1
|
Murphy B, Martins C, Maggio M, Morris MA, Hoey DA. Nano sized gallium oxide surface features for enhanced antimicrobial and osteo-integrative responses. Colloids Surf B Biointerfaces 2023; 227:113378. [PMID: 37257301 DOI: 10.1016/j.colsurfb.2023.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Gallium oxide has known beneficial osteo-integrative properties. This may have importance for improving the osteointegration of orthopedic implants. At high concentrations gallium is cytotoxic. Therefore, integration of gallium into implant devices must be carefully controlled to limit its concentration and release. A strategy based on surface doping of gallium although challenging seems an appropriate approach to limit dose amounts to minimize cytotoxicity and maximize osteointegration benefits. In this work we develop a novel form of patterned surface doping via a block copolymer-based surface chemistry that enables very low gallium content but enhanced osteointegration as proven by comprehensive bioassays. Polystyrene-b-poly 4vinyl pyridine (PS-b-P4VP) BCP (block copolymer) films were produced on surfaces. Selective infiltration of the BCP pattern with a gallium salt precursor solution and subsequent UV-ozone treatment produced a surface pattern of gallium oxide nanodots as evidenced by atomic force and scanning electron microscopy. A comprehensive study of the bioactivity was carried out, including antimicrobial and sterility testing, gallium ion release kinetics and the interaction with human marrow mesenchymal stomal cells and mononuclear cells. Comparing the data from osteogenesis media assay tests with osteoclastogenesis tests demonstrated the potential for the gallium oxide nanodot doping to improve osteointegration properties of a surface.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Carolina Martins
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Mimma Maggio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Mick A Morris
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - David A Hoey
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
2
|
Lee TL, Lin JW, Ho RM. Controlled Self-Assembly of Polystyrene- block-Polydimethylsiloxane for Fabrication of Nanonetwork Silica Monoliths. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54194-54202. [PMID: 36404593 DOI: 10.1021/acsami.2c15078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, this work aims to carry out controlled self-assembly of single-composition block copolymer for the fabrication of various nanonetwork silica monoliths. With the use of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS), nanonetwork-structured films could be fabricated by solvent annealing using a PS-selective solvent (chloroform). By simply tuning the flow rate of nitrogen purge to the PS-selective solvent for the controlled self-assembly of the PS-b-PDMS, gyroid- and diamond-structured monoliths can be formed due to the difference in the effective volume of PS in the PS-b-PDMS during solvent annealing. As a result, well-ordered nanonetwork SiO2 (silica) monoliths can be fabricated by templated sol-gel reaction using hydrofluoric acid etched PS-b-PDMS film as a template followed by the removal of the PS. This bottom-up approach for the fabrication of nanonetwork materials through templated synthesis is appealing to create nanonetwork materials for various applications.
Collapse
Affiliation(s)
- Tsung-Lun Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jheng-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| |
Collapse
|
3
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Esmeraldo Paiva A, Baez Vasquez JF, Selkirk A, Prochukhan N, G L Medeiros Borsagli F, Morris M. Highly Ordered Porous Inorganic Structures via Block Copolymer Lithography: An Application of the Versatile and Selective Infiltration of the "Inverse" P2VP- b-PS System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35265-35275. [PMID: 35876355 DOI: 10.1021/acsami.2c10338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A facile and versatile strategy was developed to produce highly ordered porous metal oxide structures via block copolymer (BCP) lithography. Phase separation of poly(2-vinylpyridine)-b-polystyrene (P2VP-b-PS) was induced by solvent vapor annealing in a nonselective solvent environment to fabricate cylindrical arrays. In this work, we thoroughly analyzed the effects of the film thickness, solvent annealing time, and temperature on the ordering of a P2VP-majority system for the first time, resulting in "inverse" structures. Reflectometry, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy were used to characterize the formation of the highly ordered BCP morphology and the subsequently produced metal oxide film. At 40 min solvent annealing time, hexagonally close packed structures were produced with cylinder diameters ∼40 nm. Subsequently, the BCP films were infiltrated with different metal cations. Metal ions (Cr, Fe, Ni, and Ga) selectively infiltrated the P2VP domain, while the PS did not retain any detectable amount of metal precursor. This gave rise to a metal oxide porous structure after a UV/ozone (UVO) treatment. The results showed that the metal oxide structures demonstrated high fidelity compared to the BCP template and cylindrical domains presented a similar size to the previous PS structure. Moreover, XPS analyses revealed the complete elimination of the BCP template and confirmed the presence of the metal oxides. These metal oxides were used as hard masks for pattern transfer via dry etching as a further application. Silicon nanopores were fabricated mimicking the BCP template and demonstrated a pore depth of ∼50 nm. Ultimately, this strategy can be applied to create different inorganic nanostructures for a diverse range of applications, for example, solar cells, diodes, and integrated circuits. Furthermore, by optimizing the etching parameters, deeper structures can be obtained via ICP/RIE processes, leading to many potential applications.
