1
|
Zhang H, Liu Z, Huang X. Social aphids: emerging model for studying insect sociality. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101205. [PMID: 39084848 DOI: 10.1016/j.cois.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 08/02/2024]
Abstract
Sociality is also evolved in parthenogenetic herbivorous hemipteran aphids, encompassing species with complex life history traits and significant social diversity. Owing to their interesting biological characteristics comparing to other social insect groups, social aphids can be a good model for studying insect sociality. Here, we review the species, behavior, and trait diversity of social aphids, and present recent findings on environmental, physiological, and molecular regulations of caste differentiation and behavior in social aphids. We propose the unique value of social aphids in investigating the evolution and mechanisms of insect sociality as well as future research directions using the social aphid model, including social evolution, caste differentiation, behavioral polymorphism, morphological plasticity, physical mechanics, and interspecific interactions.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixiang Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Lin S, Elsner D, Ams L, Korb J, Rosengaus R. A genetic toolkit underlying the queen phenotype in termites with totipotent workers. Sci Rep 2024; 14:2214. [PMID: 38278833 PMCID: PMC10817970 DOI: 10.1038/s41598-024-51772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Social insect castes (e.g., queens, workers) are prime examples of phenotypic plasticity (i.e., different phenotypes arising from the same genotype). Yet, the mechanisms that give rise to highly fertile, long-lived queens versus non-reproducing, short-lived workers are not well understood. Recently, a module of co-expressed genes has been identified that characterizes queens compared to workers of the termite Cryptotermes secundus (Kalotermitidae): the Queen Central Module (QCM). We tested whether the QCM is shared in termite species, in which queens gradually develop via early larval and late larval instars, the latter functioning as totipotent workers (linear development). Similar as in C. secundus, gene expression profiles revealed an enrichment of QCM genes in Zootermopsis angusticollis queens, a species from another termite family (Archotermopsidae). The expression of these QCM genes became gradually enriched during development from early larval instars via workers to queens. Thus, our results support the hypothesis of a conserved genetic toolkit that characterizes termite queens with gradual linear development. Our data also imply a strong caste-specific tissue specificity with the QCM signal being restricted to head-prothorax tissues in termite queens. This tissue-specific expression of key aging-related genes might have facilitated the evolution of a long lifespan in termite queens.
Collapse
Affiliation(s)
- Silu Lin
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Elsner
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany
| | - Leon Ams
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany
| | - Judith Korb
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany.
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina Campus, Darwin, NT, 0909, Australia.
| | - Rebeca Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Lv Y, Pan Y, Li J, Ding Y, Yu Z, Yan K, Shang Q. The C2H2 zinc finger transcription factor CF2-II regulates multi-insecticide resistance-related gut-predominant ABC transporters in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126765. [PMID: 37683749 DOI: 10.1016/j.ijbiomac.2023.126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Clarifying the molecular mechanisms of cotton aphid resistance to various insecticides is crucial for the long-term safe application of insecticides in chemical control. ATP-binding cassette (ABC) transporters mediate the membrane transport of various substrates (including exogenous substances). Experiments confirmed that ABCB5, ABCF2, and MRP12 contributed to high levels of resistance to spirotetramat, cyantraniliprole, thiamethoxam or imidacloprid. Binding sites of the C2H2 zinc finger transcription factor CF2-II was predicted to be located in the promoters of ABCB5, ABCF2, and MRP12. The expression levels of ABCB5, ABCF2, and MRP12 were significantly upregulated after silencing CF2-II. The results of dual-luciferase reporter assays demonstrated a negative regulatory relationship between CF2-II and ABC transporter promoters. Furthermore, yeast one-hybrid (Y1H) and electrophoresis mobility shift assays (EMSAs) revealed that CF2-II inhibited the expression of ABC transporter genes through interaction with binding sites [ABCF2.p (-1149/-1140) or MRP12.p (-1189/-1181)]. The above results indicated that ABCB5, ABCF2, and MRP12 were negatively regulated by the transcription factor CF2-II, which will help us further understand the mechanism of transcriptional adaption of multi-insecticides resistant related ABC transporters in response to xenobiotics.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
4
|
Huisken JL, Rehan SM. Brain Gene Expression of Foraging Behavior and Social Environment in Ceratina calcarata. Genome Biol Evol 2023; 15:evad117. [PMID: 37364293 PMCID: PMC10337991 DOI: 10.1093/gbe/evad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Rudimentary social systems have the potential to both advance our understanding of how complex sociality may have evolved and our understanding of how changes in social environment may influence gene expression and cooperation. Recently, studies of primitively social Hymenoptera have greatly expanded empirical evidence for the role of social environment in shaping behavior and gene expression. Here, we compare brain gene expression profiles of foragers across social contexts in the small carpenter bee, Ceratina calcarata. We conducted experimental manipulations of field colonies to examine gene expression profiles among social contexts including foraging mothers, regular daughters, and worker-like dwarf eldest daughters in the presence and absence of mother. Our analysis found significant differences in gene expression associated with female age, reproductive status, and social environment, including circadian clock gene dyw, hexamerin, and genes involved in the regulation of juvenile hormone and chemical communication. We also found that candidate genes differentially expressed in our study were also associated with division of labor, including foraging, in other primitively and advanced eusocial insects. Our results offer evidence for the role of the regulation of key developmental hormones and circadian rhythms in producing cooperative behavior in rudimentary insect societies.
Collapse
|
5
|
Favreau E, Cini A, Taylor D, Câmara Ferreira F, Bentley MA, Cappa F, Cervo R, Privman E, Schneider J, Thiéry D, Mashoodh R, Wyatt CDR, Brown RL, Bodrug-Schepers A, Stralis-Pavese N, Dohm JC, Mead D, Himmelbauer H, Guigo R, Sumner S. Putting hornets on the genomic map. Sci Rep 2023; 13:6232. [PMID: 37085574 PMCID: PMC10121689 DOI: 10.1038/s41598-023-31932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/23/2023] Open
Abstract
Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.
Collapse
Affiliation(s)
- Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Alessandro Cini
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, Università di Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Daisy Taylor
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Michael A Bentley
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Abba Hushi 199, 3498838, Haifa, Israel
| | - Jadesada Schneider
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Denis Thiéry
- INRAe, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro, ISVV, Université de Bordeaux, 33883, Villenave d'Ornon, France
| | - Rahia Mashoodh
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher D R Wyatt
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Alexandrina Bodrug-Schepers
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Nancy Stralis-Pavese
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Daniel Mead
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Roderic Guigo
- Centre for Genomic Regulation, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Sumner S, Favreau E, Geist K, Toth AL, Rehan SM. Molecular patterns and processes in evolving sociality: lessons from insects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220076. [PMID: 36802779 PMCID: PMC9939270 DOI: 10.1098/rstb.2022.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 02/21/2023] Open
Abstract
Social insects have provided some of the clearest insights into the origins and evolution of collective behaviour. Over 20 years ago, Maynard Smith and Szathmáry defined the most complex form of insect social behaviour-superorganismality-among the eight major transitions in evolution that explain the emergence of biological complexity. However, the mechanistic processes underlying the transition from solitary life to superorganismal living in insects remain rather elusive. An overlooked question is whether this major transition arose via incremental or step-wise modes of evolution. We suggest that examination of the molecular processes underpinning different levels of social complexity represented across the major transition from solitary to complex sociality can help address this question. We present a framework for using molecular data to assess to what extent the mechanistic processes that take place in the major transition to complex sociality and superorganismality involve nonlinear (implying step-wise evolution) or linear (implying incremental evolution) changes in the underlying molecular mechanisms. We assess the evidence for these two modes using data from social insects and discuss how this framework can be used to test the generality of molecular patterns and processes across other major transitions. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Katherine Geist
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Sandra M. Rehan
- Department of Biology, York University, Toronto, Canada M3J 1P3
| |
Collapse
|
7
|
Joshi CH, Wiens JJ. Does haplodiploidy help drive the evolution of insect eusociality? Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1118748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Understanding the evolution of eusociality in insects has been a long-standing and unsolved challenge in evolutionary biology. For decades, it has been suggested that haplodiploidy plays an important role in the origin of eusociality. However, some researchers have also suggested that eusociality is unrelated to haplodiploidy. Surprisingly, there have been no large-scale phylogenetic tests of this hypothesis (to our knowledge). Here, we test whether haplodiploidy might help explain the origins of eusociality across 874 hexapod families, using three different phylogenetic comparative methods. Two of the methods used support the idea that the evolution of eusociality is significantly associated with haplodiploidy, providing possibly the first phylogenetic support for this decades-old hypothesis across insects. However, some patterns were clearly discordant with this hypothesis, and one phylogenetic test was non-significant. Support for this hypothesis came largely from the repeated origins of eusociality within the haplodiploid hymenopterans (and within thrips). Experimental manipulations of the data show that the non-significant results are primarily explained by the origins of eusociality without haplodiploidy in some groups (i.e., aphids, termites). Overall, our results offer mixed phylogenetic support for the long-standing hypothesis that haplodiploidy helps drive the evolution of eusociality.
