1
|
Benowitz KM, Allan CW, Jaworski CC, Sanderson MJ, Diaz F, Chen X, Matzkin LM. Fundamental Patterns of Structural Evolution Revealed by Chromosome-Length Genomes of Cactophilic Drosophila. Genome Biol Evol 2024; 16:evae191. [PMID: 39228294 PMCID: PMC11411373 DOI: 10.1093/gbe/evae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
A thorough understanding of adaptation and speciation requires model organisms with both a history of ecological and phenotypic study as well as a complete set of genomic resources. In particular, high-quality genome assemblies of ecological model organisms are needed to assess the evolution of genome structure and its role in adaptation and speciation. Here, we generate new genomes of cactophilic Drosophila, a crucial model clade for understanding speciation and ecological adaptation in xeric environments. We generated chromosome-level genome assemblies and complete annotations for seven populations across Drosophila mojavensis, Drosophila arizonae, and Drosophila navojoa. We use these data first to establish the most robust phylogeny for this clade to date, and to assess patterns of molecular evolution across the phylogeny, showing concordance with a priori hypotheses regarding adaptive genes in this system. We then show that structural evolution occurs at constant rate across the phylogeny, varies by chromosome, and is correlated with molecular evolution. These results advance the understanding of the D. mojavensis clade by demonstrating core evolutionary genetic patterns and integrating those patterns to generate new gene-level hypotheses regarding adaptation. Our data are presented in a new public database (cactusflybase.arizona.edu), providing one of the most in-depth resources for the analysis of inter- and intraspecific evolutionary genomic data. Furthermore, we anticipate that the patterns of structural evolution identified here will serve as a baseline for future comparative studies to identify the factors that influence the evolution of genome structure across taxa.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xingsen Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Taylor KL, Wade EJ, Wells MM, Henry CS. Genomic regions underlying the species-specific mating songs of green lacewings. INSECT MOLECULAR BIOLOGY 2023; 32:79-85. [PMID: 36281633 DOI: 10.1111/imb.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Rapid species radiations provide insight into the process of speciation and diversification. The radiation of Chrysoperla carnea-group lacewings seems to be driven, at least in part, by their species-specific pre-mating vibrational duets. We associated genetic markers from across the genome with courtship song period in the offspring of a laboratory cross between Chrysoperla plorabunda and Chrysoperla adamsi, two species primarily differentiated by their mating songs. Two genomic regions were strongly associated with the song period phenotype. Large regions of chromosomes one and two were associated with song phenotype, as fewer recombination events occurred on these chromosomes relative to the other autosomes. Candidate genes were identified by functional annotation of proteins from the C. carnea reference genome. The majority of genes that are associated with vibrational courtship signals in other insects were found within QTL for lacewing song phenotype. Together these findings suggest that decreased recombination may be acting to keep together loci important to reproductive isolation between these species. Using wild-caught individuals from both species, we identified signals of genomic divergence across the genome. We identified several candidate genes both in song-associated regions and near divergence outliers including nonA, fruitless, paralytic, period, and doublesex. Together these findings bring us one step closer to identifying the genomic basis of a mating song trait critical to the maintenance of species boundaries in green lacewings.
Collapse
Affiliation(s)
- Katherine L Taylor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Entomology, University of Maryland, College Park, Maryland, USA
| | - Elizabeth J Wade
- Department of Natural Sciences and Mathematics, Curry College, Milton, Massachusetts, USA
| | - Marta M Wells
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Charles S Henry
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Nolasco-Soto J, González-Astorga J, Espinosa de los Monteros A, Favila ME. Evolutionary history and diversity in the ball roller beetle Canthon cyanellus. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1066439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To understand the evolutionary history of species, it is necessary to know the mechanisms for reproductive isolation, divergence-time between populations, and the relative action of the evolutionary forces (e.g., mutation, genetic drift, gene flow) within and between populations of the same, or closely related species. Although Canthon is one of the more diverse genera of neotropical beetles, insufficient research has been done to comprehend the divergent patterns that explain its speciation process. The absence of diagnostic morphological characters and the wide geographic variation of qualitative traits in Scarabaeinae obscures species delimitation, genealogical limits between populations, and its taxonomy. Canthon cyanellus is one of the best-known species in ecological and evolutionary aspects. It is a widely distributed species in the tropical forests of America. Also, the current deforestation has facilitated its incursion into open areas. Individuals from different populations have similar morphological characters but show wide variation in body color throughout their distribution, which makes it difficult to delimit the subspecies that comprise it. Recently, studies have been carried out to elucidate the pre-and postzygotic isolation mechanisms between populations and the historical biogeographical processes favoring cladogenesis events during the Pleistocene. Morphological variation of the male genitalia does not correspond to the phylogeographic structure. However, the morphological differences in one of the pieces of the endophallic sclerites have allowed a preliminary delimitation of some genetically differentiated clades. Finally, we consider that the joint analysis of traditional morphological taxonomy and phylogeography is important to understand the speciation process in the C. cyanellus complex.
Collapse
|
4
|
The Genetic Basis of Gene Expression Divergence in Antennae of Two Closely Related Moth Species, Helicoverpa armigera and Helicoverpa assulta. Int J Mol Sci 2022; 23:ijms231710050. [PMID: 36077444 PMCID: PMC9456569 DOI: 10.3390/ijms231710050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The closely related species Helicoverpa armigera (H. armigera) and Helicoverpa assulta (H. assulta) have different host plant ranges and share two principal components of sex pheromones but with reversed ratios. The antennae are the main olfactory organ of insects and play a crucial role in host plant selection and mate seeking. However, the genetic basis for gene expression divergence in the antennae of the two species is unclear. We performed an allele-specific expression (ASE) analysis in the antennal transcriptomes of the two species and their F1 hybrids, examining the connection between gene expression divergence and phenotypic differences. The results show that the proportion of genes classified as all cis was higher than that of all trans in males and reversed in females. The contribution of regulatory patterns to gene expression divergence in males was less than that in females, which explained the functional differentiation of male and female antennae. Among the five groups of F1 hybrids, the fertile males from the cross of H. armigera female and H. assulta male had the lowest proportion of misexpressed genes, and the inferred regulatory patterns were more accurate. By using this group of F1 hybrids, we discovered that cis-related regulations play a crucial role in gene expression divergence of sex pheromone perception-related proteins. These results are helpful for understanding how specific changes in the gene expression of olfactory-related genes can contribute to rapid evolutionary changes in important olfactory traits in closely related moths.