Collapse
Affiliation(s)
- Aislan Esmeraldo Paiva
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | | | - Andrew Selkirk
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | - Nadezda Prochukhan
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | - Fernanda G L Medeiros Borsagli
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050, Janaúba, MG 39440-039, Brazil
| | - Michael Morris
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| |
Collapse
|
5
|
Patel BB, Walsh DJ, Patel K, Kim DH, Kwok JJ, Guironnet D, Diao Y. Rapid, interface-driven domain orientation in bottlebrush diblock copolymer films during thermal annealing. SOFT MATTER 2022; 18:1666-1677. [PMID: 35133377 DOI: 10.1039/d1sm01634b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Favorable polymer-substrate interactions induce surface orientation fields in block copolymer (BCP) melts. In linear BCP processed near equilibrium, alignment of domains generally persists for a small number of periods (∼4-6 D0) before randomization of domain orientation. Bottlebrush BCP are an emerging class of materials with distinct chain dynamics stemming from substantial molecular rigidity, enabling rapid assembly at ultrahigh (>100 nm) domain periodicities with strong photonic properties (structural color). This work assesses interface-induced ordering in PS-b-PLA bottlebrush diblock copolymer films during thermal annealing between planar surfaces. To clearly observe the decay in orientational order from surface to bulk, we choose to study micron-scale films spanning greater than 200 lamellar periods. In situ optical microscopy and transmission UV-Vis spectroscopy are used to monitor photonic properties during annealing and paired with ex situ UV-Vis reflection measurement, cross-sectional scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to probe the evolution of domain microstructure. Photonic properties were observed to saturate within minutes of annealing at 150 °C, with distinct variation in transmission response as a function of film thickness. The depth of the highly aligned surface region was found to vary stochastically in the range of 30-100 lamellar periods, with the sharpness of the orientation gradient decreasing substantially with increasing film thickness. This observation suggests a competition between growth of aligned, heterogeneously nucleated, grains at the surface and orientationally isotropic, homogeneously nucleated, grains throughout the bulk. This work demonstrates the high potential of bottlebrush block copolymers in rapid fabrication workflows and provides a point of comparison for future application of directed self-assembly to BBCP ordering.
Collapse
Affiliation(s)
- Bijal B Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Dylan J Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Kush Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Do Hoon Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Justin J Kwok
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Sun J, Lee C, Osuji CO, Gopalan P. Synthesis of High Etch Contrast Poly(3-hydroxystyrene)-Based Triblock Copolymers and Self-Assembly of Sub-5 nm Features. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Sun
- Department of Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Changyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chinedum O. Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Bayomi RAH, Aoki T, Sasaki S, Sakurai S. Regular ordering of spherical microdomains in dewetted monolayer islands induced by thermal annealing of spin-coated ultrathin films of a triblock copolymer. SOFT MATTER 2021; 17:7396-7407. [PMID: 34318868 DOI: 10.1039/d1sm00699a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report here spontaneous dewetting of a spin-coated, ultra-thin film of a sphere-forming block copolymer (BCP) upon thermal annealing, and that the dewetting resulted in the formation of plateau-shaped islands with a constant thickness consistent with the thickness of a monolayer, in which the spherical microdomains are regularly ordered two-dimensionally in a deformed hexagonal lattice. Thus, the spontaneous dewetting was ascribed to a mismatch between the initial spin-coated film thickness with respect to the monolayer thickness. Such dewetting of sphere-forming BCPs is considered to be deterministic compared to the cases of lamella- and cylinder-forming BCPs, as incommensuration in thickness is avoided by attaining perpendicular orientation without dewetting. We further quantitatively examined the ordering regularity of spherical microdomains in the dewetted monolayer islands to clarify the effect of confinement on sphere ordering. The degree of deformation of the hexagonal lattice was found to have an increasing tendency as a function of the degree of the deformation of the dewetted islands (the island shape), irrespective of the size of the island. Namely, islands with almost round shapes exhibit a well-ordered arrangement of the spherical microdomains in a perfect hexagonal lattice. Another notable finding is that the regular ordering of the spherical microdomains was found to be spoiled in the vicinity of the edge of the island. In other words, the spherical microdomains were well-ordered in a hexagonal lattice far from the edge of the island, while they were not regularly ordered in the vicinity of the edge, which may be due to mismatch between the curvature of the island's perimeter and the polygonal shape of ordered sphere grains.
Collapse
Affiliation(s)
- Rasha Ahmed Hanafy Bayomi
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. and Department of Apparel Design and Technology, Faculty of Applied Arts, Helwan University, Orman, Giza 12111, Egypt
| | - Takashi Aoki
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Sono Sasaki
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Shinichi Sakurai
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. and Department of Chemical Engineering, Indian Institute of Technology Guwahati, Kamrup, Assam 781-039, India
| |
Collapse
|
8
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
9
|
Abate AA, Piqueras CM, Vega DA. Defect-Induced Order–Order Phase Transition in Triblock Copolymer Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anabella A. Abate
- Department of Physics. Instituto de Física del Sur (IFISUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Cristian M. Piqueras
- Department of Chemical Engineering. Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Daniel A. Vega
- Department of Physics. Instituto de Física del Sur (IFISUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| |
Collapse
|
10
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
11
|
Zenati A, Kada I, Zaouia GK. Thermal Properties and Self-Assembly Behaviors of Triblock Copolymers Consisting of PEG Segment and Acrylamide-Based Block Bearing Alkyl Side Chains Prepared by RAFT Method. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Athmen Zenati
- Central Directorate of Research and Development, Sonatrach, Avenue du 1er Novembre, Boumerdes 35000, Algeria
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew 31200, Algeria
| | - Ismail Kada
- Department of Chemical Engineering and Environment, Faculty of Science & Technology, University of Oran, Oran 31000, Algeria
| | - Gherici-Kaddour Zaouia
- Department of Mechanical Engineering, Faculty of Science & Technology, University of Mascara, Mascara 29000, Algeria
| |
Collapse
|
12
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
13
|
Fernández-Regúlez M, Solano E, Evangelio L, Gottlieb S, Pinto-Gómez C, Rius G, Fraxedas J, Gutiérrez-Fernández E, Nogales A, García-Gutiérrez MC, Ezquerra TA, Pérez-Murano F. Self-assembly of block copolymers under non-isothermal annealing conditions as revealed by grazing-incidence small-angle X-ray scattering. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1278-1288. [PMID: 32876603 DOI: 10.1107/s1600577520009820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
An accurate knowledge of the parameters governing the kinetics of block copolymer self-assembly is crucial to model the time- and temperature-dependent evolution of pattern formation during annealing as well as to predict the most efficient conditions for the formation of defect-free patterns. Here, the self-assembly kinetics of a lamellar PS-b-PMMA block copolymer under both isothermal and non-isothermal annealing conditions are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS) experiments with a novel modelling methodology that accounts for the annealing history of the block copolymer film before it reaches the isothermal regime. Such a model allows conventional studies in isothermal annealing conditions to be extended to the more realistic case of non-isothermal annealing and prediction of the accuracy in the determination of the relevant parameters, namely the correlation length and the growth exponent, which define the kinetics of the self-assembly.