Collapse
|
8
|
Wyatt CDR, Bentley MA, Taylor D, Favreau E, Brock RE, Taylor BA, Bell E, Leadbeater E, Sumner S. Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps. Nat Commun 2023; 14:1046. [PMID: 36828829 PMCID: PMC9958023 DOI: 10.1038/s41467-023-36456-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
A key mechanistic hypothesis for the evolution of division of labour in social insects is that a shared set of genes co-opted from a common solitary ancestral ground plan (a genetic toolkit for sociality) regulates caste differentiation across levels of social complexity. Using brain transcriptome data from nine species of vespid wasps, we test for overlap in differentially expressed caste genes and use machine learning models to predict castes using different gene sets. We find evidence of a shared genetic toolkit across species representing different levels of social complexity. We also find evidence of additional fine-scale differences in predictive gene sets, functional enrichment and rates of gene evolution that are related to level of social complexity, lineage and of colony founding. These results suggest that the concept of a shared genetic toolkit for sociality may be too simplistic to fully describe the process of the major transition to sociality.
Collapse
Affiliation(s)
- Christopher Douglas Robert Wyatt
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| | - Michael Andrew Bentley
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Daisy Taylor
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Ryan Edward Brock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Benjamin Aaron Taylor
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Emily Bell
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Favreau E, Geist KS, Wyatt CDR, Toth AL, Sumner S, Rehan SM. Co-expression Gene Networks and Machine-learning Algorithms Unveil a Core Genetic Toolkit for Reproductive Division of Labour in Rudimentary Insect Societies. Genome Biol Evol 2023; 15:evac174. [PMID: 36527688 PMCID: PMC9830183 DOI: 10.1093/gbe/evac174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The evolution of eusociality requires that individuals forgo some or all their own reproduction to assist the reproduction of others in their group, such as a primary egg-laying queen. A major open question is how genes and genetic pathways sculpt the evolution of eusociality, especially in rudimentary forms of sociality-those with smaller cooperative nests when compared with species such as honeybees that possess large societies. We lack comprehensive comparative studies examining shared patterns and processes across multiple social lineages. Here we examine the mechanisms of molecular convergence across two lineages of bees and wasps exhibiting such rudimentary societies. These societies consist of few individuals and their life histories range from facultative to obligately social. Using six species across four independent origins of sociality, we conduct a comparative meta-analysis of publicly available transcriptomes. Standard methods detected little similarity in patterns of differential gene expression in brain transcriptomes among reproductive and non-reproductive individuals across species. By contrast, both supervised machine learning and consensus co-expression network approaches uncovered sets of genes with conserved expression patterns among reproductive and non-reproductive phenotypes across species. These sets overlap substantially, and may comprise a shared genetic "toolkit" for sociality across the distantly related taxa of bees and wasps and independently evolved lineages of sociality. We also found many lineage-specific genes and co-expression modules associated with social phenotypes and possible signatures of shared life-history traits. These results reveal how taxon-specific molecular mechanisms complement a core toolkit of molecular processes in sculpting traits related to the evolution of eusociality.
Collapse
Affiliation(s)
- Emeline Favreau
- Department of Genetics, Environment, Evolution, University College London, London WC1E 6BT, United Kingdom
| | - Katherine S Geist
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011
| | - Christopher D R Wyatt
- Department of Genetics, Environment, Evolution, University College London, London WC1E 6BT, United Kingdom
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011
| | - Seirian Sumner
- Department of Genetics, Environment, Evolution, University College London, London WC1E 6BT, United Kingdom
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
10
|
Sasaki K, Yoshimura H, Nishimura M. Caste-specific storage of dopamine-related substances in the brains of four Polistes paper wasp species. PLoS One 2023; 18:e0280881. [PMID: 36701284 PMCID: PMC9879392 DOI: 10.1371/journal.pone.0280881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
How the role of dopamine differs according to the evolution of eusociality and how it is required in the flexible society of Polistes paper wasps need further clarification. In the present study, we compared the storage and usage of dopamine-related substances in brains between the castes of paper wasps. The head widths, lipid stores in the abdomen, and levels of biogenic amines in the brains were measured in newly emerged females before male emergence (workers) and after male emergence (gynes) in four Polistes species. The head widths and the lipid stores were significantly larger in gynes than workers in P. snelleni, P. rothneyi, and P. jokahamae, whereas they did not differ between castes in P. chinensis. The levels of dopamine precursors in the brains were significantly higher in gynes than workers in P. snelleni, P. chinensis, and P. rothneyi, whereas those of dopamine and its metabolites did not differ between castes in these species. In P. jokahamae, the levels of dopamine precursors and dopamine in the brains did not differ between castes, but those of a dopamine metabolite were significantly higher in gynes than workers. Thus, the caste differences in the levels of dopamine-related substances did not always match body sizes and nutritional reserves. Foundresses in P. rothneyi had significantly lower levels of dopamine precursors and higher levels of dopamine and its metabolite than newly emerged gynes. These results suggested that in several Polistes species, dopamine precursors were stored in the brain without dopamine biosynthesis at emergence, and then converted into dopamine in foundresses during colony founding. These neuroendocrinal states in Polistes species largely differed from those in eusocial bees.