Collapse
|
5
|
Mallet J, Mullen SP. Reproductive isolation is a heuristic, not a measure: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1175-1182. [PMID: 36063161 DOI: 10.1111/jeb.14052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
Reproductive isolation is the heuristic basis of the biological species concept, but what is it? Westram et al. (this issue) propose that it is a measurable quantity, "barrier strength," that prevents gene flow among populations. However, their attempt to make the concept of reproductive isolation more scientific is unlikely to satisfy the diverse opinions of all evolutionary biologists. There are many different opinions about the nature of species, even under the biological species concept. Complete reproductive isolation, where gene flow is effectively zero, is regarded by some biologists as an important end point of speciation. Others, including Westram et al., argue for a more nuanced approach, and they also suggest that reproductive isolation may differ in different parts of the genome due to variation in genetic linkage to divergently selected loci. In contrast to both these approaches, we favour as a key criterion of speciation the stable coexistence of divergent populations in sympatry. Obviously, such populations must be reproductively isolated in some sense, but neither the fraction of the genome that is exchanged, nor measures of overall barrier strength acting on neutral variation will yield very precise predictions as to species status. Although an overall measure of reproductive isolation is virtually unattainable for these reasons, its early generation components, such as assortative mating, divergent selection, or hybrid inviability and sterility are readily measurable and remain informative. For example, we can make the prediction that to remain divergent in sympatry, almost all sexual species will require strong assortative mating, as well as some sort of ecological or intrinsic selection against hybrids and introgressed variants.
Collapse
Affiliation(s)
- James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Sean P Mullen
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Berger A, Le Goff G, Boussès P, Rahola N, Ferré JB, Ayala D, Robert V. Using a pupal exuvia to designate the undamaged neotype of a species belonging to a complex of sibling species - the case of Aedes coluzzii (Diptera, Culicidae). Parasite 2022; 29:19. [PMID: 35348456 PMCID: PMC8962657 DOI: 10.1051/parasite/2022020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
The mosquito species Aedes (Ochlerotatus) coluzzii Rioux, Guilvard & Pasteur, 1998 was distinguished from its sibling species Aedes detritus (Haliday, 1833) using an isoenzymatic method that required the destruction of the entire specimen, therefore no holotype was designated by the species authors. We aimed to designate a neotype for Ae. coluzzii from specimens collected from the type-locality and individually reared up to adult stage. Genomic DNA was extracted from pupal exuvia and ITS2 was sequenced, enabling verification of the identity of each specimen as Ae. coluzzii or Ae. detritus. Among the series of Ae. coluzzii, a male was designated as neotype and deposited in a collection. To our knowledge, this is the first time the type of a mosquito species is deposited thanks to its molecular identification from its pupal exuvia. The set of identified specimens allowed additional phylogenetic and morphologic studies.
Collapse
Affiliation(s)
- Audric Berger
- MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Gilbert Le Goff
- MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Philippe Boussès
- MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Nil Rahola
- MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Jean-Baptiste Ferré
- EID Méditerranée, 165 avenue Paul-Rimbaud, 34184 Montpellier Cedex 4, France
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France - Unité d'Entomologie Médicale, Institut Pasteur de Madagascar, BP 1274, Avaradoha, Antananarivo 101, Madagascar
| | - Vincent Robert
- MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| |
Collapse
|
7
|
Meza‐Lázaro RN, Peña‐Carrillo KI, Poteaux C, Lorenzi MC, Wetterer JK, Zaldívar‐Riverón A. Genome and cuticular hydrocarbon-based species delimitation shed light on potential drivers of speciation in a Neotropical ant species complex. Ecol Evol 2022; 12:e8704. [PMID: 35342602 PMCID: PMC8928884 DOI: 10.1002/ece3.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Geographic separation that leads to the evolution of reproductive isolation between populations generally is considered the most common form of speciation. However, speciation may also occur in the absence of geographic barriers due to phenotypic and genotypic factors such as chemical cue divergence, mating signal divergence, and mitonuclear conflict. Here, we performed an integrative study based on two genome-wide techniques (3RAD and ultraconserved elements) coupled with cuticular hydrocarbon (CHC) and mitochondrial (mt) DNA sequence data, to assess the species limits within the Ectatomma ruidum species complex, a widespread and conspicuous group of Neotropical ants for which heteroplasmy (i.e., presence of multiple mtDNA variants in an individual) has been recently discovered in some populations from southeast Mexico. Our analyses indicate the existence of at least five distinct species in this complex: two widely distributed across the Neotropics, and three that are restricted to southeast Mexico and that apparently have high levels of heteroplasmy. We found that species boundaries in the complex did not coincide with geographic barriers. We therefore consider possible roles of alternative drivers that may have promoted the observed patterns of speciation, including mitonuclear incompatibility, CHC differentiation, and colony structure. Our study highlights the importance of simultaneously assessing different sources of evidence to disentangle the species limits of taxa with complicated evolutionary histories.