Collapse
Affiliation(s)
- Marta Fernández-Regúlez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Laura Evangelio
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Steven Gottlieb
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Christian Pinto-Gómez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Gemma Rius
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Jordi Fraxedas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra 08193, Spain
| | | | - Aurora Nogales
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006, Spain
| | | | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006, Spain
| | - Francesc Pérez-Murano
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
14
|
Wade MA, Walsh D, Lee JCW, Kelley E, Weigandt K, Guironnet D, Rogers SA. Color, structure, and rheology of a diblock bottlebrush copolymer solution. SOFT MATTER 2020; 16:4919-4931. [PMID: 32393953 PMCID: PMC11253116 DOI: 10.1039/d0sm00397b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A structure-property-process relation is established for a diblock bottlebrush copolymer solution, through a combination of rheo-neutron scattering, imaging, and rheological measurements. Polylactic acid-b-polystyrene diblock bottlebrush copolymers were dispersed in toluene with a concentration of 175 mg ml-1, where they self-assembled into a lamellar phase. All measurements were carried out at 5 °C. The solution color, as observed in reflection, is shown to be a function of the shear rate. Under equilibrium and near-equilibrium conditions, the solution has a green color. At low shear rates the solution remains green, while at intermediate rates the solution is cyan. At the highest rates applied the solution is indigo. The lamellar spacing is shown to be a decreasing function of shear rate, partially accounting for the color change. The lamellae are oriented 'face-on' with the wall under quiescence and low shear rates, while a switch to 'edge-on' is observed at the highest shear rates, where the reflected color disappears. The intramolecular distance between bottlebrush polymers does not change with shear rate, although at high shear rates, the bottlebrush polymers are preferentially aligned in the vorticity direction within the lamellae. We therefore form a consistent relation between structure and function, spanning a wide range of length scales and shear rates.
Collapse
Affiliation(s)
- Matthew A Wade
- Chemical and Biomolecular Engineering Department, University of Illinois at Urbana-Champaign, 607 S Mathews Ave, Urbana, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Patel BB, Walsh DJ, Kim DH, Kwok J, Lee B, Guironnet D, Diao Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. SCIENCE ADVANCES 2020; 6:eaaz7202. [PMID: 32577511 PMCID: PMC7286684 DOI: 10.1126/sciadv.aaz7202] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/23/2020] [Indexed: 05/18/2023]
Abstract
Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.
Collapse
Affiliation(s)
- Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Do Hoon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin Kwok
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801, USA
| | - Byeongdu Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
- Corresponding author.
| |
Collapse
|
16
|
Abate AA, Vu GT, Piqueras CM, del Barrio MC, Gómez LR, Catalini G, Schmid F, Vega DA. Order–Order Phase Transitions Induced by Supercritical Carbon Dioxide in Triblock Copolymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Giang Thi Vu
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | | | | | | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | |
Collapse
|
17
|
Steinhaus A, Srivastva D, Nikoubashman A, Gröschel AH. Janus Nanostructures from ABC/B Triblock Terpolymer Blends. Polymers (Basel) 2019; 11:E1107. [PMID: 31262010 PMCID: PMC6680841 DOI: 10.3390/polym11071107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/16/2019] [Accepted: 06/28/2019] [Indexed: 11/26/2022] Open
Abstract
Lamella-forming ABC triblock terpolymers are convenient building blocks for the synthesis of soft Janus nanoparticles (JNPs) by crosslinking the B domain that is "sandwiched" between A and C lamellae. Despite thorough synthetic variation of the B fraction to control the geometry of the sandwiched microphase, so far only Janus spheres, cylinders, and sheets have been obtained. In this combined theoretical and experimental work, we show that the blending of polybutadiene homopolymer (hPB) into lamella morphologies of polystyrene-block-polybutadiene-block-polymethylmethacrylate (SBM) triblock terpolymers allows the continuous tuning of the polybutadiene (PB) microphase. We systematically vary the volume fraction of hPB in the system, and we find in both experiments and simulations morphological transitions from PB-cylinders to perforated PB-lamellae and further to continuous PB-lamellae. Our simulations show that the hPB is distributed homogeneously in the PB microdomains. Through crosslinking of the PB domain and redispersion in a common solvent for all blocks, we separate the bulk morphologies into Janus cylinders, perforated Janus sheets, and Janus sheets. These studies suggest that more complex Janus nanostructures could be generated from ABC triblock terpolymers than previously expected.