Collapse
Affiliation(s)
- Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Hideto Yoshimura
- Division of Agro-Environment Research, Tohoku Agricultural Research Center, NARO, Morioka, Iwate, Japan
| | - Masakazu Nishimura
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
11
|
Yaguchi H, Suzuki S, Kanasaki N, Masuoka Y, Suzuki R, Suzuki RH, Hayashi Y, Shigenobu S, Maekawa K. Evolution and functionalization of vitellogenin genes in the termite Reticulitermes speratus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:68-80. [PMID: 35485990 DOI: 10.1002/jez.b.23141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Eusociality has been commonly observed in distinct animal lineages. The reproductive division of labor is a particular feature, achieved by the coordination between fertile and sterile castes within the same nest. The sociogenomic approach in social hymenopteran insects indicates that vitellogenin (Vg) has undergone neo-functionalization in sterile castes. Here, to know whether Vgs have distinct roles in nonreproductive castes in termites, we investigated the unique characteristics of Vgs in the rhinotermitid termite Reticulitermes speratus. The four Vgs were identified from R. speratus (RsVg1-4), and RsVg3 sequences were newly identified using the RACE method. Molecular phylogenetic analysis supported the monophyly of the four termite Vgs. Moreover, the termites Vg1-3 and Vg4 were positioned in two different clades. The dN/dS ratios indicated that the branch leading to the common ancestor of termite Vg4 was under weak purifying selection. Expression analyses among castes (reproductives, workers, and soldiers) and females (nymphs, winged alates, and queens) showed that RsVg1-3 was highly expressed in fertile queens. In contrast, RsVg4 was highly expressed in workers and female nonreproductives (nymphs and winged adults). Localization of RsVg4 messenger RNA was confirmed in the fat body of worker heads and abdomens. These results suggest that Vg genes are functionalized after gene duplication during termite eusocial transition and that Vg4 is involved in nonreproductive roles in termites.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Japan.,Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Shogo Suzuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Naoto Kanasaki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Yudai Masuoka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan.,Institute of Agrobiological Sciences, NARO (National Agriculture and Food Research Organization), Tsukuba, Japan
| | - Ryutaro Suzuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Ryouhei H Suzuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | | | - Shuji Shigenobu
- NIBB Research Core Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
12
|
Knapp RA, Norman VC, Rouse JL, Duncan EJ. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100951. [PMID: 35863739 PMCID: PMC9586883 DOI: 10.1016/j.cois.2022.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.
Collapse
Affiliation(s)
- Rosemary A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria C Norman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James L Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
13
|
Maekawa K, Hayashi Y, Lo N. Termite sociogenomics: evolution and regulation of caste-specific expressed genes. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100880. [PMID: 35123120 DOI: 10.1016/j.cois.2022.100880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Termite genomes have been sequenced in at least five species from four different families. Genome-based transcriptome analyses have identified large numbers of protein-coding genes with caste-specific expression patterns. These genes include those involved in caste-specific morphologies and roles, for example high fecundity and longevity in reproductives. Some caste-specific expressed genes belong to multi-gene families, and their genetic architecture and expression profiles indicate they have evolved via tandem gene duplication. Candidate regulatory mechanisms of caste-specific expression include epigenetic regulation (e.g. histone modification and non-coding RNA) and diversification of transcription factors and cis-regulatory elements. We review current knowledge in the area of termite sociogenomics, focussing on the evolution and regulation of caste-specific expressed genes, and discuss future research directions.
Collapse
Affiliation(s)
- Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Hiyoshi, Yokohama 223-8521, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| |
Collapse
|
14
|
Shell WA, Rehan SM. Social divergence: molecular pathways underlying castes and longevity in a facultatively eusocial small carpenter bee. Proc Biol Sci 2022; 289:20212663. [PMID: 35317677 PMCID: PMC8941392 DOI: 10.1098/rspb.2021.2663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Unravelling the evolutionary origins of eusocial life is a longstanding endeavour in the field of evolutionary-developmental biology. Descended from solitary ancestors, eusocial insects such as honeybees have evolved ontogenetic division of labour in which short-lived workers perform age-associated tasks, while a long-lived queen produces brood. It is hypothesized that (i) eusocial caste systems evolved through the co-option of deeply conserved genes and (ii) longevity may be tied to oxidative damage mitigation capacity. To date, however, these hypotheses have been examined primarily among only obligately eusocial corbiculate bees. We present brain transcriptomic data from a Japanese small carpenter bee, Ceratina japonica (Apidae: Xylocopinae), which demonstrates both solitary and eusocial nesting in sympatry and lives 2 or more years in the wild. Our dataset captures gene expression patterns underlying first- and second-year solitary females, queens and workers, providing an unprecedented opportunity to explore the molecular mechanisms underlying caste-antecedent phenotypes in a long-lived and facultatively eusocial bee. We find that C. japonica's queens and workers are underpinned by divergent gene regulatory pathways, involving many differentially expressed genes well-conserved among other primitively eusocial bee lineages. We also find support for oxidative damage reduction as a proximate mechanism of longevity in C. japonica.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Sandra M. Rehan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
15
|
Costa CP, Okamoto N, Orr M, Yamanaka N, Woodard SH. Convergent Loss of Prothoracicotropic Hormone, A Canonical Regulator of Development, in Social Bee Evolution. Front Physiol 2022; 13:831928. [PMID: 35242055 PMCID: PMC8887954 DOI: 10.3389/fphys.2022.831928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The evolution of insect sociality has repeatedly involved changes in developmental events and their timing. Here, we propose the hypothesis that loss of a canonical regulator of moulting and metamorphosis, prothoracicotropic hormone (PTTH), and its receptor, Torso, is associated with the evolution of sociality in bees. Specifically, we posit that the increasing importance of social influences on early developmental timing in social bees has led to their decreased reliance on PTTH, which connects developmental timing with abiotic cues in solitary insects. At present, the evidence to support this hypothesis includes the absence of genes encoding PTTH and Torso from all fully-sequenced social bee genomes and its presence in all available genomes of solitary bees. Based on the bee phylogeny, the most parsimonious reconstruction of evolutionary events is that this hormone and its receptor have been lost multiple times, across independently social bee lineages. These gene losses shed light on possible molecular and cellular mechanisms that are associated with the evolution of social behavior in bees. We outline the available evidence for our hypothesis, and then contextualize it in light of what is known about developmental cues in social and solitary bees, and the multiple precedences of major developmental changes in social insects.
Collapse
Affiliation(s)
- Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Naoki Okamoto
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
16
|
Differential Selection on Caste-Associated Genes in a Subterranean Termite. INSECTS 2022; 13:insects13030224. [PMID: 35323522 PMCID: PMC8955789 DOI: 10.3390/insects13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Analyzing the information-rich content of RNA can help uncover genetic events associated with social insect castes or other social polymorphisms. Here, we exploit a series of cDNA libraries previously derived from whole-body tissue of different castes as well as from three behaviourally distinct populations of the Eastern subterranean termite Reticulitermes flavipes. We found that the number (~0.5 M) of single nucleotide variants (SNVs) was roughly equal between nymph, worker and soldier caste libraries, but dN/dS (ratio of nonsynonymous to synonymous substitutions) analysis suggested that some of these variants confer a caste-specific advantage. Specifically, the dN/dS ratio was high (~4.3) for genes expressed in the defensively specialized soldier caste, relative to genes expressed by other castes (~1.7−1.8) and regardless of the North American population (Toronto, Raleigh, Boston) from which the castes were sampled. The populations, meanwhile, did show a large difference in SNV count but not in the manner expected from known demographic and behavioural differences; the highly invasive unicolonial population from Toronto was not the least diverse and did not show any other unique substitution patterns, suggesting any past bottleneck associated with invasion or with current unicoloniality has become obscured at the RNA level. Our study raises two important hypotheses relevant to termite sociobiology. First, the positive selection (dN/dS > 1) inferred for soldier-biased genes is presumably indirect and of the type mediated through kin selection, and second, the behavioural changes that accompany some social insect urban invasions (i.e., ‘unicoloniality’) may be detached from the loss-of-diversity expected from invasion bottlenecks.