Collapse
Affiliation(s)
- Rubi N. Meza‐Lázaro
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Kenzy I. Peña‐Carrillo
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
- INIFAPCampo Experimental General TeránGeneral TeránMexico
| | - Chantal Poteaux
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - Maria Cristina Lorenzi
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - James K. Wetterer
- Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alejandro Zaldívar‐Riverón
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
8
|
Dool SE, Picker MD, Eberhard MJB. Limited dispersal and local adaptation promote allopatric speciation in a biodiversity hotspot. Mol Ecol 2021; 31:279-295. [PMID: 34643310 DOI: 10.1111/mec.16219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023]
Abstract
Recently diverged or diverging populations can offer unobstructed insights into early barriers to gene flow during the initial stages of speciation. The current study utilised a novel insect system (order Mantophasmatodea) to shed light on the early drivers of speciation. The members of this group have limited dispersal abilities, small allopatric distributions and strong habitat associations in the Cape Floristic Region biodiversity hotspot in South Africa. Sister taxa from the diverse family Austrophasmatidae were chosen as focal species (Karoophasma biedouwense, K. botterkloofense). Population genetics and Generalized Dissimilarity Modelling (GDM) were used to characterise spatial patterns of genetic variation and evaluate the contribution of environmental factors to population divergence and speciation. Extensive sampling confirmed the suspected allopatry of these taxa. However, hybrids were identified in a narrow region occurring between the species' distributions. Strong population structure was found over short geographic distances; particularly in K. biedouwense in which geographic distance accounted for 32% of genetic variation over a scale of 50 km (r = .56, p < .001). GDM explained 42%-78% of the deviance in observed genetic dissimilarities. Geographic distance was consistently indicated to be important for between species and within population differentiation, suggesting that limited dispersal ability may be an important neutral driver of divergence. Temperature, altitude, precipitation and vegetation were also indicated as important factors, suggesting the possible role of adaptation to local environmental conditions for species divergence. The discovery of the hybrid-zone, and the multiple allopatric species pairs in Austrophasmatidae support the idea that this could be a promising group to further our understanding of speciation modes.
Collapse
Affiliation(s)
- Serena E Dool
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,CBGP, INRAE, CIRAD, IRD, Institut Agro, University of Montpellier, Montpellier, France
| | - Mike D Picker
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Monika J B Eberhard
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Khan MM, Chen L, Ren X, Zhou S, Fernández-Grandon GM, Zalucki MP, Lu Y. Behavioral and Physiological Plasticity Provides Insights into Molecular Based Adaptation Mechanism to Strain Shift in Spodoptera frugiperda. Int J Mol Sci 2021; 22:10284. [PMID: 34638623 PMCID: PMC8508907 DOI: 10.3390/ijms221910284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
How herbivorous insects adapt to host plants is a key question in ecological and evolutionary biology. The fall armyworm, (FAW) Spodoptera frugiperda (J.E. Smith), although polyphagous and a major pest on various crops, has been reported to have a rice and corn (maize) feeding strain in its native range in the Americas. The species is highly invasive and has recently established in China. We compared behavioral changes in larvae and adults of a corn population (Corn) when selected on rice (Rice) and the molecular basis of these adaptational changes in midgut and antennae based on a comparative transcriptome analysis. Larvae of S. frugiperda reared on rice plants continuously for 20 generations exhibited strong feeding preference for with higher larval performance and pupal weight on rice than on maize plants. Similarly, females from the rice selected population laid significantly more eggs on rice as compared to females from maize population. The most highly expressed DEGs were shown in the midgut of Rice vs. Corn. A total of 6430 DEGs were identified between the populations mostly in genes related to digestion and detoxification. These results suggest that potential adaptations for feeding on rice crops, may contribute to the current rapid spread of fall armyworm on rice crops in China and potentially elsewhere. Consistently, highly expressed DEGs were also shown in antennae; a total of 5125 differentially expressed genes (DEGs) s were identified related to the expansions of major chemosensory genes family in Rice compared to the Corn feeding population. These results not only provide valuable insight into the molecular mechanisms in host plants adaptation of S. frugiperda but may provide new gene targets for the management of this pest.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, China;
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forest University, Fuzhou 350002, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | | | - Myron P. Zalucki
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| |
Collapse
|
10
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
11
|
Davis H, Sosulski N, Civetta A. Reproductive isolation caused by azoospermia in sterile male hybrids of Drosophila. Ecol Evol 2020; 10:5922-5931. [PMID: 32607201 PMCID: PMC7319132 DOI: 10.1002/ece3.6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 11/12/2022] Open
Abstract
Recently diverged populations in the early stages of speciation offer an opportunity to understand mechanisms of isolation and their relative contributions. Drosophila willistoni is a tropical species with broad distribution from Argentina to the southern United States, including the Caribbean islands. A postzygotic barrier between northern populations (North America, Central America, and the northern Caribbean islands) and southern populations (South American and the southern Caribbean islands) has been recently documented and used to propose the existence of two different subspecies. Here, we identify premating isolation between populations regardless of their subspecies status. We find no evidence of postmating prezygotic isolation and proceeded to characterize hybrid male sterility between the subspecies. Sterile male hybrids transfer an ejaculate that is devoid of sperm but causes elongation and expansion of the female uterus. In sterile male hybrids, bulging of the seminal vesicle appears to impede the movement of the sperm toward the sperm pump, where sperm normally mixes with accessory gland products. Our results highlight a unique form of hybrid male sterility in Drosophila that is driven by a mechanical impediment to transfer sperm rather than by an abnormality of the sperm itself. Interestingly, this form of sterility is reminiscent of a form of infertility (azoospermia) that is caused by lack of sperm in the semen due to blockages that impede the sperm from reaching the ejaculate.