Collapse
Affiliation(s)
- Andrea Steinhaus
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, 47057 Duisburg, Germany
| | - Deepika Srivastva
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
| | - André H Gröschel
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, 47057 Duisburg, Germany.
| |
Collapse
|
18
|
Gangnaik AS, Ghoshal T, Georgiev YM, Morris MA, Holmes JD. Fabrication of Si and Ge nanoarrays through graphoepitaxial directed hardmask block copolymer self-assembly. J Colloid Interface Sci 2018; 531:533-543. [PMID: 30055448 DOI: 10.1016/j.jcis.2018.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022]
Abstract
Films of self assembled diblock copolymers (BCPs) have attracted significant attention for generating semiconductor nanoarrays of sizes below 100 nm through a simple low cost approach for device fabrication. A challenging abstract is controlling microdomain orientation and ordering dictated by complex interplay of surface energies, polymer-solvent interactions and domain spacing. In context, microphase separated poly (styrene-b-ethylene oxide) (PS-b-PEO) thin films is illustrated to fabricate nanopatterns on silicon and germanium materials trenches. The trenched templates was produced by simple electron beam lithography using hydrogen silsesquioxane (HSQ) resist. The orientation of PEO, minority cylinder forming block, was controlled by controlling trench width and varying solvent annealing parameters viz. temperature, time etc. A noticeable difference in microdomain orientation was observed for Si and Ge trenches processed under same conditions. The Ge trenches promoted horizontal orientations compared to Si due to difference in surface properties without any prior surface treatments. This methodology allows to create Ge nanopatterns for device fabrication since native oxides on Ge often induce patterning challenges. Subsequently, a selective metal inclusion method was used to form hardmask nanoarrays to pattern transfer into those substrates through dry etching. The hardmask allows to create good fidelity, low line edge roughness (LER) materials nanopatterns.
Collapse
Affiliation(s)
- Anushka S Gangnaik
- School of Chemistry and Tyndall National Institute, University College Cork, Cork, Ireland
| | - Tandra Ghoshal
- School of Chemistry and Tyndall National Institute, University College Cork, Cork, Ireland.
| | - Yordan M Georgiev
- School of Chemistry and Tyndall National Institute, University College Cork, Cork, Ireland
| | - Michael A Morris
- School of Chemistry and Tyndall National Institute, University College Cork, Cork, Ireland
| | - Justin D Holmes
- School of Chemistry and Tyndall National Institute, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
García NA, Barrat JL. Entanglement Reduction Induced by Geometrical Confinement in Polymer Thin Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicolás A. García
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jean-Louis Barrat
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
20
|
Vu GT, Abate AA, Gómez LR, Pezzutti AD, Register RA, Vega DA, Schmid F. Curvature as a Guiding Field for Patterns in Thin Block Copolymer Films. PHYSICAL REVIEW LETTERS 2018; 121:087801. [PMID: 30192564 DOI: 10.1103/physrevlett.121.087801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Experimental data on thin films of cylinder-forming block copolymers (BC)-free-standing BC membranes as well as supported BC films-strongly suggest that the local orientation of the BC patterns is coupled to the geometry in which the patterns are embedded. We analyze this phenomenon using general symmetry considerations and numerical self-consistent field studies of curved BC films in cylindrical geometry. The stability of the films against curvature-induced dewetting is also analyzed. In good agreement with experiments, we find that the BC cylinders tend to align along the direction of curvature at high curvatures. At low curvatures, we identify a transition from perpendicular to parallel alignment in supported films, which is absent in free-standing membranes. Hence both experiments and theory show that curvature can be used to manipulate and align BC patterns.
Collapse
Affiliation(s)
- Giang Thi Vu
- Institut für Physik, Johannes Gutenberg Universität Mainz Staudinger Weg 7, D-55099 Mainz, Germany
| | - Anabella A Abate
- Department of Physics, Universidad Nacional del Sur-IFISUR CONICET, 800, Bahia Blanca, Argentina
| | - Leopoldo R Gómez
- Department of Physics, Universidad Nacional del Sur-IFISUR CONICET, 800, Bahia Blanca, Argentina
| | - Aldo D Pezzutti
- Department of Physics, Universidad Nacional del Sur-IFISUR CONICET, 800, Bahia Blanca, Argentina
| | - Richard A Register
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Daniel A Vega
- Department of Physics, Universidad Nacional del Sur-IFISUR CONICET, 800, Bahia Blanca, Argentina
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz Staudinger Weg 7, D-55099 Mainz, Germany
| |
Collapse
|
21
|
Chen Y, Xu Q, Jin Y, Qian X, Ma R, Liu J, Yang D. Shear-induced parallel and transverse alignments of cylinders in thin films of diblock copolymers. SOFT MATTER 2018; 14:6635-6647. [PMID: 29999081 DOI: 10.1039/c8sm00833g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coarse-grained Langevin dynamics simulations were performed to investigate the alignment behavior of monolayer films of cylinder-forming diblock copolymers under steady shear, a structure of significant importance for many technical applications such as nanopatterning. The influences of shear conditions, the interactions involved in the films, and the initial morphology of the cylinder-forming phase were examined. Our results showed that above a critical shear rate, the cylinders can align either along the shearing direction or transverse (log-rolling) to the shearing direction depending on the relative strength between the interchain attraction in the cylinders (εAA) and the surface attraction of the confining walls with the film (εBW). To understand the underlying mechanism, the microscopic properties of the films under shear were systematically investigated. It was found that at low εAA/εBW, the majority blocks of the diblock polymer that are adsorbed on the confining walls prefer to move synchronously with the walls, inducing the cylinder-forming blocks to align along the flow direction. When εAA/εBW is above a threshold value, a strong attraction between the cylinder-forming blocks restrains their movement during shear, leading to the log-rolling motions of the cylinders. To predict the threshold εAA/εBW, we developed an approach based on equilibrium thermodynamics data and found good agreement with our shear simulations.
