1
|
Flôres IG, Salles C, Conti AC. Effects of the extrusion conditions, the addition of oil and the food matrix on the physical and sensory characteristics of pre-extrusion flavored products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2145-2156. [PMID: 39397838 PMCID: PMC11464787 DOI: 10.1007/s13197-024-05985-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 10/15/2024]
Abstract
Thermoplastic extrusion is important in processing a wide variety of food products. In this paper, the effects of different extrusion conditions, addition of vegetable oil and the food matrix itself on the physical and sensory characteristics of corn snacks and meat analogs were evaluated. Cysteine and butyric acid (cheese aroma precursors) and thiamine (a meat aroma precursor) were added to corn grits and soy protein concentrate, respectively, before extrusion. For each matrix, three combinations of moistures of the raw material and extrusion temperatures were used and, after extrusion, vegetable oil was added to one portion of each product and not to another one. The extrusion conditions and the addition of oil affected the physical properties and sensory characteristics of corn snacks more while they had less influence on the properties of the meat analogs. There were similar correlations between the physical and sensory variables, independent of the food matrix used. The sensory acceptance stood out for samples from intermediate and less severe extrusion conditions and with added oil, showing that these factors have an impact on the physical properties and sensory characteristics, with little effect from the food matrix. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05985-3.
Collapse
Affiliation(s)
- Isadora Giacomini Flôres
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José Do Rio Preto, Rua Cristóvão Colombo, 2265, São José Do Rio Preto, SP CEP 15054-000 Brazil
| | - Christian Salles
- Centre Des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France
| | - Ana Carolina Conti
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José Do Rio Preto, Rua Cristóvão Colombo, 2265, São José Do Rio Preto, SP CEP 15054-000 Brazil
| |
Collapse
|
2
|
Avila-Sierra A, Bugarin-Castillo Y, Glumac M, Bussiere J, Saint-Eve A, Mathieu V, Kobayashi Y, Ramaioli M. A first-of-its-kind 3D biomimetic artificial mouth capable of reproducing the oral processing of soft foods. Sci Rep 2024; 14:22908. [PMID: 39406792 PMCID: PMC11480420 DOI: 10.1038/s41598-024-73629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
With a growing global population and ageing demographics, the food industry stands at a pivotal crossroads, necessitating bespoke solutions and groundbreaking innovations. In vitro experiments can help understanding food oral processing and formulating products meeting the specific needs of different populations. However, current in vitro models do not reproduce well human oral anatomy and tongue biomechanics, essential for assessing the behaviour of novel and texturized foods under physiologically relevant oral conditions. In response, we unveil a novel 3D biomimetic artificial mouth, showcasing a pneumatic multi-degree-of-freedom artificial tongue meticulously crafted to mirror the mechanical properties and wettability of the human tongue. This cutting-edge technology, featuring tongue surface papillae, is capable of performing lifelike movements. The comparison with in vivo data demonstrates that it accurately reproduces oral processing of three, vastly different, soft foods. Textural characteristics (firmness, adhesive and cohesive properties) and shear viscosities-measured at oral and oropharyngeal-relevant shear rates-of in vitro food boli closely mirrored those observed in vivo. This in vitro device presents unprecedented opportunities for studying the dynamics of food transformation in the mouth, to adapt texture towards food that can be swallowed with ease and to improve food palatability, accommodating specific health needs critical for older adults (e.g., reduced salivary secretion, tongue weakness or poor coordination).
Collapse
Affiliation(s)
| | | | - Miodrag Glumac
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | - Jérôme Bussiere
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | - Anne Saint-Eve
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | | | - Yoshikazu Kobayashi
- Department of Dentistry and Oral-Maxillofacial Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Marco Ramaioli
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France.
| |
Collapse
|
3
|
Guo Y, Zhao Q, Li T, Mao Q. Masticatory simulators based on oral physiology in food research: A systematic review. J Texture Stud 2024; 55:e12864. [PMID: 39233393 DOI: 10.1111/jtxs.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 09/06/2024]
Abstract
A masticatory simulator is a mechanical device that mimics the physiological structures of the human oral cavity, chewing movement system, and functions. The advantage of this device lies in real-time tracking and analysis of food boluses within a sealed oral space, offering a direct validation platform for food experiments without constraints related to time, space, and individual variations. The degree to which the masticatory simulator simulates physiological structures reflects its efficacy in replicating oral physiological processes. This review mainly discusses the physiological structures of the oral cavity, the simulation of biomimetic components, and the development, feasibility assessment, applications, and prospects of masticatory simulators in food. The highlight of this review is the analogy of biomimetic component designs in masticatory simulators over the past 15 years. It summarizes the limitations of masticatory simulators and their biomimetic components, proposing potential directions for future development. The purpose of this review is to assist readers in understanding the research progress and latest literature findings on masticatory simulators while also offering insights into the design and innovation of masticatory simulators.
