1
|
McFarland KS, Hegadorn K, Betenbaugh MJ, Handlogten MW. Elevated endoplasmic reticulum pH is associated with high growth and bisAb aggregation in CHO cells. Biotechnol Bioeng 2024. [PMID: 39435744 DOI: 10.1002/bit.28866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Chinese hamster ovary (CHO) bioprocesses, the dominant platform for therapeutic protein production, are increasingly used to produce complex multispecific proteins. Product quantity and quality are affected by intracellular conditions, but these are challenging to measure and often overlooked during process optimization studies. pH is known to impact quality attributes like protein aggregation across upstream and downstream processes, yet the effects of intracellular pH on cell culture performance are largely unknown. Recently, advances in protein biosensors have enabled investigations of intracellular environments with high spatiotemporal resolution. In this study, we integrated a fluorescent pH-sensitive biosensor into a bispecifc (bisAb)-producing cell line to investigate changes in endoplasmic reticulum pH (pHER). We then investigated how changes in lactate metabolism impacted pHER, cellular redox, and product quality in fed-batch and perfusion bioreactors. Our data show pHER rapidly increased during exponential growth to a maximum of pH 7.7, followed by a sharp drop in the stationary phase in all perfusion and fed-batch conditions. pHER decline in the stationary phase was driven by an apparent loss of cellular pH regulation that occurred despite differences in redox profiles. Finally, we found protein aggregate levels correlated most closely with pHER which provides new insights into product aggregate formation in CHO processes. An improved understanding of the intracellular changes impacting bioprocesses can ultimately help guide media optimizations, improve bioprocess control strategies, or provide new targets for cell engineering.
Collapse
Affiliation(s)
- Kevin S McFarland
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Kaitlin Hegadorn
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Michael W Handlogten
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
2
|
Bruque MG, Rodger A, Hoffmann SV, Jones NC, Aucamp J, Dafforn TR, Thomas ORT. Analysis of the Structure of 14 Therapeutic Antibodies Using Circular Dichroism Spectroscopy. Anal Chem 2024. [PMID: 39255385 PMCID: PMC11428090 DOI: 10.1021/acs.analchem.4c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding the impact of the manufacturing environment on therapeutic monoclonal antibody (mAb) structures requires new process analytical technology. Here, we describe the creation of a new reference set for the circular dichroism (CD) spectra of mAbs. Data sets of the highest quality were collected by synchrotron radiation CD for 14 different mAbs in both native and acid-stressed states. Deconvolution of far-UV spectra for the mAb cohort identified two current reference sets (SP175 and SMP180) as assigning accurate secondary structures, irrespective of the analysis program employed. Scrutiny of spectra revealed significant variation in the far-UV and especially near-UV CD of the 14 mAbs. Two spectral features were found to be sensitive to changes in solution pH, i.e., the far-UV positive peak at 201-202 nm and the near-UV negative exciton couplet around 230-240 nm. The latter feature offers attractive possibilities for in-line CD-based monitoring of the mAb structure during manufacture.
Collapse
Affiliation(s)
- Maria G Bruque
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Alison Rodger
- Research School of Chemistry, The Australian National University, Canberra 2601, Australia
| | | | - Nykola C Jones
- ISA,Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | | | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Owen R T Thomas
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
3
|
Lu YA, McCann MG, Hu WS, Zhang Q. Multi-cell-line learning for the data-driven construction of mechanistic metabolic models. Biotechnol Bioeng 2024; 121:2833-2847. [PMID: 38831695 DOI: 10.1002/bit.28757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
Mammalian cells are commonly used as hosts in cell culture for biologics production in the pharmaceutical industry. Structured mechanistic models of metabolism have been used to capture complex cellular mechanisms that contribute to varying metabolic shifts in different cell lines. However, little research has focused on the impact of temporal changes in enzyme abundance and activity on the modeling of cell metabolism. In this work, we present a framework for constructing mechanistic models of metabolism that integrate growth-signaling control of enzyme activity and transcript dynamics. The proposed approach is applied to build models for three Chinese hamster ovary (CHO) cell lines using fed-batch culture data and time-series transcript profiles. Leveraging information from the transcriptome data, we develop a parameter estimation approach based on multi-cell-line (MCL) learning, which combines data sets from different cell lines and trains the individual cell-line models jointly to improve model accuracy. The computational results demonstrate the important role of growth signaling and transcript variability in metabolic models as well as the virtue of the MCL approach for constructing cell-line models with a limited amount of data. The resulting models exhibit a high level of accuracy in predicting distinct metabolic behaviors in the different cell lines; these models can potentially be used to accelerate the process and cell-line development for the biomanufacturing of new protein therapeutics.