Collapse
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Musteata V, Sutisna B, Polymeropoulos G, Avgeropoulos A, Meneau F, Peinemann KV, Hadjichristidis N, Nunes SP. Self-assembly of polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) triblock terpolymers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Montana JS, Roland S, Richaud E, Miquelard-Garnier G. From equilibrium lamellae to out-of-equilibrium cylinders in triblock copolymer nanolayers obtained via multilayer coextrusion. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Improved block copolymer domain dispersity on chemical patterns via homopolymer-blending and molecular transfer printing. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Nikoubashman A. Self-assembly of colloidal micelles in microfluidic channels. SOFT MATTER 2016; 13:222-229. [PMID: 27444571 DOI: 10.1039/c6sm00766j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly of amphiphilic Janus colloids in microfluidic channels is studied using hybrid molecular dynamics simulations with fully resolved hydrodynamic interactions incorporated through the multi-particle collision dynamics algorithm. The simulations are conducted at a density and temperature where the Janus particles spontaneously self-assemble into spherical micelles to minimize the interface between the solvophobic caps and the surrounding solvent. In confined systems, this contact area can also be reduced by aggregation at the channel walls. Indeed, a sizable fraction of free particles and small clusters with three and four members are found at the walls when the microfluidic channel is made up of a comparably solvophobic material as the Janus colloids. When the applied Poiseuille flow is sufficiently strong, the colloidal micelles break up into smaller fragments and isolated particles. However, at intermediate flow rates the shear-induced dissociation and reorganization of aggregates lead to a net growth of the micelles with a sizable amount of particles in icosahedral clusters with 13 particles. Furthermore, the parabolic velocity profile of the flow causes a highly non-uniform cluster size distribution between the channel walls, where the aggregation number decreases close to the walls.
Collapse
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
| |
Collapse
|
26
|
Block copolymer thin films: Characterizing nanostructure evolution with in situ X-ray and neutron scattering. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Choi JW, Carter MCD, Wei W, Kanimozi C, Speetjens FW, Mahanthappa MK, Lynn DM, Gopalan P. Self-Assembly and Post-Fabrication Functionalization of Microphase Separated Thin Films of a Reactive Azlactone-Containing Block Copolymer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jonathan W. Choi
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Matthew C. D. Carter
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Wei Wei
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Catherine Kanimozi
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Frank W. Speetjens
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mahesh K. Mahanthappa
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemical Engineering & Materials Science, 421 Washington Ave. S.E., University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M. Lynn
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemical & Biological Engineering, 1415 Engineering Drive, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Abate AA, Vu GT, Pezzutti AD, García NA, Davis RL, Schmid F, Register RA, Vega DA. Shear-Aligned Block Copolymer Monolayers as Seeds To Control the Orientational Order in Cylinder-Forming Block Copolymer Thin Films. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anabella A. Abate
- Instituto
de Física del Sur (IFISUR), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Giang Thi Vu
- Institut
für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg
7, D-55099 Mainz, Germany
| | - Aldo D. Pezzutti
- Instituto
de Física del Sur (IFISUR), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Nicolás A. García
- Instituto
de Física del Sur (IFISUR), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Raleigh L. Davis
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Friederike Schmid
- Institut
für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg
7, D-55099 Mainz, Germany
| | - Richard A. Register
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel A. Vega
- Instituto
de Física del Sur (IFISUR), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| |
Collapse
|
29
|
Carter MCD, Jennings J, Speetjens FW, Lynn DM, Mahanthappa MK. A Reactive Platform Approach for the Rapid Synthesis and Discovery of High χ/Low N Block Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01268] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Matthew C. D. Carter
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James Jennings
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Frank W. Speetjens
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Mahesh K. Mahanthappa
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Carter MCD, Jennings J, Appadoo V, Lynn DM. Synthesis and Characterization of Backbone Degradable Azlactone-Functionalized Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew C. D. Carter
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James Jennings
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Choi JW, Li Z, Black CT, Sweat DP, Wang X, Gopalan P. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors. NANOSCALE 2016; 8:11595-601. [PMID: 27216015 DOI: 10.1039/c6nr01409g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.
Collapse
Affiliation(s)
- Jonathan W Choi
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Wisconsin 53706, USA.
| | - Zhaodong Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Wisconsin 53706, USA.
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, New York 11973, USA
| | - Daniel P Sweat
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Wisconsin 53706, USA.