Collapse
Affiliation(s)
- Hunter Davis
- Department of BiologyUniversity of WinnipegWinnipegMBCanada
| | | | | |
Collapse
|
12
|
Wang D, Shi X, Liu D, Yang Y, Shang Z. Transcriptome Profiling Revealed Potentially Critical Roles for Digestion and Defense-Related Genes in Insects' Use of Resistant Host Plants: A Case Study with Sitobion Avenae. INSECTS 2020; 11:E90. [PMID: 32019207 PMCID: PMC7074007 DOI: 10.3390/insects11020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Using host plant resistance (HPR) in management of insect pests is often environmentally friendly and suitable for sustainable development of agricultural industries. However, this strategy can be limited by rapid evolution of insect populations that overcome HPR, for which the underlying molecular factors and mechanisms are not well understood. To address this issue, we analyzed transcriptomes of two distinct biotypes of the grain aphid, Sitobion avenae (Fabricius), on wheat and barley. This analysis revealed a large number of differentially expressed genes (DEGs) between biotypes 1 and 3 on wheat and barley. The majority of them were common DEGs occurring on both wheat and barley. GO and KEGG enrichment analyses for these common DEGs demonstrated significant expression divergence between both biotypes in genes associated with digestion and defense. Top defense-related common DEGs with the most significant expression changes included three peroxidases, two UGTs (UDP-glycosyltransferase), two cuticle proteins, one glutathione S-transferases (GST), one superoxide dismutase, and one esterase, suggesting their potentially critical roles in the divergence of S. avenae biotypes. A relatively high number of specific DEGs on wheat were identified for peroxidases (9) and P450s (8), indicating that phenolic compounds and hydroxamic acids may play key roles in resistance of wheat against S. avenae. Enrichment of specific DEGs on barley for P450s and ABC transporters suggested their key roles in this aphid's detoxification against secondary metabolites (e.g., alkaloids) in barley. Our results can provide insights into the molecular factors and functions that explain biotype adaptation in insects and their use of resistant plants. This study also has significant implications for developing new resistant cultivars, developing strategies that limit rapid development of insect biotypes, and extending resistant crop cultivars' durability and sustainability in integrated management programs.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoqin Shi
- Department of Foreign Languages, Northwest A&F University, Yangling 712100, China;
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zheming Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Gamboa M, Arrivillaga-HenrÍQuez J. Biochemical and molecular differentiation of Anacroneuria species (Plecoptera, Insecta) in Andean National Park, Venezuela. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1687604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maribet Gamboa
- Faculty of Engineering, Department of Civil and Environmental Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Jazzmin Arrivillaga-HenrÍQuez
- FACSO-Turismo THC, Área Ambiente y Territorio, Línea Salud y Calidad Ambiental, Grupo de Investigación Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Salud Pública y Zoonosis, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
14
|
Stamps GF, Shaw KL. Male use of chemical signals in sex discrimination of Hawaiian swordtail crickets (genus Laupala). Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Gemmellaro MD, Hamilton GC, Ware JL. Review of Molecular Identification Techniques for Forensically Important Diptera. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:887-902. [PMID: 31173634 DOI: 10.1093/jme/tjz040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The medico-legal section of forensic entomology focuses on the analysis of insects associated with a corpse. Such insects are identified, and their life history characteristics are evaluated to provide information related to the corpse, such as postmortem interval and time of colonization. Forensically important insects are commonly identified using dichotomous keys, which rely on morphological characteristics. Morphological identifications can pose a challenge as local keys are not always available and can be difficult to use, especially when identifying juvenile stages. If a specimen is damaged, certain keys cannot be used for identification. In contrast, molecular identification can be a better instrument to identify forensically important insects, regardless of life stage or specimen completeness. Despite more than 20 yr since the first use of molecular data for the identification of forensic insects, there is little overlap in gene selection or phylogenetic methodology among studies, and this inconsistency reduces efficiency. Several methods such as genetic distance, reciprocal monophyly, or character-based methods have been implemented in forensic identification studies. It can be difficult to compare the results of studies that employ these different methods. Here we present a comprehensive review of the published results for the molecular identification of Diptera of forensic interest, with an emphasis on evaluating variation among studies in gene selection and phylogenetic methodology.
Collapse
Affiliation(s)
| | | | - Jessica L Ware
- Department of Entomology, Rutgers University, New Brunswick, NJ
| |
Collapse
|
16
|
Boulain H, Legeai F, Guy E, Morlière S, Douglas NE, Oh J, Murugan M, Smith M, Jaquiéry J, Peccoud J, White FF, Carolan JC, Simon JC, Sugio A. Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants. Genome Biol Evol 2018; 10:1554-1572. [PMID: 29788052 PMCID: PMC6012102 DOI: 10.1093/gbe/evy097] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
Effector proteins play crucial roles in plant-parasite interactions by suppressing plant defenses and hijacking plant physiological responses to facilitate parasite invasion and propagation. Although effector proteins have been characterized in many microbial plant pathogens, their nature and role in adaptation to host plants are largely unknown in insect herbivores. Aphids rely on salivary effector proteins injected into the host plants to promote phloem sap uptake. Therefore, gaining insight into the repertoire and evolution of aphid effectors is key to unveiling the mechanisms responsible for aphid virulence and host plant specialization. With this aim in mind, we assembled catalogues of putative effectors in the legume specialist aphid, Acyrthosiphon pisum, using transcriptomics and proteomics approaches. We identified 3,603 candidate effector genes predicted to be expressed in A. pisum salivary glands (SGs), and 740 of which displayed up-regulated expression in SGs in comparison to the alimentary tract. A search for orthologs in 17 arthropod genomes revealed that SG-up-regulated effector candidates of A. pisum are enriched in aphid-specific genes and tend to evolve faster compared with the whole gene set. We also found that a large fraction of proteins detected in the A. pisum saliva belonged to three gene families, of which certain members show evidence consistent with positive selection. Overall, this comprehensive analysis suggests that the large repertoire of effector candidates in A. pisum constitutes a source of novelties promoting plant adaptation to legumes.