Collapse
|
17
|
Genomic and transcriptomic analyses of the subterranean termite Reticulitermes speratus: Gene duplication facilitates social evolution. Proc Natl Acad Sci U S A 2022; 119:2110361119. [PMID: 35042774 PMCID: PMC8785959 DOI: 10.1073/pnas.2110361119] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Gene duplication is a major source of evolutionary innovation and is associated with the increases in biological complexity and adaptive radiation. Termites are model social organisms characterized by a sophisticated caste system. We analyzed the genome of the Japanese subterranean termite, an ecologically and economically important insect acting as a destructive pest. The analyses revealed the significance of gene duplication in social evolution. Gene duplication associated with caste-biased gene expression was prevalent in the termite genome. Many of the duplicated genes were related to social functions, such as chemical communication, social immunity, and defense, and they were often expressed in caste-specific organs. We propose that gene duplication facilitates social evolution through regulatory diversification leading to caste-biased expression and functional specialization. Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus. Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage–specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.
Collapse
|
18
|
Fisher K, Sarro E, Miranda CK, Guillen BM, Woodard SH. Worker task organization in incipient bumble bee nests. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
|
20
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Sasaki K, Okada Y, Shimoji H, Aonuma H, Miura T, Tsuji K. Social Evolution With Decoupling of Multiple Roles of Biogenic Amines Into Different Phenotypes in Hymenoptera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.659160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Convergent evolution of eusociality with the division of reproduction and its plastic transition in Hymenoptera has long attracted the attention of researchers. To explain the evolutionary scenario of the reproductive division of labor, several hypotheses had been proposed. Among these, we focus on the most basic concepts, i.e., the ovarian ground plan hypothesis (OGPH) and the split-function hypothesis (SFH). The OGPH assumes the physiological decoupling of ovarian cycles and behavior into reproductive and non-reproductive individuals, whereas the SFH assumes that the ancestral reproductive function of juvenile hormone (JH) became split into a dual function. Here, we review recent progress in the understanding of the neurohormonal regulation of reproduction and social behavior in eusocial hymenopterans, with an emphasis on biogenic amines. Biogenic amines are key substances involved in the switching of reproductive physiology and modulation of social behaviors. Dopamine has a pivotal role in the formation of reproductive skew irrespective of the social system, whereas octopamine and serotonin contribute largely to non-reproductive social behaviors. These decoupling roles of biogenic amines are seen in the life cycle of a single female in a solitary species, supporting OGPH. JH promotes reproduction with dopamine function in primitively eusocial species, whereas it regulates non-reproductive social behaviors with octopamine function in advanced eusocial species. The signal transduction networks between JH and the biogenic amines have been rewired in advanced eusocial species, which could regulate reproduction in response to various social stimuli independently of JH action.
Collapse
|
22
|
Korb J, Heinze J. Ageing and sociality: why, when and how does sociality change ageing patterns? Philos Trans R Soc Lond B Biol Sci 2021; 376:20190727. [PMID: 33678019 PMCID: PMC7938171 DOI: 10.1098/rstb.2019.0727] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Individual lifespans vary tremendously between and also within species, but the proximate and ultimate causes of different ageing speeds are still not well understood. Sociality appears to be associated with the evolution of greater longevity and probably also with a larger plasticity of the shape and pace of ageing. For example, reproductives of several termites and ants reach lifespans that surpass those of their non-reproductive nestmates by one or two decades. In this issue, 15 papers explore the interrelations between sociality and individual longevity in both, group-living vertebrates and social insects. Here, we briefly give an overview of the contents of the various contributions, including theoretical and comparative studies, and we explore the similarities and dissimilarities in proximate mechanisms underlying ageing among taxa, with particular emphasis on nutrient-sensing pathways and, in insects, juvenile hormone. These studies point to an underestimated role of more downstream processes. We highlight the need for reliable transcriptomic markers of ageing and a comprehensive ageing theory of social animals, which includes the reproductive potential of workers, and considers the fact that social insect queens reach maturity only after a prolonged period of producing non-reproductive workers. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - Jürgen Heinze
- Department of Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße, 93040 Regensburg, Germany
| |
Collapse
|
23
|
Abstract
Some parasitoid wasps possess soldier castes during their parasitic larval stage, but are often neglected from our evolutionary theories explaining caste systems in animal societies. This is primarily due to the polyembryonic origin of their societies. However, recent discoveries of polyembryonic trematodes (i.e. flatworms) possessing soldier castes require us to reconsider this reasoning. I argue we can benefit from including these polyembryonic parasites in eusocial discussions, for polyembryony and parasitism are taxonomically vast and influence the evolution of social behaviours and caste systems in various circumstances. Despite their polyembryony, their social evolution can be explained by theories of eusociality designed for parent–offspring groups, which are the subjects of most social evolution research. Including polyembryonic parasites in these theories follows the trend of major evolutionary transitions theory expanding social evolution research into all levels of biological organization. In addition, these continued discoveries of caste systems in parasites suggest social evolution may be more relevant to parasitology than currently acknowledged.
Collapse
Affiliation(s)
- Brian A Whyte
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| |
Collapse
|
24
|
Ledón-Rettig CC. Novel brain gene-expression patterns are associated with a novel predaceous behaviour in tadpoles. Proc Biol Sci 2021; 288:20210079. [PMID: 33784864 DOI: 10.1098/rspb.2021.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Novel behaviours can spur evolutionary change and sometimes even precede morphological innovation, but the evolutionary and developmental contexts for their origins can be elusive. One proposed mechanism to generate behavioural innovation is a shift in the developmental timing of gene-expression patterns underlying an ancestral behaviour, or molecular heterochrony. Alternatively, novel suites of gene expression, which could provide new contexts for signalling pathways with conserved behavioural functions, could promote novel behavioural variation. To determine the relative contributions of these alternatives to behavioural innovation, I used a species of spadefoot toad, Spea bombifrons. Based on environmental cues, Spea larvae develop as either of two morphs: 'omnivores' that, like their ancestors, feed on detritus, or 'carnivores' that are predaceous and cannibalistic. Because all anuran larvae undergo a natural transition to obligate carnivory during metamorphosis, it has been proposed that the novel, predaceous behaviour in Spea larvae represents the accelerated activation of gene networks influencing post-metamorphic behaviours. Based on comparisons of brain transcriptional profiles, my results reject widespread heterochrony as a mechanism promoting the expression of predaceous larval behaviour. They instead suggest that the evolution of this trait relied on novel patterns of gene expression that include components of pathways with conserved behavioural functions.
Collapse
Affiliation(s)
- Cris C Ledón-Rettig
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 100, Bloomington, IN 47405-7107, USA
| |
Collapse
|
25
|
Laciny A. Among the shapeshifters: parasite-induced morphologies in ants (Hymenoptera, Formicidae) and their relevance within the EcoEvoDevo framework. EvoDevo 2021; 12:2. [PMID: 33653386 PMCID: PMC7923345 DOI: 10.1186/s13227-021-00173-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
As social insects, ants represent extremely interaction-rich biological systems shaped by tightly integrated social structures and constant mutual exchange with a multitude of internal and external environmental factors. Due to this high level of ecological interconnection, ant colonies can harbour a diverse array of parasites and pathogens, many of which are known to interfere with the delicate processes of ontogeny and caste differentiation and induce phenotypic changes in their hosts. Despite their often striking nature, parasite-induced changes to host development and morphology have hitherto been largely overlooked in the context of ecological evolutionary developmental biology (EcoEvoDevo). Parasitogenic morphologies in ants can, however, serve as “natural experiments” that may shed light on mechanisms and pathways relevant to host development, plasticity or robustness under environmental perturbations, colony-level effects and caste evolution. By assessing case studies of parasites causing morphological changes in their ant hosts, from the eighteenth century to current research, this review article presents a first overview of relevant host and parasite taxa. Hypotheses about the underlying developmental and evolutionary mechanisms, and open questions for further research are discussed. This will contribute towards highlighting the importance of parasites of social insects for both biological theory and empirical research and facilitate future interdisciplinary work at the interface of myrmecology, parasitology, and the EcoEvoDevo framework.