Collapse
Affiliation(s)
- Yen-An Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Meghan G McCann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Zheng Y, Chen G, Liu G, Rana GE, Wang C. A single-step high-throughput bioassay for quantifying Fc-containing recombinant proteins based on non-classical calculation of fluorescence polarization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3917-3926. [PMID: 38832468 DOI: 10.1039/d4ay00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The titer of recombinant proteins is one of the key parameters in biopharmaceutical manufacturing processes. The fluorescence polarization (FP)-based assay, a homogeneous, high-throughput and real-time analytical method, had emerged as a powerful tool for biochemical analysis and environmental monitoring. In this study, an FP-based bioassay was utilized to quantify antibody fragment crystallizable (Fc)-containing proteins, such as recombinant monoclonal antibodies (mAbs) and mAb derivatives, in the cell culture supernatant, and the impacts of tracer molecular weight and FITC-coupling conditions on fluorescence polarization were methodically examined. Distinct from the fluorescence polarization potency calculated by classical formula, we for the first time proposed a new concept and calculation of fluorescence polarization intensity, based on which an analytical method with broader detection range and analysis window was established for quantifying Fc-containing proteins. This provided new ideas for the practical application of fluorescence polarization theory. The established method could detect 96 samples within 30 minutes, with dynamic titer range of 2.5-400 mg L-1, and a linear fitting R2 between the measured and actual concentration reaching 0.99. The method had great application prospects in determining the titer of recombinant proteins with Fc fragments, especially when applied to large-scale screening of high-yield and stable expression CHO cell lines commonly used in biopharmaceutical industry.
Collapse
Affiliation(s)
- Yujuan Zheng
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganjun Chen
- Dartsbio Pharmaceuticals Co., Ltd, Zhongshan 528400, China
| | - Guojian Liu
- Shanghai Mabstone Biotechnology Co., Ltd, Shanghai 201203, China
| | - Gul E Rana
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhe Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- Dartsbio Pharmaceuticals Co., Ltd, Zhongshan 528400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Claes E, Heck T, Coddens K, Sonnaert M, Schrooten J, Verwaeren J. Bayesian cell therapy process optimization. Biotechnol Bioeng 2024; 121:1569-1582. [PMID: 38372656 DOI: 10.1002/bit.28669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Optimizing complex bioprocesses poses a significant challenge in several fields, particularly in cell therapy manufacturing. The development of customized, closed, and automated processes is crucial for their industrial translation and for addressing large patient populations at a sustainable price. Limited understanding of the underlying biological mechanisms, coupled with highly resource-intensive experimentation, are two contributing factors that make the development of these next-generation processes challenging. Bayesian optimization (BO) is an iterative experimental design methodology that addresses these challenges, but has not been extensively tested in situations that require parallel experimentation with significant experimental variability. In this study, we present an evaluation of noisy, parallel BO for increasing noise levels and parallel batch sizes on two in silico bioprocesses, and compare it to the industry state-of-the-art. As an in vitro showcase, we apply the method to the optimization of a monocyte purification unit operation. The in silico results show that BO significantly outperforms the state-of-the-art, requiring approximately 50% fewer experiments on average. This study highlights the potential of noisy, parallel BO as valuable tool for cell therapy process development and optimization.