Collapse
Affiliation(s)
- Hélène Boulain
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Fabrice Legeai
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France.,Inria/IRISA GenScale, Campus de Beaulieu, Rennes, France
| | - Endrick Guy
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Stéphanie Morlière
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Nadine E Douglas
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jonghee Oh
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| | - Marimuthu Murugan
- Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Michael Smith
- Department of Entomology, Kansas State University, Manhattan, Kansas
| | - Julie Jaquiéry
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Jean Peccoud
- UMR CNRS 7267 Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, Université de Poitiers, Poitiers, France
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, Florida
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jean-Christophe Simon
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Akiko Sugio
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| |
Collapse
|
17
|
Dutta R, Balakrishnan R, Tregenza T. Divergence in Potential Contact Pheromones and Genital Morphology Among Sympatric Song Types of the Bush Cricket Mecopoda elongata. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Nouhaud P, Gautier M, Gouin A, Jaquiéry J, Peccoud J, Legeai F, Mieuzet L, Smadja CM, Lemaitre C, Vitalis R, Simon JC. Identifying genomic hotspots of differentiation and candidate genes involved in the adaptive divergence of pea aphid host races. Mol Ecol 2018; 27:3287-3300. [PMID: 30010213 DOI: 10.1111/mec.14799] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
Identifying the genomic bases of adaptation to novel environments is a long-term objective in evolutionary biology. Because genetic differentiation is expected to increase between locally adapted populations at the genes targeted by selection, scanning the genome for elevated levels of differentiation is a first step towards deciphering the genomic architecture underlying adaptive divergence. The pea aphid Acyrthosiphon pisum is a model of choice to address this question, as it forms a large complex of plant-specialized races and cryptic species, resulting from recent adaptive radiation. Here, we characterized genomewide polymorphisms in three pea aphid races specialized on alfalfa, clover and pea crops, respectively, which we sequenced in pools (poolseq). Using a model-based approach that explicitly accounts for selection, we identified 392 genomic hotspots of differentiation spanning 47.3 Mb and 2,484 genes (respectively, 9.12% of the genome size and 8.10% of its genes). Most of these highly differentiated regions were located on the autosomes, and overall differentiation was weaker on the X chromosome. Within these hotspots, high levels of absolute divergence between races suggest that these regions experienced less gene flow than the rest of the genome, most likely by contributing to reproductive isolation. Moreover, population-specific analyses showed evidence of selection in every host race, depending on the hotspot considered. These hotspots were significantly enriched for candidate gene categories that control host-plant selection and use. These genes encode 48 salivary proteins, 14 gustatory receptors, 10 odorant receptors, five P450 cytochromes and one chemosensory protein, which represent promising candidates for the genetic basis of host-plant specialization and ecological isolation in the pea aphid complex. Altogether, our findings open new research directions towards functional studies, for validating the role of these genes on adaptive phenotypes.
Collapse
Affiliation(s)
| | - Mathieu Gautier
- CBGP, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- Institut de Biologie Computationnelle, Univ Montpellier, Montpellier, France
| | - Anaïs Gouin
- INRA, UMR 1349 IGEPP, Le Rheu, France
- Inria/IRISA GenScale, Rennes, France
| | | | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Fabrice Legeai
- INRA, UMR 1349 IGEPP, Le Rheu, France
- Inria/IRISA GenScale, Rennes, France
| | | | - Carole M Smadja
- Institut des Sciences de l'Evolution (UMR 5554) - CNRS - IRD - EPHE - CIRAD -Université de Montpellier, Montpellier, France
| | | | - Renaud Vitalis
- CBGP, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- Institut de Biologie Computationnelle, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
19
|
The Genetics of a Behavioral Speciation Phenotype in an Island System. Genes (Basel) 2018; 9:genes9070346. [PMID: 29996514 PMCID: PMC6070818 DOI: 10.3390/genes9070346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Mating behavior divergence can make significant contributions to reproductive isolation and speciation in various biogeographic contexts. However, whether the genetic architecture underlying mating behavior divergence is related to the biogeographic history and the tempo and mode of speciation remains poorly understood. Here, we use quantitative trait locus (QTL) mapping to infer the number, distribution, and effect size of mating song rhythm variations in the crickets Laupala eukolea and Laupala cerasina, which occur on different islands (Maui and Hawaii). We then compare these results with a similar study of an independently evolving species pair that diverged within the same island. Finally, we annotate the L. cerasina transcriptome and test whether the QTL fall in functionally enriched genomic regions. We document a polygenic architecture behind the song rhythm divergence in the inter-island species pair that is remarkably similar to that previously found for an intra-island species pair in the same genus. Importantly, the QTL regions were significantly enriched for potential homologs of the genes involved in pathways that may be modulating the cricket song rhythm. These clusters of loci could constrain the spatial genomic distribution of the genetic variation underlying the cricket song variation and harbor several candidate genes that merit further study.
Collapse
|
20
|
Kristiansen EB, Finkbeiner SD, Hill RI, Prusa L, Mullen SP. Testing the adaptive hypothesis of Batesian mimicry among hybridizing North American admiral butterflies. Evolution 2018; 72:1436-1448. [PMID: 29851081 DOI: 10.1111/evo.13488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/04/2018] [Indexed: 12/01/2022]
Abstract
Batesian mimicry is characterized by phenotypic convergence between an unpalatable model and a palatable mimic. However, because convergent evolution may arise via alternative evolutionary mechanisms, putative examples of Batesian mimicry must be rigorously tested. Here, we used artificial butterfly facsimiles (N = 4000) to test the prediction that (1) palatable Limenitis lorquini butterflies should experience reduced predation when in sympatry with their putative model, Adelpha californica, (2) protection from predation on L. lorquini should erode outside of the geographical range of the model, and (3) mimetic color pattern traits are more variable in allopatry, consistent with relaxed selection for mimicry. We find support for these predictions, implying that this convergence is the result of selection for Batesian mimicry. Additionally, we conducted mark-recapture studies to examine the effect of mimicry and found that mimics survive significantly longer at sites where the model is abundant. Finally, in contrast to theoretical predictions, we found evidence that the Batesian model (A. californica) is protected from predation outside of its geographic range. We discuss these results considering the ongoing hybridization between L. lorquini and its sister species, L. weidemeyerii, and growing evidence that selection for mimicry predictably leads to a reduction in gene flow between nascent species.