Collapse
Affiliation(s)
- Alice Laciny
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| |
Collapse
|
26
|
Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Commun Biol 2021; 4:253. [PMID: 33637860 PMCID: PMC7977082 DOI: 10.1038/s42003-021-01770-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
While it is well known that the genome can affect social behavior, recent models posit that social lifestyles can, in turn, influence genome evolution. Here, we perform the most phylogenetically comprehensive comparative analysis of 16 bee genomes to date: incorporating two published and four new carpenter bee genomes (Apidae: Xylocopinae) for a first-ever genomic comparison with a monophyletic clade containing solitary through advanced eusocial taxa. We find that eusocial lineages have undergone more gene family expansions, feature more signatures of positive selection, and have higher counts of taxonomically restricted genes than solitary and weakly social lineages. Transcriptomic data reveal that caste-affiliated genes are deeply-conserved; gene regulatory and functional elements are more closely tied to social phenotype than phylogenetic lineage; and regulatory complexity increases steadily with social complexity. Overall, our study provides robust empirical evidence that social evolution can act as a major and surprisingly consistent driver of macroevolutionary genomic change.
Collapse
|
27
|
Revely L, Sumner S, Eggleton P. The Plasticity and Developmental Potential of Termites. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.552624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phenotypic plasticity provides organisms with the potential to adapt to their environment and can drive evolutionary innovations. Developmental plasticity is environmentally induced variation in phenotypes during development that arise from a shared genomic background. Social insects are useful models for studying the mechanisms of developmental plasticity, due to the phenotypic diversity they display in the form of castes. However, the literature has been biased toward the study of developmental plasticity in the holometabolous social insects (i.e., bees, wasps, and ants); the hemimetabolous social insects (i.e., the termites) have received less attention. Here, we review the phenotypic complexity and diversity of termites as models for studying developmental plasticity. We argue that the current terminology used to define plastic phenotypes in social insects does not capture the diversity and complexity of these hemimetabolous social insects. We suggest that terminology used to describe levels of cellular potency could be helpful in describing the many levels of phenotypic plasticity in termites. Accordingly, we propose a conceptual framework for categorizing the changes in potential of individuals to express alternative phenotypes through the developmental life stages of termites. We compile from the literature an exemplar dataset on the phenotypic potencies expressed within and between species across the phylogeny of the termites and use this to illustrate how the potencies of different life stages of different species can be described using this framework. We highlight how this conceptual framework can help exploit the rich phenotypic diversity of termites to address fundamental questions about the evolution and mechanisms of developmental plasticity. This conceptual contribution is likely to have wider relevance to the study of other hemimetabolous insects, such as aphids and gall-forming thrips, and may even prove useful for some holometabolous social insects which have high caste polyphenism.
Collapse
|
28
|
Araujo NDS, Arias MC. Gene expression and epigenetics reveal species-specific mechanisms acting upon common molecular pathways in the evolution of task division in bees. Sci Rep 2021; 11:3654. [PMID: 33574391 PMCID: PMC7878513 DOI: 10.1038/s41598-020-75432-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023] Open
Abstract
A striking feature of advanced insect societies is the existence of workers that forgo reproduction. Two broad types of workers exist in eusocial bees: nurses who care for their young siblings and the queen, and foragers who guard the nest and forage for food. Comparisons between these two worker subcastes have been performed in honeybees, but data from other bees are scarce. To understand whether similar molecular mechanisms are involved in nurse-forager differences across distinct species, we compared gene expression and DNA methylation profiles between nurses and foragers of the buff-tailed bumblebee Bombus terrestris and the stingless bee Tetragonisca angustula. These datasets were then compared to previous findings from honeybees. Our analyses revealed that although the expression pattern of genes is often species-specific, many of the biological processes and molecular pathways involved are common. Moreover, the correlation between gene expression and DNA methylation was dependent on the nucleotide context, and non-CG methylation appeared to be a relevant factor in the behavioral changes of the workers. In summary, task specialization in worker bees is characterized by a plastic and mosaic molecular pattern, with species-specific mechanisms acting upon broad common pathways across species.
Collapse
Affiliation(s)
- Natalia de Souza Araujo
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil.
- Department of Evolutionary Biology and Ecology, Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium.
| | - Maria Cristina Arias
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
29
|
Taylor BA, Cini A, Wyatt CDR, Reuter M, Sumner S. The molecular basis of socially mediated phenotypic plasticity in a eusocial paper wasp. Nat Commun 2021; 12:775. [PMID: 33536437 PMCID: PMC7859208 DOI: 10.1038/s41467-021-21095-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior.
Collapse
Affiliation(s)
- Benjamin A Taylor
- Centre for Biodiversity & Environment Research, University College London, London, UK.
- Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Alessandro Cini
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Christopher D R Wyatt
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
30
|
Hanna L, Abouheif E. The origin of wing polyphenism in ants: An eco-evo-devo perspective. Curr Top Dev Biol 2021; 141:279-336. [PMID: 33602491 DOI: 10.1016/bs.ctdb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of eusociality, where solitary individuals integrate into a single colony, is a major transition in individuality. In ants, the origin of eusociality coincided with the origin of a wing polyphenism approximately 160 million years ago, giving rise to colonies with winged queens and wingless workers. As a consequence, both eusociality and wing polyphenism are nearly universal features of all ants. Here, we synthesize fossil, ecological, developmental, and evolutionary data in an attempt to understand the factors that contributed to the origin of wing polyphenism in ants. We propose multiple models and hypotheses to explain how wing polyphenism is orchestrated at multiple levels, from environmental cues to gene networks. Furthermore, we argue that the origin of wing polyphenism enabled the subsequent evolution of morphological diversity across the ants. We finally conclude by outlining several outstanding questions for future work.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Beck CW, Blumer LS. Advancing Undergraduate Laboratory Education Using Non-Model Insect Species. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:485-504. [PMID: 32966102 DOI: 10.1146/annurev-ento-062920-095809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past decade, laboratory courses have made a fundamental shift to inquiry-based modules and authentic research experiences. In many cases, these research experiences emphasize addressing novel research questions. Insects are ideal for inquiry-based undergraduate laboratory courses because research on insects is not limited by regulatory, economic, and logistical constraints to the same degree as research on vertebrates. While novel research questions could be pursued with model insect species (e.g., Drosophila, Tribolium), the opportunities presented by non-model insects are much greater, as less is known about non-model species. We review the literature on the use of non-model insect species in laboratory education to provide a resource for faculty interested in developing new authentic inquiry-based laboratory modules using insects. Broader use of insects in undergraduate laboratory education will support the pedagogical goals of increased inquiry and resesarch experiences while at the same time fostering increased interest and research in entomology.