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Wisconsin 53706, USA.
| |
Collapse
|
32
|
Cheng G, Perahia D. Dewetting and microphase separation in symmetric polystyrene‐
block
‐polyisoprene diblock copolymer ultrathin films. POLYM INT 2015. [DOI: 10.1002/pi.5022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Cheng
- College of Life Science and Technology Beijing University of Chemical Technology Beijing 100029 China
- Materials Science and Engineering Program and Chemistry Department Clemson University SC 29634 USA
| | - Dvora Perahia
- Materials Science and Engineering Program and Chemistry Department Clemson University SC 29634 USA
| |
Collapse
|
33
|
Abstract
Block polymers incorporating highly incompatible segments are termed "high χ" polymers, where χ is the Flory-Huggins interaction parameter. These materials have attracted a great deal of interest because low molar mass versions allow for the formation of microphase-separated domains with very small (<10 nm) feature sizes useful for nanopatterning at these extreme dimensions. Given that well-established photolithographic techniques now face difficult challenges of implementation at scales of 10 nm and below, the drive to further develop high χ block polymers is motivated by trends in the microelectronics industry. This Viewpoint highlights our perspective on this niche of block polymer self-assembly. We first briefly review the relevant recent literature, exploring the various block polymer compositions that have been specifically designed for small feature size patterning. We then overview the now standard method for the benchmarking χ values between different pairs of polymers and the consequences of low N and high χ on the thermodynamic aspects of microphase separation. Finally, we comment on restrictions going forward and offer our perspective on the future of this exciting area of block polymer self-assembly.
Collapse
Affiliation(s)
- Christophe Sinturel
- ICMN, UMR 7374
- CNRS/Université d’Orléans, 1b rue de la Férollerie, 45071 Orléans, France
| | | | | |
Collapse
|
34
|
Davis RL, Michal BT, Chaikin PM, Register RA. Progression of Alignment in Thin Films of Cylinder-Forming Block Copolymers upon Shearing. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Raleigh L. Davis
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Brian T. Michal
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul M. Chaikin
- Department
of Physics, New York University, New York, New York 10003, United States
| | - Richard A. Register
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
35
|
Roland S, Gamys CG, Grosrenaud J, Boissé S, Pellerin C, Prud’homme RE, Bazuin CG. Solvent Influence on Thickness, Composition, and Morphology Variation with Dip-Coating Rate in Supramolecular PS-b-P4VP Thin Films. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sébastien Roland
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Cé Guinto Gamys
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Josué Grosrenaud
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Stéphanie Boissé
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Christian Pellerin
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Robert E. Prud’homme
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - C. Geraldine Bazuin
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
36
|
Yager KG, Forrey C, Singh G, Satija SK, Page KA, Patton DL, Douglas JF, Jones RL, Karim A. Thermally-induced transition of lamellae orientation in block-copolymer films on 'neutral' nanoparticle-coated substrates. SOFT MATTER 2015; 11:5154-5167. [PMID: 26053660 DOI: 10.1039/c5sm00896d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such 'neutral' substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmed using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. Our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.
Collapse
Affiliation(s)
- Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kipnusu WK, Elmahdy MM, Mapesa EU, Zhang J, Böhlmann W, Smilgies DM, Papadakis CM, Kremer F. Structure and Dynamics of Asymmetric Poly(styrene-b-1,4-isoprene) Diblock Copolymer under 1D and 2D Nanoconfinement. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12328-12338. [PMID: 25660102 DOI: 10.1021/am506848s] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The impact of 1- and 2-dimensional (2D) confinement on the structure and dynamics of poly(styrene-b-1,4-isoprene) P(S-b-I) diblock copolymer is investigated by a combination of Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS), and Broadband Dielectric Spectroscopy (BDS). 1D confinement is achieved by spin coating the P(S-b-I) to form nanometric thin films on silicon substrates, while in the 2D confinement, the copolymer is infiltrated into cylindrical anodized aluminum oxide (AAO) nanopores. After dissolving the AAO matrix having mean pore diameter of 150 nm, the SEM images of the exposed P(S-b-I) show straight nanorods. For the thin films, GISAXS and AFM reveal hexagonally packed cylinders of PS in a PI matrix. Three dielectrically active relaxation modes assigned to the two segmental modes of the styrene and isoprene blocks and the normal mode of the latter are studied selectively by BDS. The dynamic glass transition, related to the segmental modes of the styrene and isoprene blocks, is independent of the dimensionality and the finite sizes (down to 18 nm) of confinement, but the normal mode is influenced by both factors with 2D geometrical constraints exerting greater impact. This reflects the considerable difference in the length scales on which the two kinds of fluctuations take place.
Collapse
Affiliation(s)
- Wycliffe K Kipnusu
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Mahdy M Elmahdy
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- ‡Department of Physics, Mansoura University, Mansoura 35516, Egypt
| | - Emmanuel U Mapesa
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Jianqi Zhang
- ¶Physik-Department, Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Winfried Böhlmann
- §Institute for Experimental Physics II, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Detlef-M Smilgies
- ∥Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Christine M Papadakis
- ¶Physik-Department, Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Friedrich Kremer
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Pezzutti AD, Gómez LR, Vega DA. Smectic block copolymer thin films on corrugated substrates. SOFT MATTER 2015; 11:2866-2873. [PMID: 25710883 DOI: 10.1039/c5sm00071h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work we study equilibrium and non-equilibrium structures of smectic block copolymer thin films deposited on a topographically patterned substrate. A Brazovskii free energy model is employed to analyze the coupling between the smectic texture and the local mean curvature of the substrate. The substrate's curvature produces out-of-plane deformations of the block copolymer such that equilibrium textures are modified and dictated by the underlying geometry. For weak curvatures it is shown that the free energy of the block copolymer film follows a Helfrich form, scaling with the square of the mean curvature, with a bending constant dependent on the local pattern orientation. On substrates of varying mean curvature simulations show that topological defects are rapidly expelled from regions with large curvature. These results compare well with available experimental data of poly(styrene)-co-poly(ethylene-alt-propylene) smectic thin films.