Collapse
Affiliation(s)
- Evan B Kristiansen
- Department of Biological Sciences, Boston University, Boston, Massachusetts, 02215
| | - Susan D Finkbeiner
- Department of Biological Sciences, Boston University, Boston, Massachusetts, 02215
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, California, 95211
| | - Louis Prusa
- Department of Biological Sciences, University of the Pacific, Stockton, California, 95211
| | - Sean P Mullen
- Department of Biological Sciences, Boston University, Boston, Massachusetts, 02215
| |
Collapse
|
21
|
Widespread plant specialization in the polyphagous planthopper Hyalesthes obsoletus (Cixiidae), a major vector of stolbur phytoplasma: Evidence of cryptic speciation. PLoS One 2018; 13:e0196969. [PMID: 29738577 PMCID: PMC5940214 DOI: 10.1371/journal.pone.0196969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022] Open
Abstract
The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno’s ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1–1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1–3.3%).
Collapse
|
22
|
Heath JJ, Abbot P, Stireman JO. Adaptive Divergence in a Defense Symbiosis Driven from the Top Down. Am Nat 2018; 192:E21-E36. [PMID: 29897808 DOI: 10.1086/697446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most studies of adaptive radiation in animals focus on resource competition as the primary driver of trait divergence. The roles of other ecological interactions in shaping divergent phenotypes during such radiations have received less attention. We evaluate natural enemies as primary agents of diversifying selection on the phenotypes of an actively diverging lineage of gall midges on tall goldenrod. In this system, the gall of the midge consists of a biotrophic fungal symbiont that develops on host-plant leaves and forms distinctly variable protective carapaces over midge larvae. Through field studies, we show that fungal gall morphology, which is induced by midges (i.e., it is an extended phenotype), is under directional and diversifying selection by parasitoid enemies. Overall, natural enemies disruptively select for either small or large galls, mainly along the axis of gall thickness. These results imply that predators are driving the evolution of phenotypic diversity in symbiotic defense traits in this system and that divergence in defensive morphology may provide ecological opportunities that help to fuel the adaptive radiation of this genus of midges on goldenrods. This enemy-driven phenotypic divergence in a diversifying lineage illustrates the potential importance of consumer-resource and symbiotic species interactions in adaptive radiation.
Collapse
|
23
|
Joyce AL, Higbee BS, Haviland DR, Brailovsky H. Genetic Variability of Two Leaffooted Bugs, Leptoglossus clypealis and Leptoglossus zonatus (Hemiptera: Coreidae) in the Central Valley of California. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2576-2589. [PMID: 29045641 DOI: 10.1093/jee/tox222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/07/2023]
Abstract
Leaffooted plant bugs (LFPBs) (Leptoglossus spp., Guérin-Méneville) (Hemiptera: Coreidae) are large seed-feeding bugs native to the Western Hemisphere. In California, several Leptoglossus spp. feed on almonds, pistachios, and pomegranate and are occasional pests. The objective of this study was to survey the different species of Leptoglossus present in almond, pistachio, and pomegranate orchards in the Central Valley of California. We used two molecular markers, amplified fragment length polymorphisms (AFLPs) and mitochondrial DNA COI, to determine the number of species or strains of each species, and to infer whether individuals of each species move and possibly interbreed with populations from the other host plants. Two species of leaffooted bugs were abundant, Leptoglossus clypealis Heidemann, and Leptoglossus zonatus (Dallas). L. clypealis was collected in almond and pistachio, while L. zonatus was found on all three host plants, but was the dominant species in pomegranate. The AFLP results indicated that L. clypealis consisted of one species, which suggests it moves between almonds and pistachios during the growing season. Mitochondrial DNA COI for L. clypealis found 1-2% divergence between sequences, and a high haplotype diversity of 0.979 with 17 haplotypes. The AFLP results for L. zonatus found two genetically divergent populations which were morphologically similar. The mtDNA COI sequences for L. zonatus were used for haplotype analysis; three haplotypes were found in California, with one haplotype shared with collections from Brazil. The importance of genetic variability and cryptic species for pest management are discussed.
Collapse
Affiliation(s)
| | | | | | - H Brailovsky
- Instituto de Biología, National Autonomous University of Mexico (UNAM) Mexico City, México
| |
Collapse
|
24
|
Kostyun JL, Moyle LC. Multiple strong postmating and intrinsic postzygotic reproductive barriers isolate florally diverse species of Jaltomata (Solanaceae). Evolution 2017; 71:1556-1571. [PMID: 28432763 PMCID: PMC5502772 DOI: 10.1111/evo.13253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
Divergence in phenotypic traits often contributes to premating isolation between lineages, but could also promote isolation at postmating stages. Phenotypic differences could directly result in mechanical isolation or hybrids with maladapted traits; alternatively, when alleles controlling these trait differences pleiotropically affect other components of development, differentiation could indirectly produce genetic incompatibilities in hybrids. Here, we determined the strength of nine postmating and intrinsic postzygotic reproductive barriers among 10 species of Jaltomata (Solanaceae), including species with highly divergent floral traits. To evaluate the relative importance of floral trait diversification for the strength of these postmating barriers, we assessed their relationship to floral divergence, genetic distance, geographical context, and ecological differences, using conventional tests and a new linear-mixed modeling approach. Despite close evolutionary relationships, all species pairs showed moderate to strong isolation. Nonetheless, floral trait divergence was not a consistent predictor of the strength of isolation; instead this was best explained by genetic distance, although we found evidence for mechanical isolation in one species, and a positive relationship between floral trait divergence and fruit set isolation across species pairs. Overall, our data indicate that intrinsic postzygotic isolation is more strongly associated with genome-wide genetic differentiation, rather than floral divergence.
