: 36188274 PMCID: PMC9520561 DOI: 10.1021/acsomega.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
This work is devoted to the development of quantitative structure-property relationship (QSPR) models using various regression analyses to predict propylene (C3H6) adsorption capacity at various pressures in zeolites from a topologically diverse International Zeolite Association database. Based on univariate and multilinear regression analysis, the accessible volume and largest cavity diameter are the most crucial factors determining C3H6 uptake at high and low pressures, respectively. An artificial neural network (ANN) model with five structural descriptors is sufficient to predict C3H6 uptake at high pressures. For combined pressures, the prediction of an ANN model with pore size distribution is pleasing. The isosteric heat of adsorption (Q st) has a significant impact on the improvement of the prediction of low-pressure gas adsorption, which finely classifies zeolites into high or low C3H6 adsorbers. The conjunction of high-throughput screening and QSPR models contributes to being able to prescreen the database rapidly and accurately for top performers and perform further detailed and time-consuming computational-intensive molecular simulations on these candidates for other gas adsorption applications.
Collapse
|
12
|
Hadden M, Martinez-Martin D, Yong KT, Ramaswamy Y, Singh G. Recent Advancements in the Fabrication of Functional Nanoporous Materials and Their Biomedical Applications. MATERIALS 2022; 15:ma15062111. [PMID: 35329563 PMCID: PMC8950633 DOI: 10.3390/ma15062111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
Functional nanoporous materials are categorized as an important class of nanostructured materials because of their tunable porosity and pore geometry (size, shape, and distribution) and their unique chemical and physical properties as compared with other nanostructures and bulk counterparts. Progress in developing a broad spectrum of nanoporous materials has accelerated their use for extensive applications in catalysis, sensing, separation, and environmental, energy, and biomedical areas. The purpose of this review is to provide recent advances in synthesis strategies for designing ordered or hierarchical nanoporous materials of tunable porosity and complex architectures. Furthermore, we briefly highlight working principles, potential pitfalls, experimental challenges, and limitations associated with nanoporous material fabrication strategies. Finally, we give a forward look at how digitally controlled additive manufacturing may overcome existing obstacles to guide the design and development of next-generation nanoporous materials with predefined properties for industrial manufacturing and applications.
Collapse
Affiliation(s)
- Matthew Hadden
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
| | - David Martinez-Martin
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ken-Tye Yong
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yogambha Ramaswamy
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (Y.R.); (G.S.)
| | - Gurvinder Singh
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (Y.R.); (G.S.)
| |
Collapse
|
13
|
Müssig S, Koch VM, Collados Cuadrado C, Bachmann J, Thommes M, Barr MKS, Mandel K. Spray-Drying and Atomic Layer Deposition: Complementary Tools toward Fully Orthogonal Control of Bulk Composition and Surface Identity of Multifunctional Supraparticles. SMALL METHODS 2022; 6:e2101296. [PMID: 35041268 DOI: 10.1002/smtd.202101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Spray-drying is a scalable process enabling one to assemble freely chosen nanoparticles into supraparticles. Atomic layer deposition (ALD) allows for controlled thin film deposition of a vast variety of materials including exotic ones that can hardly be synthesized by wet chemical methods. The properties of coated supraparticles are defined not only by the nanoparticle material chosen and the nanostructure adjusted during spray-drying but also by surface functionalities modified by ALD, if ALD is capable of modifying not only the outer surfaces but also surfaces buried inside the porous supraparticle. Simultaneously, surface accessibility in the porous supraparticles must be ensured to make use of all functionalized surfaces. In this work, iron oxide supraparticles are utilized as a model substrate as their magnetic properties enable the use of advanced magnetic characterization methods. Detailed information about the structural evolution upon individual ALD cycles of aluminium oxide, zinc oxide and titanium dioxide are thereby revealed and confirmed by gas sorption analyses. This demonstrates a powerful and versatile approach to freely designing the functionality of future materials by combination of spray-drying and ALD.
Collapse
Affiliation(s)
- Stephan Müssig
- Department of Chemistry and Pharmacy, Friedrich-Alexander University ErlangenNürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Vanessa M Koch
- Chair "Chemistry of Thin Film Materials" (CTFM), Friedrich-Alexander University ErlangenNürnberg (FAU), IZNF, Cauerstraße 3, 91058, Erlangen, Germany
| | - Carlos Collados Cuadrado
- Department of Chemical and Bioengineering, Institute of Separation Science and Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chair "Chemistry of Thin Film Materials" (CTFM), Friedrich-Alexander University ErlangenNürnberg (FAU), IZNF, Cauerstraße 3, 91058, Erlangen, Germany
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, 198504, Russian Federation
| | - Matthias Thommes
- Department of Chemical and Bioengineering, Institute of Separation Science and Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Maïssa K S Barr
- Chair "Chemistry of Thin Film Materials" (CTFM), Friedrich-Alexander University ErlangenNürnberg (FAU), IZNF, Cauerstraße 3, 91058, Erlangen, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich-Alexander University ErlangenNürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|