Collapse
Affiliation(s)
| | - Lawrence S Blumer
- Department of Biology, Morehouse College, Atlanta, Georgia 30314, USA;
| |
Collapse
|
32
|
Collins DH, Wirén A, Labédan M, Smith M, Prince DC, Mohorianu I, Dalmay T, Bourke AFG. Gene expression during larval caste determination and differentiation in intermediately eusocial bumblebees, and a comparative analysis with advanced eusocial honeybees. Mol Ecol 2021; 30:718-735. [PMID: 33238067 PMCID: PMC7898649 DOI: 10.1111/mec.15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The queen‐worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally‐induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste‐associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen‐dependent period during which their caste fate as adults is determined followed by a nutrition‐sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA‐seq and qRT‐PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen‐dependent period. Relatively few novel (i.e., taxonomically‐restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late‐instar larvae in the worker pathway. We compared sets of caste‐associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste‐associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Anders Wirén
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marjorie Labédan
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Jeffrey Cheah Biomedical Centre, WT-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
33
|
Reference gene selection for transcriptional profiling in Cryptocercus punctulatus, an evolutionary link between Isoptera and Blattodea. Sci Rep 2020; 10:22169. [PMID: 33335167 PMCID: PMC7746730 DOI: 10.1038/s41598-020-79030-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
The subsocial life style and wood-feeding capability of Cryptocercus gives us an evolutionary key to unlock some outstanding questions in biology. With the advent of the Genomics Era, there is an unprecedented opportunity to address the evolution of eusociality and the acquisition of lignocellulases at the genetic level. However, to quantify gene expression, an appropriate normalization strategy is warranted to control for the non-specific variations among samples across different experimental conditions. To search for the internal references, 10 housekeeping genes from a gut transcriptome of a wood-feeding cockroach, Cryptocercus punctulatus, were selected as the candidates for the RT-qPCR analysis. The expression profiles of these candidates, including ACT, EF1α, GAPDH, HSP60, HSP70, αTUB, UBC, RPS18, ATPase and GST, were analyzed using a panel of analytical tools, including geNorm, NormFinder, BestKeeper, and comparative ΔCT method. RefFinder, a comprehensive ranking system integrating all four above-mentioned algorithms, rated ACT as the most stable reference gene for different developmental stages and tissues. Expression analysis of the target genes, Hex-1 and Cell-1, using the most or the least appropriate reference genes and a single or multiple normalizers signified this research. Our finding is the first step toward establishing a standardized RT-qPCR analysis in Cryptocercus.
Collapse
|
34
|
Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020; 122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
The traditional focus of physiological and functional genomic research is on molecular processes that play out within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, molecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a distributed fashion, through various social communication mechanisms. As a result of physiological decentralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hormone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from considering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nestmate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized nestmates of various developmental stages. We also consider similarities and differences between nestmate-level (organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses regarding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical functional genomics approaches will be useful in addressing fundamental questions related to the evolution of eusociality and collective behavior in natural systems.
Collapse
Affiliation(s)
- D A Friedman
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America.
| | - B R Johnson
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America
| | - T A Linksvayer
- University of Pennsylvania, Department of Biology, Pennsylvania, PA 19104, United States of America
| |
Collapse
|
35
|
Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. Proc Natl Acad Sci U S A 2020; 117:13615-13625. [PMID: 32471944 PMCID: PMC7306772 DOI: 10.1073/pnas.2000344117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developmental processes are an important source of phenotypic variation, but the extent to which this variation contributes to evolutionary change is unknown. We used integrative genomic analyses to explore the relationship between developmental and social plasticity in a bee species that can adopt either a social or solitary lifestyle. We find genes regulating this social flexibility also regulate development, and positive selection on these genes is influenced by their function during development. This suggests that developmental plasticity may influence the evolution of sociality. Our additional finding of genetic variants linked to differences in social behavior sheds light on how phenotypic variation derived from development may become encoded into the genome, and thus contribute to evolutionary change. Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.
Collapse
|
36
|
Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A. How Do Leaf-Cutting Ants Recognize Antagonistic Microbes in Their Fungal Crops? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
Miura T, Maekawa K. The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 2020; 22:425-437. [PMID: 32291940 DOI: 10.1111/ede.12335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/29/2022]
Abstract
Termites (Blattodea, Termitoidea, or Isoptera) constitute one of the major lineages of eusocial insects. In termite societies, multiple types of functional individuals, that is, castes, perform divisions of labors to coordinate social behaviors. Among other castes, the soldier caste is distinctive since it is sterile and exclusively specialized into defensive behavior with largely modified morphological features. Therefore, many of the previous studies have been focused on soldiers, in terms of ecology, behavior, and evolution as well as developmental and physiological mechanisms. This article overviews the accumulation of studies especially focusing on the developmental and physiological mechanisms underlying the soldier differentiation in termites. Furthermore, the evolutionary trajectories that have led the acquisition of soldier caste and have diversified the soldier characteristics in association with the social evolution are discussed.
Collapse
Affiliation(s)
- Toru Miura
- Department of Biological Sciences, Misaki Marine Biological Station, School of Science, The University of Tokyo, Japan
| | - Kiyoto Maekawa
- Department of Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
38
|
Friedman DA, York RA, Hilliard AT, Gordon DM. Gene expression variation in the brains of harvester ant foragers is associated with collective behavior. Commun Biol 2020; 3:100. [PMID: 32139795 PMCID: PMC7057964 DOI: 10.1038/s42003-020-0813-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023] Open
Abstract
Natural selection on collective behavior acts on variation among colonies in behavior that is associated with reproductive success. In the red harvester ant (Pogonomyrmex barbatus), variation among colonies in the collective regulation of foraging in response to humidity is associated with colony reproductive success. We used RNA-seq to examine gene expression in the brains of foragers in a natural setting. We find that colonies differ in the expression of neurophysiologically-relevant genes in forager brains, and a fraction of these gene expression differences are associated with two colony traits: sensitivity of foraging activity to humidity, and forager brain dopamine to serotonin ratio. Loci that were correlated with colony behavioral differences were enriched in neurotransmitter receptor signaling & metabolic functions, tended to be more central to coexpression networks, and are evolving under higher protein-coding sequence constraint. Natural selection may shape colony foraging behavior through variation in gene expression.
Collapse
Affiliation(s)
| | | | | | - Deborah M Gordon
- Stanford University, Department of Biology, Stanford, CA, 94305, USA.
| |
Collapse
|
39
|
Shell WA, Rehan SM. Social modularity: conserved genes and regulatory elements underlie caste-antecedent behavioural states in an incipiently social bee. Proc Biol Sci 2019; 286:20191815. [PMID: 31771475 PMCID: PMC6939254 DOI: 10.1098/rspb.2019.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionary origins of advanced eusociality, one of the most complex forms of phenotypic plasticity in nature, have long been a focus within the field of sociobiology. Although eusocial insects are known to have evolved from solitary ancestors, sociogenomic research among incipiently social taxa has only recently provided empirical evidence supporting theories that modular regulation and deeply conserved genes may play important roles in both the evolutionary emergence and elaboration of insect sociality. There remains, however, a paucity of data to further test the biological reality of these and other evolutionary theories among taxa in the earliest stages of social evolution. Here, we present brain transcriptomic data from the incipiently social small carpenter bee, Ceratina calcarata, which captures patterns of cis-regulation and gene expression associated with female maturation, and underlying two well-defined behavioural states, foraging and guarding, concurrently demonstrated by mothers and daughters during early autumn. We find that an incipiently social nest environment may dramatically affect gene expression. We further reveal foraging and guarding behaviours to be putatively caste-antecedent states in C. calcarata, and offer strong empirical support for the operation of modular regulation, involving deeply conserved and differentially expressed genes in the expression of early social forms.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, CanadaM3 J 1P3
| |
Collapse
|
40
|
Santos PKF, Arias MC, Kapheim KM. Loss of developmental diapause as prerequisite for social evolution in bees. Biol Lett 2019; 15:20190398. [PMID: 31409242 PMCID: PMC6731480 DOI: 10.1098/rsbl.2019.0398] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diapause is a physiological arrest of development ahead of adverse environmental conditions and is a critical phase of the life cycle of many insects. In bees, diapause has been reported in species from all seven taxonomic families. However, they exhibit a variety of diapause strategies. These different strategies are of particular interest since shifts in the phase of the insect life cycle in which diapause occurs have been hypothesized to promote the evolution of sociality. Here we provide a comprehensive evaluation of this hypothesis with phylogenetic analysis and ancestral state reconstruction (ASR) of the ecological and evolutionary factors associated with diapause phase. We find that social lifestyle, latitude and voltinism are significant predictors of the life stage in which diapause occurs. ASR revealed that the most recent common ancestor of all bees likely exhibited developmental diapause and shifts to adult, reproductive, or no diapause have occurred in the ancestors of lineages in which social behaviour has evolved. These results provide fresh insight regarding the role of diapause as a prerequisite for the evolution of sociality in bees.