Collapse
Affiliation(s)
- Evan Claes
- Antleron, Leuven, Belgium
- Biovism, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | | | | | | | - Jan Verwaeren
- Biovism, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
6
|
Ma J, Tian Z, Shi Q, Dong X, Sun Y. Affinity chromatography for virus-like particle manufacturing: Challenges, solutions, and perspectives. J Chromatogr A 2024; 1721:464851. [PMID: 38574547 DOI: 10.1016/j.chroma.2024.464851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The increasing medical application of virus-like particles (VLPs), notably vaccines and viral vectors, has increased the demand for commercial VLP production. However, VLP manufacturing has not yet reached the efficiency level achieved for recombinant protein therapeutics, especially in downstream processing. This review provides a comprehensive analysis of the challenges associated with affinity chromatography for VLP purification with respect to the diversity and complexity of VLPs and the associated upstream and downstream processes. The use of engineered affinity ligands and matrices for affinity chromatography is first discussed. Although several representative affinity ligands are currently available for VLP purification, most of them have difficulty in balancing ligand universality, ligand selectivity and mild operation conditions. Then, phage display technology and computer-assisted design are discussed as efficient methods for the rapid discovery of high-affinity peptide ligands. Finally, the VLP purification by affinity chromatography is analyzed. The process is significantly influenced by virus size and variation, ligand type and chromatographic mode. To address the updated regulatory requirements and epidemic outbreaks, technical innovations in affinity chromatography and process intensification and standardization in VLP purification should be promoted to achieve rapid process development and highly efficient VLP manufacturing, and emphasis is given to the discovery of universal ligands, applications of gigaporous matrices and platform technology. It is expected that the information in this review can provide a better understanding of the affinity chromatography methods available for VLP purification and offer useful guidance for the development of affinity chromatography for VLP manufacturing in the decades to come.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Wysor SK, Synoground BF, Harcum SW, Marcus RK. In-line buffer exchange in the coupling of Protein A chromatography with weak cation exchange chromatography for the determination of charge variants of immunoglobulin G derived from chinese hamster ovary cell cultures. J Chromatogr A 2024; 1718:464722. [PMID: 38359690 DOI: 10.1016/j.chroma.2024.464722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Immunoglobulin G (IgG) is the most common monoclonal antibody (mAb) grown for therapeutic applications. While IgG is often selectively isolated from cell lines using protein A (ProA) chromatography, this is only a stepping stone for complete characterization. Further classification can be obtained from weak cation exchange chromatography (WCX) to determine IgG charge variant distributions. The charge variants of monoclonal antibodies can influence the stability and efficacy in vivo, and deviations in charge heterogeneity are often cell-specific and sensitive to upstream process variability. Current methods to characterize IgG charge variants are often performed off-line, meaning that the IgG eluate from the ProA separation is collected, diluted to adjust the pH, and then transferred to the WCX separation, adding time, complexity, and potential contamination to the sample analysis process. More recently, reports have appeared to streamline this separation using in-line two-dimensional liquid chromatography (2D-LC). Presented here is a novel, 2D-LC coupling of ProA in the first dimension (1D) and WCX in the second dimension (2D) chromatography. As anticipated, the initial direct column coupling proved to be challenging due to the pH incompatibility between the mobile phases for the two stages. To solve the solvent compatibility issue, a size exclusion column was placed in the switching valve loop of the 2D-LC instrument to act as a means for the on-line solvent exchange. The efficacy of the methodology presented was confirmed through a charge variant determination using the NIST monoclonal antibody standard (NIST mAb), yielding correct acidic, main, and basic variant compositions. The methodology was employed to determine the charge variant profile of IgG from an in-house cultured Chinese hamster ovary (CHO) cell supernatant. It is believed that this methodology can be easily implemented to provide higher-throughput assessment of IgG charge variants for process monitoring and cell line development.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Benjamin F Synoground
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Sarah W Harcum
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
8
|
Binder GK, Chen CC. The very stable lentiviral vector. Mol Ther Methods Clin Dev 2024; 32:101223. [PMID: 38455263 PMCID: PMC10918556 DOI: 10.1016/j.omtm.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
|
9
|
Jari M, Abdoli S, Bazi Z, Shamsabadi FT, Roshanmehr F, Shahbazi M. Enhancing protein production and growth in chinese hamster ovary cells through miR-107 overexpression. AMB Express 2024; 14:16. [PMID: 38302631 PMCID: PMC10834913 DOI: 10.1186/s13568-024-01670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Chinese Hamster Ovary (CHO) cells are widely employed as host cells for biopharmaceutical production. The manufacturing of biopharmaceuticals poses several challenges, including restricted growth potential and inadequate productivity of the host cells. MicroRNAs play a crucial role in regulating gene expression and are considered highly promising tools for cell engineering to enhance protein production. Our study aimed to evaluate the effects of miR-107, which is recognized as an onco-miR, on erythropoietin-producing CHO cells (CHO-hEPO). To assess the impact of miR-107 on CHO cells, a DNA plasmid containing miR-107 was introduced to CHO-hEPO cells through transfection. Cell proliferation and viability were assessed using the trypan blue dye exclusion method. Cell cycle analysis was conducted by utilizing propidium iodide (PI) staining. The quantification of EPO was determined using an immunoassay test. Moreover, the impact of miR-107 on the expression of downstream target genes was evaluated using qRT-PCR. Our findings highlight and underscore the substantial impact of transient miR-107 overexpression, which led to a remarkable 2.7-fold increase in EPO titers and a significant 1.6-fold increase in the specific productivity of CHO cells (p < 0.01). Furthermore, this intervention resulted in significant enhancements in cell viability and growth rate (p < 0.05). Intriguingly, the overexpression of miR‑107 was linked to the downregulation of LATS2, PTEN, and TSC1 genes while concurrently driving upregulation in transcript levels of MYC, YAP, mTOR, and S6K genes within transgenic CHO cells. In conclusion, this study collectively underscores the feasibility of utilizing cancer-associated miRNAs as a powerful tool for CHO cell engineering. However, more in-depth exploration is warranted to unravel the precise molecular intricacies of miR-107's effects in the context of CHO cells.