Collapse
Affiliation(s)
- Jamie L. Kostyun
- Department of Biology, Indiana University, Bloomington, Indiana
47405, USA
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana
47405, USA
| |
Collapse
|
25
|
Quan WL, Liu W, Zhou RQ, Chen R, Ma WH, Lei CL, Wang XP. Difference in diel mating time contributes to assortative mating between host plant-associated populations of Chilo suppressalis. Sci Rep 2017; 7:45265. [PMID: 28338099 PMCID: PMC5364412 DOI: 10.1038/srep45265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/27/2017] [Indexed: 12/01/2022] Open
Abstract
Behavioral isolation in animals can be mediated by inherent mating preferences and assortative traits, such as divergence in the diel timing of mating activity. Although divergence in the diel mating time could, in principle, promote the reproductive isolation of sympatric, conspecific populations, there is currently no unequivocal evidence of this. We conducted different mate-choice experiments to investigate the contribution of differences in diel mating activity to the reproductive isolation of the rice and water-oat populations of Chilo suppressalis. The results show that inter-population difference in diel mating activity contributes to assortative mating in these populations. In the rice population, most mating activity occurred during the first half of the scotophase, whereas in the water-oat population virtually all mating activity was confined to the second half of the scotophase. However, when the photoperiod of individuals from the water-oat population was altered to more closely align their mating activity with that of the rice population, mate choice was random. We conclude that inter-population differences in diel mating time contribute to assortative mating, and thereby the partial reproductive isolation, of these host-associated populations of C. suppressalis.
Collapse
Affiliation(s)
- Wei-Li Quan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Rui-Qi Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Rong Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wei-Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
26
|
Stroud JT, Losos JB. Ecological Opportunity and Adaptive Radiation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032254] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James T. Stroud
- Department of Biological Sciences, Florida International University, Miami, Florida 33199
- Fairchild Tropical Botanic Garden, Coral Gables, Florida 33156;
| | - Jonathan B. Losos
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 01238;
| |
Collapse
|
27
|
Sawamura K, Sato H, Lee CY, Kamimura Y, Matsuda M. A Natural Population Derived from Species Hybridizationin the Drosophila ananassae Species Complexon Penang Island, Malaysia. Zoolog Sci 2016; 33:467-475. [PMID: 27715417 DOI: 10.2108/zs160038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We surveyed natural population of the Drosophila ananassae species complex on Penang Island, Malaysia. Analyses of phenotypic traits, chromosome arrangements, molecular markers, and reproductive isolation suggest the existence of two species: D. ananassae and D. cf. parapallidosa. Molecular marker analysis indicates that D. cf. parapallidosa carries chromosome Y and 4 introgressions from D. ananassae. Thus, D. cf. parapallidosa seems to be a hybrid descendant that recently originated from a natural D. parapallidosa♀× D. ananassae♂ cross. Furthermore, D. cf. parapallidosa behaves differently from authentic D. parapallidosa with respect to its reproductive isolation from D. ananassae. Premating isolation is usually seen in only the D. ananassae♀× D. parapallidosa♂ cross, but we observed it in crosses of both directions between D. ananassae and D. cf. parapallidosa. In addition, hybrid males from the D. ananassae♀× D. parapallidosa♂ cross are usually sterile, but they were fertile when D. ananassae♀ were mated with D. cf. parapallidosa ♂. We attempted an artificial reconstruction of the hybrid species to simulate the evolutionary process(es) that produced D. cf. parapallidosa. This is a rare case of natural hybrid population in Drosophila and may be a useful system for elucidating speciation with gene flow.
Collapse
Affiliation(s)
- Kyoichi Sawamura
- 1 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hajime Sato
- 2 School of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Chow-Yang Lee
- 3 Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences,Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Yoshitaka Kamimura
- 3 Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences,Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.,4 Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Muneo Matsuda
- 2 School of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
28
|
Yukilevich R, Harvey T, Nguyen S, Kehlbeck J, Park A. The search for causal traits of speciation: Divergent female mate preferences target male courtship song, not pheromones, inDrosophila athabascaspecies complex. Evolution 2016; 70:526-42. [DOI: 10.1111/evo.12870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Roman Yukilevich
- Department of Biology; Union College; Schenectady New York 12308
| | - Taylor Harvey
- Department of Biology; Union College; Schenectady New York 12308
| | - Son Nguyen
- Department of Biology; Union College; Schenectady New York 12308
| | - Joanne Kehlbeck
- Department of Biology; Union College; Schenectady New York 12308
| | - Agnes Park
- Department of Biology; Union College; Schenectady New York 12308
| |
Collapse
|
29
|
Etges WJ, de Oliveira C, Rajpurohit S, Gibbs AG. Preadult life history variation determines adult transcriptome expression. Mol Ecol 2015; 25:741-63. [PMID: 26615085 DOI: 10.1111/mec.13505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/29/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022]
Abstract
Preadult determinants of adult fitness and behaviour have been documented in a variety of organisms with complex life cycles, but little is known about expression patterns of genes underlying these adult traits. We explored the effects of differences in egg-to-adult development time on adult transcriptome and cuticular hydrocarbon variation in order to understand the nature of the genetic correlation between preadult development time and premating isolation between populations of Drosophila mojavensis reared in different host cactus environments. Transcriptome variation was analysed separately in flies reared on each host and revealed that hundreds of genes in adults were differentially expressed (FDR P < 0.05) due to development time differences. For flies reared on pitaya agria cactus, longer preadult development times caused increased expression of genes in adults enriched for ribosome production, protein metabolism, chromatin remodelling and regulation of alternate splicing and transcription. Baja California flies reared on organ pipe cactus showed fewer differentially expressed genes in adults due to longer preadult development time, but these were enriched for ATP synthesis and the TCA cycle. Mainland flies reared on organ pipe cactus with shorter development times showed increased transcription of genes enriched for mitochondria and energy production, protein synthesis and glucose metabolism: adults with longer development times had increased expression of genes enriched for adult life span, cuticle proteins and ion binding, although most differentially expressed genes were unannotated. Differences due to population, sex, mating status and their interactions were also assessed. Adult cuticular hydrocarbon profiles also showed shifts due to egg-to-adult development time and were influenced by population and mating status. These results help to explain why preadult life history variation determines subsequent expression of the adult transcriptome along with traits involved with reproductive isolation and revealed previously undocumented connections between genetic and environmental influences over the entire life cycle in this desert insect.