Collapse
Affiliation(s)
- Priscila Karla Ferreira Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências - Universidade de São Paulo, Rua do Matão, 277, CEP 05508-090 São Paulo, SP, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências - Universidade de São Paulo, Rua do Matão, 277, CEP 05508-090 São Paulo, SP, Brazil
| | - Karen M Kapheim
- Department of Biology, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
41
|
Arsenault SV, Glastad KM, Hunt BG. Leveraging technological innovations to investigate evolutionary transitions to eusociality. CURRENT OPINION IN INSECT SCIENCE 2019; 34:27-32. [PMID: 31247414 DOI: 10.1016/j.cois.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The study of the major transition to eusociality presents several challenges to researchers, largely resulting from the importance of complex behavioral phenotypes and the shift from individual to group level selection. These challenges are being met with corresponding technological improvements. Advances in resource development for non-model taxa, behavioral tracking, nucleic acid sequencing, and reverse genetics are facilitating studies of hypotheses that were previously intractable. These innovations are resulting in the development of new model systems tailored to the exploration of specific behavioral phenotypes and the querying of underlying molecular mechanisms that drive eusocial behaviors. Here, we present a brief overview of how methodological innovations are advancing our understanding of the evolution of eusociality.
Collapse
Affiliation(s)
- Samuel V Arsenault
- Department of Entomology, University of Georgia, Athens, GA 30602, United States
| | - Karl M Glastad
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
42
|
Saleh NW, Ramírez SR. Sociality emerges from solitary behaviours and reproductive plasticity in the orchid bee Euglossa dilemma. Proc Biol Sci 2019; 286:20190588. [PMID: 31288697 DOI: 10.1098/rspb.2019.0588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The evolution of eusociality and sterile worker castes represents a major transition in the history of life. Despite this, little is known about the mechanisms involved in the initial transition from solitary to social behaviour. It has been hypothesized that plasticity from ancestral solitary life cycles was coopted to create queen and worker castes in insect societies. Here, we tested this hypothesis by examining gene expression involved in the transition from solitary to social behaviour in the orchid bee Euglossa dilemma. To this end, we conducted observations that allowed us to classify bees into four distinct categories of solitary and social behaviour. Then, by sequencing brain and ovary transcriptomes from these behavioural phases, we identified gene expression changes overlapping with socially associated genes across multiple eusocial lineages. We find that genes involved in solitary E. dilemma ovarian plasticity overlap extensively with genes showing differential expression between fertile and sterile workers-or between queens and workers in other eusocial bees. We also find evidence that sociality in E. dilemma reflects gene expression patterns involved in solitary foraging and non-foraging nest care behaviours. Our results provide strong support for the hypothesis that eusociality emerges from plasticity found across solitary life cycles.
Collapse
Affiliation(s)
- Nicholas W Saleh
- Center for Population Biology, University of California , Davis, CA , USA
| | - Santiago R Ramírez
- Center for Population Biology, University of California , Davis, CA , USA
| |
Collapse
|
43
|
Steffen MA, Rehan SM. Genetic signatures of dominance hierarchies reveal conserved cis-regulatory and brain gene expression underlying aggression in a facultatively social bee. GENES BRAIN AND BEHAVIOR 2019; 19:e12597. [PMID: 31264771 DOI: 10.1111/gbb.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Abstract
Agonistic interactions among individuals can result in the formation of dominance hierarches that can reinforce individual behavior and social status. Such dominance hierarches precede the establishment of reproductive dominance, division of labor and caste formation in highly social insect taxa. As such, deciphering the molecular basis of aggression is fundamental in understanding the mechanisms of social evolution. Assessing the proximate mechanisms of aggression in incipiently social bees can provide insights into the foundations of genomic mechanisms of social behavior. Here, we measured the effects of aggression on brain gene expression in the incipiently social bee, Ceratina australensis. We examine the brain transcriptomic differences between individuals who have experienced recurrent winning, losing, or a change in rank during repeated encounters. Using comparative analyses across taxa, we identify deeply conserved candidate genes, pathways, and regulatory networks for the formation of social hierarchies.
Collapse
Affiliation(s)
- Michael A Steffen
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
44
|
Toth AL. To reproduce or work? Insect castes emerge from socially induced changes in nutrition-related genes. Mol Ecol 2019; 26:2839-2841. [PMID: 28544664 DOI: 10.1111/mec.14076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
In social species, there is a fundamental trade-off between 'me' and 'we'; that is, should I reproduce, or should I work to help others to reproduce? In this issue of Molecular Ecology, Okada et al. () delve into the evolution and genetic mechanisms of this core question, focusing on social caste formation in insects. The authors take advantage of a unique ant in the genus Diacamma, which has secondarily lost the classic, highly different queens and workers found in many other ants, bees and wasps. Instead, Diacamma ant castes are decided via aggressive dominance interactions among adult females, similar to dominance hierarchies seen in primitively social insects and many social vertebrates. But how does being dominated translate into reproductive shutdown and thus, the creation of a worker caste? The authors use transcriptomics to address this question, and discover that the key may lie in very rapid (within one day) changes in the regulation of nutrient signalling genes, and other genes related to nutrient storage and reproduction. In other words, being aggressed turns on or off genes that tell the ant's brain and physiology to go into 'sterile mode', whereas winning a fight stimulates other genes that ramp up reproductive traits. These results add weight to the idea that caste differences rely on a 'toolkit' of deeply conserved genes involved in core nutritional, reproductive and metabolic functions. In addition, these results emphasize the exquisite and rapid social environmental sensitivity of core toolkit genes during the production of distinct phenotypes.