Collapse
Affiliation(s)
- Maryam Jari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Tash Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Roshanmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran.
- AryaTina Gene (ATG) Biopharmaceutical Company Gorgan, Gorgan, Iran.
| |
Collapse
|
10
|
Schaefer G, Balchunas J, Charlebois T, Erickson J, Hart R, Kedia SB, Lee KH. Driving adoption of new technologies in biopharmaceutical manufacturing. Biotechnol Bioeng 2023; 120:2765-2770. [PMID: 37053004 DOI: 10.1002/bit.28395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
The challenge of introducing new technologies into established industries is not a problem unique to the biopharmaceutical industry. However, it may be critical to the long-term competitiveness of individual manufacturers and, more importantly, the ability to deliver therapies to patients. This is especially true for new treatment modalities including cell and gene therapies. We review several barriers to technology adoption which have been identified in various public forums including business, regulatory, technology, and people-driven concerns. We also summarize suitable enablers addressing one or more of these barriers along with suggestions for developing synergies or connections between innovation in product discovery and manufacturing or across the supplier, discovery, manufacturing, and regulatory arms of the holistic innovation engine.
Collapse
Affiliation(s)
- Gene Schaefer
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - John Balchunas
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Timothy Charlebois
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - John Erickson
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Roger Hart
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Sandeep B Kedia
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Kelvin H Lee
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| |
Collapse
|
11
|
Barros CHN, Alfaro M, Costello C, Wang F, Sapre K, Rastogi S, Chiruvolu S, Connolly J, Topp EM. Effect of Atomic Layer Coating on the Stability of Solid Myoglobin Formulations. Mol Pharm 2023; 20:4086-4099. [PMID: 37466053 DOI: 10.1021/acs.molpharmaceut.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The effects of atomic layer (ALC) coating on physical properties and storage stability were examined in solid powders containing myoglobin, a model protein. Powders containing myoglobin and mannitol (1:1 w/w) were prepared by lyophilization or spray drying and subjected to aluminum oxide or silicon oxide ALC coating. Uncoated samples of these powders as well as coated and uncoated samples of myoglobin as received served as controls. After preparation (t0), samples were analyzed for moisture content, reconstitution time, myoglobin secondary structure, crystallinity, and protein aggregate content. Samples were stored for 3 months (t3) under controlled conditions (53% RH, 40 °C) in both open and closed vials and then analyzed as above. At t3, the recovery of soluble native (i.e., monomeric) protein depended on formulation, coating type, and drying method and was up to 2-fold greater in coated samples than in uncoated controls. Promisingly, some samples with high recovery also showed low soluble aggregate content (<10%) at t3 and low total monomer loss; the latter was correlated to sample moisture content. Overall, the results demonstrate that ALC coatings can stabilize solid protein formulations during storage, providing benefits over uncoated controls.