Collapse
Affiliation(s)
- Aldo D Pezzutti
- Instituto de Física del Sur (IFISUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, Av. LN Alem 1253, 8000 Bahía Blanca, Argentina.
| | | | | |
Collapse
|
39
|
Gómez LR, Vega DA, Ninago M, Ciolino AE, Villar MA, Vallés EM. Phase behavior of model poly(butadiene 1,3)-block-(dimethylsiloxane) copolymers. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Li D, Liang K, Gruhn T. Mean Field Theory of Diblock Copolymer on Curved Manifolds. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/masy.201400040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daming Li
- Department of Mathematics; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Kewei Liang
- Department of Mathematics; Zhejiang University; Hangzhou 310027 China
| | - Thomas Gruhn
- Materials and Process Simulation (MPS); University of Bayreuth; Postfach 10 12 51 D-95440 Bayreuth Germany
| |
Collapse
|
41
|
Speetjens FW, Carter MCD, Kim M, Gopalan P, Mahanthappa MK, Lynn DM. Post-Fabrication Placement of Arbitrary Chemical Functionality on Microphase-Separated Thin Films of Amine-Reactive Block Copolymers. ACS Macro Lett 2014; 3:1178-1182. [PMID: 35610820 DOI: 10.1021/mz500654a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report an approach to the post-fabrication placement of chemical functionality on microphase-separated thin films of a reactive block copolymer. Our approach makes use of an azlactone-containing block copolymer that microphase separates into domains of perpendicularly-oriented lamellae. These thin films present nanoscale patterns of amine-reactive groups (reactive stripes) that serve as handles for the immobilization of primary amine-containing functionality. We demonstrate that arbitrary chemical functionality can be installed by treatment with aqueous solutions under mild conditions that do not perturb underlying microphase-separated patterns dictated by the structure of the reactive block copolymer. This post-fabrication approach provides a basis for the development of modular approaches to the design of microphase-separated block copolymer thin films and access to coatings with patterned chemical domains and surface properties that would be difficult to prepare by the self-assembly and processing of functionally complex block copolymers.
Collapse
Affiliation(s)
- Frank W. Speetjens
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Matthew C. D. Carter
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Myungwoong Kim
- Department
of Materials Science and Engineering, University of Wisconsin—Madison, 1509 University Avenue, Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Materials Science and Engineering, University of Wisconsin—Madison, 1509 University Avenue, Madison, Wisconsin 53706, United States
| | - Mahesh K. Mahanthappa
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemical & Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemical & Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Chen X, Perepichka II, Bazuin CG. Double-striped metallic patterns from PS-b-P4VP nanostrand templates. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18360-18367. [PMID: 25260097 DOI: 10.1021/am506332q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new nanometallic pattern, characterized by randomly disposed double or twin one-dimensional stripes and that adds to the nanotechnology toolbox, has been obtained from a unique template possessing the nanostrand morphology. This morphology had previously been shown to form in Langmuir-Blodgett films made from a polystyrene-poly(4-vinylpyridine) (PS-P4VP) diblock copolymer blended with 3-n-pentadecylphenol (PDP). The nanostrand backbone is composed of PS, and it is bordered along both sides by a P4VP monolayer, visualized for the first time by high resolution atomic force microscopy. The exposed P4VP alongside the nanostrands serves as sites for depositing compounds attracted selectively to P4VP. Here, both gold ions (HAuCl4·3H2O) and gold nanoparticles (AuNP, 12 nm in diameter, stabilized with sodium citrate) were complexed to the P4VP. Plasma treatment of the gold ions led to double stripes of monolayer metallic gold. To obtain dense deposition of AuNP in double rows, it was necessary to acidify the AuNP aqueous solution (pH 5.2 here). The achievement of the metallic double-stripe patterns also confirms the composition of the nanostrand morphology, which up to now had been deduced indirectly. The double-stripe pattern has possible applications for plasmonic lasers, energy transport, and biosensors.
Collapse
Affiliation(s)
- Ximin Chen
- Département de chimie, Centre de recherche sur les matériaux auto-assemblés (CRMAA/CSACS), Université de Montréal , C.P. 6128 Succ. Centre-ville, Montréal, Quebec, Canada , H3C 3J7
| | | | | |
Collapse
|
43
|
Kim SY, Nunns A, Gwyther J, Davis RL, Manners I, Chaikin PM, Register RA. Large-area nanosquare arrays from shear-aligned block copolymer thin films. NANO LETTERS 2014; 14:5698-705. [PMID: 25211306 DOI: 10.1021/nl502416b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
While block copolymer lithography has been broadly applied as a bottom-up patterning technique, only a few nanopattern symmetries, such as hexagonally packed dots or parallel stripes, can be produced by spontaneous self-assembly of simple diblock copolymers; even a simple square packing has heretofore required more intricate macromolecular architectures or nanoscale substrate prepatterning. In this study, we demonstrate that square, rectangular, and rhombic arrays can be created via shear-alignment of distinct layers of cylinder-forming block copolymers, coupled with cross-linking of the layers using ultraviolet light. Furthermore, these block copolymer arrays can in turn be used as templates to fabricate dense, substrate-supported arrays of nanostructures comprising a wide variety of elements: deep (>50 nm) nanowells, nanoposts, and thin metal nanodots (3 nm thick, 35 nm pitch) are all demonstrated.