Collapse
Affiliation(s)
- William J Etges
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701-1201, USA
| | - Cássia de Oliveira
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701-1201, USA
| | - Subhash Rajpurohit
- School of Life Sciences, University of Nevada, Las Vegas, NV, 89119, USA
| | - Allen G Gibbs
- School of Life Sciences, University of Nevada, Las Vegas, NV, 89119, USA
| |
Collapse
|
30
|
Jennings JH, Snook RR, Hoikkala A. Reproductive isolation among allopatric Drosophila montana populations. Evolution 2015; 68:3095-108. [PMID: 25302639 DOI: 10.1111/evo.12535] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022]
Abstract
An outstanding goal in speciation research is to trace the mode and tempo of the evolution of barriers to gene flow. Such research benefits from studying incipient speciation, in which speciation between populations has not yet occurred, but where multiple potential mechanisms of reproductive isolation (RI: i.e., premating, postmating-prezygotic (PMPZ), and postzygotic barriers) may act. We used such a system to investigate these barriers among allopatric populations of Drosophila montana. In all heteropopulation crosses we found premating (sexual) isolation, which was either symmetric or asymmetric depending on the population pair compared. Postmating isolation was particularly strong in crosses involving males from one of the study populations, and while sperm were successfully transferred, stored, and motile, we experimentally demonstrated that the majority of eggs produced were unfertilized. Thus, we identified the nature of a PMPZ incompatibility. There was no evidence of intrinsic postzygotic effects. Measures of absolute and relative strengths of pre- and postmating barriers showed that populations differed in the mode and magnitude of RI barriers. Our results indicate that incipient RI among populations can be driven by different contributions of both premating and PMPZ barriers occurring between different population pairs and without the evolution of postzygotic barriers.
Collapse
Affiliation(s)
- Jackson H Jennings
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland; Current Address: Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701
| | | | | |
Collapse
|
31
|
Sánchez Herrera M, Kuhn WR, Lorenzo-Carballa MO, Harding KM, Ankrom N, Sherratt TN, Hoffmann J, Van Gossum H, Ware JL, Cordero-Rivera A, Beatty CD. Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some neotropical polythore damselflies. PLoS One 2015; 10:e0125074. [PMID: 25923455 PMCID: PMC4414280 DOI: 10.1371/journal.pone.0125074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/19/2015] [Indexed: 11/30/2022] Open
Abstract
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these “wingforms” do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it.
Collapse
Affiliation(s)
- Melissa Sánchez Herrera
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - William R. Kuhn
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Maria Olalla Lorenzo-Carballa
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kathleen M. Harding
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
| | - Nikole Ankrom
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | | | - Joachim Hoffmann
- ALAUDA—Arbeitsgemeinschaft für landschaftsökologische Untersuchungen und Datenanalysen, Hamburg, Germany
| | - Hans Van Gossum
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Jessica L. Ware
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Adolfo Cordero-Rivera
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
| | - Christopher D. Beatty
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Simon JC, d'Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 2015; 14:413-23. [DOI: 10.1093/bfgp/elv015] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Booth W, Balvín O, Vargo EL, Vilímová J, Schal C. Host association drives genetic divergence in the bed bug, Cimex lectularius. Mol Ecol 2015; 24:980-92. [PMID: 25611460 DOI: 10.1111/mec.13086] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 11/28/2022]
Abstract
Genetic differentiation may exist among sympatric populations of a species due to long-term associations with alternative hosts (i.e. host-associated differentiation). While host-associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host-associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human-built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock-down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host-specific populations. Within locations human-associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human-mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association.
Collapse
Affiliation(s)
- Warren Booth
- Department of Biological Sciences, The University of Tulsa, Tulsa, OK, 74104, USA
| | | | | | | | | |
Collapse
|
34
|
Peccoud J, de la Huerta M, Bonhomme J, Laurence C, Outreman Y, Smadja CM, Simon JC. Widespread host-dependent hybrid unfitness in the pea aphid species complex. Evolution 2014; 68:2983-95. [PMID: 24957707 DOI: 10.1111/evo.12478] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/06/2014] [Indexed: 02/02/2023]
Abstract
Linking adaptive divergence to hybrid unfitness is necessary to understand the ecological factors contributing to reproductive isolation and speciation. To date, this link has been demonstrated in few model systems, most of which encompass ecotypes that occupy relatively early stages in the speciation process. Here we extend these studies by assessing how host-plant adaptation conditions hybrid fitness in the pea aphid, Acyrthosiphon pisum. We made crosses between and within five pea aphid biotypes adapted to different host plants and representing various stages of divergence within the complex. Performance of F1 hybrids and nonhybrids was assessed on a "universal" host that is favorable to all pea aphid biotypes in laboratory conditions. Although hybrids performed equally well as nonhybrids on the universal host, their performance was much lower than nonhybrids on the natural hosts of their parental populations. Hence, hybrids, rather than being intrinsically deficient, are maladapted to their parents' hosts. Interestingly, the impact of this maladaptation was stronger in certain hybrids from crosses involving the most divergent biotype, suggesting that host-dependent postzygotic isolation has continued to evolve late in divergence. Even though host-independent deficiencies are not excluded, hybrid maladaptation to parental hosts supports the hypothesis of ecological speciation in this complex.
Collapse
Affiliation(s)
- Jean Peccoud
- Institut National de la Recherche Agronomique INRA, Institut de Génétique, Environnement et Protection des Plantes (UMR 1349 IGEPP), Domaine de La Motte, BP, 35327, 35653 le Rheu Cedex, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Kerry L. Shaw
- Department of Neurobiology and Behavior; Cornell University; Ithaca NY USA
| | | |
Collapse
|
36
|
|