Collapse
Affiliation(s)
- Caio H N Barros
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Manuel Alfaro
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Cormac Costello
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Fei Wang
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Kedar Sapre
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Suneel Rastogi
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | | | - James Connolly
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Elizabeth M Topp
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Herman CE, Min L, Choe LH, Maurer RW, Xu X, Ghose S, Lee KH, Lenhoff AM. Behavior of host-cell-protein-rich aggregates in antibody capture and polishing chromatography. J Chromatogr A 2023; 1702:464081. [PMID: 37244165 PMCID: PMC10299761 DOI: 10.1016/j.chroma.2023.464081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Recent work has shown that aggregates in monoclonal antibody (mAb) solutions may be made up not just of mAb oligomers but can also harbor hundreds of host-cell proteins (HCPs), suggesting that aggregate persistence through downstream purification operations may be related to HCP clearance. We have examined this in a primary analysis of aggregate persistence through processing steps that are typically implemented for HCP reduction, demonstrating that the phenomenon is relevant to depth filtration, protein A chromatography and flow-through anion-exchange (AEX) polishing. Confocal laser scanning microscopy observations show that aggregates compete with the mAb to adsorb specifically in protein A chromatography and that this competitive interaction is integral to the efficacy of protein A washes. Column chromatography reveals that the protein A elution tail can have a relatively high concentration of aggregates, which corroborates analogous observations from recent HCP studies. Similar measurements in flow-through AEX chromatography show that relatively large aggregates that harbor HCPs and that persist into the protein A eluate can be retained to an extent that appears to depend primarily on the resin surface chemistry. The total aggregate mass fraction of both protein A eluate pools (∼ 2.4 - 3.6%) and AEX flow-through fractions (∼ 1.5 - 3.2%) correlates generally with HCP concentrations measured using enzyme-linked immunosorbent assay (ELISA) as well as the number of HCPs that may be identified in proteomic analysis. This suggests that quantification of the aggregate mass fraction may serve as a convenient albeit imperfect surrogate for informing early process development decisions regarding HCP clearance strategies.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ronald W Maurer
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Xuankuo Xu
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Sanchayita Ghose
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Bazaz M, Adeli A, Azizi M, Karimipoor M, Mahboudi F, Davoudi N. Overexpression of miR-32 in Chinese hamster ovary cells increases production of Fc-fusion protein. AMB Express 2023; 13:45. [PMID: 37160545 PMCID: PMC10170017 DOI: 10.1186/s13568-023-01540-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 05/11/2023] Open
Abstract
The demand for industrial genetically modified host cells were increased with the growth of the biopharmaceutical market. Numerous studies on improving host cell productivity have shown that altering host cell growth and viability through genetic engineering can increase recombinant protein production. During the last decades, it was demonstrated that overexpression or downregulation of some microRNAs in Chinese Hamster Ovary (CHO) cells as the host cell in biopharmaceutical manufacturing, can improve their productivity. The selection of microRNA targets has been based on their previously identified role in human cancers. MicroRNA-32 (miR-32), which is conserved between humans and hamsters (Crisetulus griseus), was shown to play a role in the regulation of cell proliferation and apoptosis in some human cancers. In this study, we investigated the effect of miR-32 overexpression on the productivity of CHO-VEGF-trap cells. Our results indicated that stable overexpression of miR-32 could dramatically increase the productivity of CHO cells by 1.8-fold. It also significantly increases cell viability, batch culture longevity, and cell growth. To achieve these results, following the construction of a single clone producing an Fc-fusion protein, we transfected cells with a pLexJRed-miR-32 plasmid to stably produce the microRNA and evaluate the impact of mir-32 overexpression on cell productivity, growth and viability in compare with scrambled control. Our findings highlight the application of miRNAs as engineering tools and indicated that miR-32 could be a target for engineering CHO cells to increase cell productivity.
Collapse
Affiliation(s)
- Masoume Bazaz
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Adeli
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Freidoun Mahboudi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Noushin Davoudi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Characterization and exploration of an artifact in the reducing capillary electrophoresis-sodium dodecyl sulfate analysis of the 'me-too' drug zuberitamab related to rituximab. J Pharm Biomed Anal 2023; 228:115347. [PMID: 36934619 DOI: 10.1016/j.jpba.2023.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
For monoclonal antibody (mAb) drugs, the 'me-too' drug is a pharmacologically active compound that is structurally similar to the first-in-class drugs, acting on the same target and is used for the same therapeutic purposes, but it may differ in drug-drug interactions and adverse drug reactions. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) has been widely used for quality evaluation of mAb drugs. The properties of the detected substances can interfere with the credibility and accuracy of the method. In the routine comparison analysis for both innovator rituximab and 'me-too' drug zuberitamab samples, an uncommon artifact related to the heavy chain (HC) of zuberitamab was observed in reducing CE-SDS and interfered with our identification of the purity of samples. In this work, the overall hydrophobicity of the HCs of rituximab, zuberitamab, and several other common mAbs was characterized and determined by reversed-phase high-performance liquid chromatography. Additionally, the local hydrophobicity and surface charge were compared using Expasy ProtScale and PyMOL software simulations. We concluded that noncovalent protein aggregation can be related to strong hydrophobicity and low electrostatic repulsion of local amino acid regions, which complicates drug quality control. These findings shed light on the relationship between protein aggregation and the local hydrophobicity region, and broaden the way to analyze the detection 'artifacts' in reducing CE-SDS studies of therapeutic proteins.