Collapse
Affiliation(s)
- So Youn Kim
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Feng X, Zhu S, Yue K, Su H, Guo K, Wesdemiotis C, Zhang WB, Cheng SZD, Li Y. T 10 Polyhedral Oligomeric Silsesquioxane-Based Shape Amphiphiles with Diverse Head Functionalities via "Click" Chemistry. ACS Macro Lett 2014; 3:900-905. [PMID: 35596357 DOI: 10.1021/mz500422g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Head diversification of shape amphiphiles not only broadens the scope of supramolecular engineering for new self-organizing materials but also facilitates their potential applications in high technologies. In this letter, T10 azido-functionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticle was used to construct new shape amphiphiles via sequential "click" chemistry for addressing two issues: (1) new symmetry of T10 POSS head could enrich the self-assembly behaviors of shape amphiphiles, and (2) copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based head functionalization strategy allows the introduction of diverse functionalities onto POSS heads, including bulky ligands (i.e., isobutyl POSS) and UV-attenuating ones (i.e., ferrocene and 4-cyano-4'-biphenyl). This study expands the library of POSS-based shape amphiphiles with numerous possibilities for head manipulations, offering an important step toward new shape amphiphiles beyond traditional hydrophobic/hydrophilic nature for potential applications in giant molecule-based nanoscience and technology.
Collapse
Affiliation(s)
- Xueyan Feng
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Sunsheng Zhu
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kan Yue
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Hao Su
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kai Guo
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Chrys Wesdemiotis
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
- Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United States
| | - Wen-Bin Zhang
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
- Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Center for Soft Matter
Science and Engineering, Peking University, Beijing 100871, China
| | - Stephen Z. D. Cheng
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Yiwen Li
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
45
|
Sweat DP, Kim M, Schmitt AK, Perroni DV, Fry CG, Mahanthappa MK, Gopalan P. Phase Behavior of Poly(4-hydroxystyrene-block-styrene) Synthesized by Living Anionic Polymerization of an Acetal Protected Monomer. Macromolecules 2014. [DOI: 10.1021/ma501126t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Sweat
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Myungwoong Kim
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Adam K. Schmitt
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dominic V. Perroni
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Charles G. Fry
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Mahesh K. Mahanthappa
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
46
|
Nikoubashman A, Davis RL, Michal BT, Chaikin PM, Register RA, Panagiotopoulos AZ. Thin films of homopolymers and cylinder-forming diblock copolymers under shear. ACS NANO 2014; 8:8015-8026. [PMID: 25107567 DOI: 10.1021/nn502068e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study thin films of homopolymers (PS) and monolayers of cylinder-forming diblock copolymers (PS–PHMA) under shear. To this end, we employed both experiments and computer simulations that correctly take into account hydrodynamic interactions and chain entanglements. Excellent quantitative agreement for static as well as dynamic properties in both the homopolymer and diblock copolymer cases was achieved. In particular, we found that the homopolymer thin films exhibit a distinct shear thinning behavior, which is strongly correlated with the disentanglement and shear alignment of the constituent polymer chains. For the PS–PHMA films, we show that shear can be employed to induce long-range ordering to the spontaneously self-assembled microdomains, which is required for many applications such as the fabrication of nanowire arrays. We found that the impact of chemical incompatibility on the viscosity is only minor in shear-aligned films. Once the domains were aligned, the films exhibited an almost Newtonian response to shear because the cylindrical microdomains acted as guide rails, along which the constituent copolymer chains could simply slide. Furthermore, we developed a model for predicting the onset of shear alignment based on equilibrium dynamics data, and found good agreement with our shear simulations. The employed computational method holds promise for a faster and more cost-effective route for developing custom tailored materials.
Collapse
|
47
|
Davis RL, Chaikin PM, Register RA. Cylinder Orientation and Shear Alignment in Thin Films of Polystyrene–Poly(n-hexyl methacrylate) Diblock Copolymers. Macromolecules 2014. [DOI: 10.1021/ma5012705] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raleigh L. Davis
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul M. Chaikin
- Department
of Physics, New York University, New York, New York 10003, United States
| | - Richard A. Register
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
48
|
Gutierrez J, Tercjak A. Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Adv 2014. [DOI: 10.1039/c4ra04296d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Hu H, Gopinadhan M, Osuji CO. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. SOFT MATTER 2014; 10:3867-89. [PMID: 24740355 DOI: 10.1039/c3sm52607k] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembly of soft materials is broadly considered an attractive means of generating nanoscale structures and patterns over large areas. However, the spontaneous formation of equilibrium nanostructures in response to temperature and concentration changes, for example, must be guided to yield the long-range order and orientation required for utility in a given scenario. In this review we examine directed self-assembly (DSA) of block copolymers (BCPs) as canonical examples of nanostructured soft matter systems which are additionally compelling for creating functional materials and devices. We survey well established and newly emerging DSA methods from a tutorial perspective. Special emphasis is given to exploring underlying physical phenomena, identifying prototypical BCPs that are compatible with different DSA techniques, describing experimental methods and highlighting the attractive functional properties of block copolymers overall. Finally we offer a brief perspective on some unresolved issues and future opportunities in this field.
Collapse
Affiliation(s)
- Hanqiong Hu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
50
|
|