Collapse
Affiliation(s)
- Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Iowa State University, Ames, IA, 50010, USA
| |
Collapse
|
45
|
Cini A, Sumner S, Cervo R. Inquiline social parasites as tools to unlock the secrets of insect sociality. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180193. [PMID: 30967091 PMCID: PMC6388031 DOI: 10.1098/rstb.2018.0193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Insect societies play a crucial role in the functioning of most ecosystems and have fascinated both scientists and the lay public for centuries. Despite the long history of study, we are still far from understanding how insect societies have evolved and how social cohesion in their colonies is maintained. Here we suggest inquiline social parasites of insect societies as an under-exploited experimental tool for understanding sociality. We draw on examples from obligate inquiline (permanent) social parasites in wasps, ants and bees to illustrate how these parasites may allow us to better understand societies and learn more about the evolution and functioning of insect societies. We highlight three main features of these social parasite-host systems-namely, close phylogenetic relationships, strong selective pressures arising from coevolution and multiple independent origins-that make inquiline social parasites particularly suited for this aim; we propose a conceptual comparative framework that considers trait losses, gains and modifications in social parasite-host systems. We give examples of how this framework can reveal the more elusive secrets of sociality by focusing on two cornerstones of sociality: communication and reproductive division of labour. Together with social parasites in other taxonomic groups, such as cuckoos in birds, social parasitism has a great potential to reveal the mechanisms and evolution of complex social groups. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Alessandro Cini
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Rita Cervo
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
46
|
Yaguchi H, Suzuki R, Matsunami M, Shigenobu S, Maekawa K. Transcriptomic changes during caste development through social interactions in the termite Zootermopsis nevadensis. Ecol Evol 2019; 9:3446-3456. [PMID: 30962904 PMCID: PMC6434549 DOI: 10.1002/ece3.4976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
One of the most striking examples of phenotypic plasticity is the different phenotypes (i.e., castes) within a same nest of social insects. Castes usually derive from a single genotype initially by receiving social cues among individuals during development. Specific gene expression changes may be involved in caste differentiation, and thus, the regulatory mechanism of these changes should be clarified in order to understand social maintenance and evolution. The damp-wood termite Zootermopsis nevadensis is one of the most important model termite species, due to not only the availability of genomic, transcriptomic, and epigenomic information but also evidence that soldier- and worker-destined individuals can be identified in natural conditions. Given that the nutritional intakes via social interactions are crucial for caste differentiation in this species, there is a possibility that transcriptomic changes are influenced by the nutritional difference among these individuals. Here, whole body RNA-seq analysis of 3rd-instar larvae with biological replications and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted. We found the drastic expression differences during caste developments between soldier- and worker-destined individuals. The results indicated that there are several key signaling pathways responsible for caste formations, which are involved in developments and social interactions. Particularly, the nutritional sensitive signaling was upregulated in soldier-destined individuals, while some metabolic pathways were identified in worker-destined individuals. These bioinformatic data obtained should be utilized to examine the molecular mechanisms of caste determination in social insects.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
- Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan
| | - Ryutaro Suzuki
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| | | | - Shuji Shigenobu
- Functional Genomics FacilityNational Institute for Basic BiologyOkazakiJapan
| | - Kiyoto Maekawa
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| |
Collapse
|
47
|
Abstract
The tremendous diversity of animal behaviors has inspired generations of scientists from an array of biological disciplines. To complement investigations of ecological and evolutionary factors contributing to behavioral evolution, modern sequencing, gene editing, computational and neuroscience tools now provide a means to discover the proximate mechanisms upon which natural selection acts to generate behavioral diversity. Social behaviors are motivated behaviors that can differ tremendously between closely related species, suggesting phylogenetic plasticity in their underlying biological mechanisms. In addition, convergent evolution has repeatedly given rise to similar forms of social behavior and mating systems in distantly related species. Social behavioral divergence and convergence provides an entry point for understanding the neurogenetic mechanisms contributing to behavioral diversity. We argue that the greatest strides in discovering mechanisms contributing to social behavioral diversity will be achieved through integration of interdisciplinary comparative approaches with modern tools in diverse species systems. We review recent advances and future potential for discovering mechanisms underlying social behavioral variation; highlighting patterns of social behavioral evolution, oxytocin and vasopressin neuropeptide systems, genetic/transcriptional "toolkits," modern experimental tools, and alternative species systems, with particular emphasis on Microtine rodents and Lake Malawi cichlid fishes.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Cunningham CB, Ji L, McKinney EC, Benowitz KM, Schmitz RJ, Moore AJ. Changes of gene expression but not cytosine methylation are associated with male parental care reflecting behavioural state, social context and individual flexibility. J Exp Biol 2019; 222:jeb188649. [PMID: 30446546 PMCID: PMC10681020 DOI: 10.1242/jeb.188649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2023]
Abstract
Behaviour is often a front line response to changing environments. Recent studies show behavioural changes are associated with changes of gene expression; however, these studies have primarily focused on discrete behavioural states. We build on these studies by addressing additional contexts that produce qualitatively similar behavioural changes. We measured levels of gene expression and cytosine methylation, which is hypothesized to regulate the transcriptional architecture of behavioural transitions, within the brain during male parental care of the burying beetle Nicrophorus vespilloides in a factorial design. Male parenting is a suitably plastic behaviour because although male N. vespilloides typically do not provide direct care (i.e. feed offspring) when females are present, levels of feeding by a male equivalent to the female can be induced by removing the female. We examined three different factors: behavioural state (caring versus non-caring), social context (with or without a female mate) and individual flexibility (if a male switched to direct care after his mate was removed). The greatest number of differentially expressed genes were associated with behavioural state, followed by social context and individual flexibility. Cytosine methylation was not associated with changes of gene expression in any of the factors. Our results suggest a hierarchical association between gene expression and the different factors, but that this process is not controlled by cytosine methylation. Our results further suggest that the extent a behaviour is transient plays an underappreciated role in determining its underpinning molecular mechanisms.
Collapse
Affiliation(s)
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | - Kyle M Benowitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
49
|
Kulkarni A, Extavour CG. The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. Results Probl Cell Differ 2019; 68:183-216. [PMID: 31598857 DOI: 10.1007/978-3-030-23459-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All extant species are an outcome of nature's "experiments" during evolution, and hence multiple species need to be studied and compared to gain a thorough understanding of evolutionary processes. The field of evolutionary developmental biology (evo-devo) aspires to expand the number of species studied, because most functional genetic studies in animals have been limited to a small number of "traditional" model organisms, many of which belong to the same phylum (Chordata). The phylum Arthropoda, and particularly its component class Insecta, possesses many important characteristics that are considered favorable and attractive for evo-devo research, including an astonishing diversity of extant species and a wide disparity in body plans. The development of the most thoroughly investigated insect genetic model system to date, the fruit fly Drosophila melanogaster (a holometabolous insect), appears highly derived with respect to other insects and indeed with respect to most arthropods. In comparison, crickets (a basally branching hemimetabolous insect lineage compared to the Holometabola) are thought to embody many developmental features that make them more representative of insects. Here we focus on crickets as emerging models to study problems in a wide range of biological areas and summarize the currently available molecular, genomic, forward and reverse genetic, imaging and computational tool kit that has been established or adapted for cricket research. With an emphasis on the cricket species Gryllus bimaculatus, we highlight recent efforts made by the scientific community in establishing this species as a laboratory model for cellular biology and developmental genetics. This broad toolkit has the potential to accelerate many traditional areas of cricket research, including studies of adaptation, evolution, neuroethology, physiology, endocrinology, regeneration, and reproductive behavior. It may also help to establish newer areas, for example, the use of crickets as animal infection model systems and human food sources.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
50
|
Benowitz KM, McKinney EC, Cunningham CB, Moore AJ. Predictable gene expression related to behavioral variation in parenting. Behav Ecol 2018. [DOI: 10.1093/beheco/ary179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AbstractDifferential gene expression has been associated with transitions between behavioral states for a wide variety of organisms and behaviors. Heterochrony, genetic toolkits, and predictable pathways underlying behavioral transitions have been hypothesized to explain the relationship between transcription and behavioral changes. Less studied is how variation in transcription is related to variation within a behavior, and if the genes that are associated with this variation are predictable. Here, we adopt an evolutionary systems biology perspective to address 2 hypotheses relating differential expression to changes within and between behavior. We predicted fewer genes will be associated with variation within a behavior than with transitions between states, and the genes underlying variation within a behavior will represent a narrower set of biological functions. We tested for associations with parenting variation within a state with a set of genes known a priori to be differentially expressed (DE) between parenting states in the burying beetle Nicrophorus vespilloides. As predicted, we found that far fewer genes are DE related to variation within parenting. Moreover, these were not randomly distributed among categories or pathways in the gene set we tested and primarily involved genes associated with neurotransmission. We suggest that this means candidate genes will be easier to identify for associations within a behavior, as descriptions of behavioral state may include more than a single phenotype.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Forbes, Tucson, USA
| | | | | | - Allen J Moore
- Department of Entomology, University of Georgia, Athens, USA
| |
Collapse
|