Collapse
|
15
|
Cain P, Huang L, Tang Y, Anguiano V, Feng Y. Impact of IgG subclass on monoclonal antibody developability. MAbs 2023; 15:2191302. [PMID: 36945111 PMCID: PMC10038059 DOI: 10.1080/19420862.2023.2191302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
IgG-based monoclonal antibody therapeutics, which are mainly IgG1, IgG2, and IgG4 subclasses or related variants, have dominated the biotherapeutics field for decades. Multiple laboratories have reported that the IgG subclasses possess different molecular characteristics that can affect their developability. For example, IgG1, the most popular IgG subclass for therapeutics, is known to have a characteristic degradation pathway related to its hinge fragility. However, there remains a paucity of studies that systematically evaluate the IgG subclasses on manufacturability and long-term stability. We thus conducted a systematic study of 12 mAbs derived from three sets of unrelated variable regions, each cloned into IgG1, an IgG1 variant with diminished effector functions, IgG2, and a stabilized IgG4 variant with further reduced FcγR interaction, to evaluate the impact of IgG subclass on manufacturability and high concentration stability in a common formulation buffer matrix. Our evaluation included Chinese hamster ovary cell productivity, host cell protein removal efficiency, N-linked glycan structure at the conserved N297 Fc position, solution appearance at high concentration, and aggregate growth, fragmentation, charge variant profile change, and post-translational modification upon thermal stress conditions or long-term storage at refrigerated temperature. Our results elucidated molecular attributes that are common to all IgG subclasses, as well as those that are unique to certain Fc domains, providing new insight into the effects of IgG subclass on antibody manufacturability and stability. These learnings can be used to enable a balanced decision on IgG subclass selection for therapeutic antibodies and aid in acceleration of their product development process.
Collapse
Affiliation(s)
- Paul Cain
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Lihua Huang
- Bioproduct Research & Development, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Yu Tang
- Pharmaceutical Development and Manufacturing, Syndax Pharmaceuticals, Waltham, MA, USA
| | - Victor Anguiano
- Bioproduct Research & Development, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Yiqing Feng
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| |
Collapse
|
16
|
Qiao Y, Zhan Y, Zhang Y, Deng J, Chen A, Liu B, Zhang Y, Pan T, Zhang W, Zhang H, He X. Pam2CSK4-adjuvanted SARS-CoV-2 RBD nanoparticle vaccine induces robust humoral and cellular immune responses. Front Immunol 2022; 13:992062. [PMID: 36569949 PMCID: PMC9780597 DOI: 10.3389/fimmu.2022.992062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
As the global COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, vaccines remain an important tool for preventing the pandemic. The inactivated or subunit vaccines themselves generally exhibit low immunogenicity, which needs adjuvants to improve the immune response. We previously developed a receptor binding domain (RBD)-targeted and self-assembled nanoparticle to elicit a potent immune response in both mice and rhesus macaques. Herein, we further improved the RBD production in the eukaryote system by in situ Crispr/Cas9-engineered CHO cells. By comparing the immune effects of various Toll-like receptor-targeted adjuvants to enhance nanoparticle vaccine immunization, we found that Pam2CSK4, a TLR2/6 agonist, could mostly increase the titers of antigen-specific neutralizing antibodies and durability in humoral immunity. Remarkably, together with Pam2CSK4, the RBD-based nanoparticle vaccine induced a significant Th1-biased immune response and enhanced the differentiation of both memory T cells and follicular helper T cells. We further found that Pam2CSK4 upregulated migration genes and many genes involved in the activation and proliferation of leukocytes. Our data indicate that Pam2CSK4 targeting TLR2, which has been shown to be effective in tuberculosis vaccines, is the optimal adjuvant for the SARS-CoV-2 nanoparticle vaccine, paving the way for an immediate clinical trial.
Collapse
Affiliation(s)
- Yidan Qiao
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yikang Zhan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongli Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieyi Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Achun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangzhou National Laboratory, Guangzhou, Guangdong, China,*Correspondence: Xin He, ; Hui Zhang,
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xin He, ; Hui Zhang,
| |
Collapse
|
17
|
Doyle K, Tsopanoglou A, Fejér A, Glennon B, del Val IJ. Automated assembly of hybrid dynamic models for CHO cell culture processes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|