Collapse
Affiliation(s)
- Yifei Guo
- Department of Food Science and Engineering, College of Light Industry, Liaoning University, Shenyang, China
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, Haikou, China
| | - Qi Zhao
- Department of Information, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Tiejing Li
- Department of Food Science and Engineering, College of Light Industry, Liaoning University, Shenyang, China
| | - Qian Mao
- Department of Food Science and Engineering, College of Light Industry, Liaoning University, Shenyang, China
| |
Collapse
|
4
|
Chen L, Yang Y, Hu X, Li H, Zhao D, Wang B, Ye X, Zhang Y, Sun B, Sun J. Unraveling the role of peanut protein in baijiu-peanut pairing flavor complexity: A focus on ethanol-induced denaturation. Food Chem 2024; 463:141181. [PMID: 39270491 DOI: 10.1016/j.foodchem.2024.141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Food processing, cooking, and consumption introduce various factors that affect food flavor, distinguishing it from its objective composition. This study focuses on liquor-accompanying food pairing, investigating the interaction between baijiu aroma compounds and peanut proteins, and the effect of ethanol on it. Peanut globulins significantly inhibited the release of baijiu aroma compounds through hydrogen bonding (2.63-3.23 Å), hydrophobic interactions, and covalent reactions (-2.85 to -5.64 kcal/mol), resulting in flavor modification. In the presence of ethanol, peanut globulins adopt a more compact and aggregated structure, reducing their affinity for binding aroma compounds. Surprisingly, this structural change promotes a salting-out effect, significantly promoting the release of aldehydes, phenols, and aromatic compounds, enhancing the grassy, floral, and sweet aroma of baijiu. This finding improves the understanding of alcohol pairing and proposes a novel strategy for enhancing the overall flavor profile of baijiu by modifying accompanying food choices.
Collapse
Affiliation(s)
- Lu Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yunlin Yang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinyu Hu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Dongrui Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | | | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Jia Y, Li W, Zheng M, Zheng C, Zhou Q. Flavor release from walnut kernels in an in-vitro mastication model with decoupled oral parameters. Food Res Int 2024; 190:114553. [PMID: 38945595 DOI: 10.1016/j.foodres.2024.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Consumer preferences for walnut products are largely determined by the flavors released during mastication. In this study, a peeled walnut kernel (PWK) model was established with oral parameters decoupled using a Hutchings 3D model. The model explored in vitro variations using head-space solid-phase microextraction-gas chromatography-mass spectrometry and intelligent sensory techniques. The fracture strength, hardness, particle size, adhesiveness, springiness, gumminess, and chewiness were significantly reduced during mastication. We identified 61 volatile compounds and found that 2,5-dimethyl-3-ethylpyrazine is a key component, releasing predominantly baking and milky notes. Glutamic acid, alanine, arginine, and sucrose were identified as the key compounds in taste perception. The method can help establish a mastication model for nuts and facilitate breakthroughs in the development of walnut products and processing methods.
Collapse
Affiliation(s)
- Yimin Jia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenlin Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Wang Y, Xin M, Li Z, Zang Z, Cui H, Li D, Tian J, Li B. Food-Oral Processing: Current Progress, Future Directions, and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10725-10736. [PMID: 38686629 DOI: 10.1021/acs.jafc.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Oral processing refers to the series of physical, chemical, and biological processes inside the oral cavity when we consume food. This process affects the taste, quality, and nutrient absorption of the body. In the human diet, oral processing plays a crucial role because it impacts not only the food flavor and texture but also the absorption and utilization of nutrients. With the progress of science and technology and the increasing demand for food, the study of oral processing has become increasingly important. This paper reviews the history and definition of oral processing, its current state of research, and its applications in food science and technology, focusing on personalized taste customization, protein structure modification, food intake and nutrition, and bionic devices. It also analyzes the impact of oral processing on different types of food products and explores its potential in the food industry and science research.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
7
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
8
|
Pu B, Meng R, Shi Y, Pu D. Decoding the Effect of Running on Flavor Perception Changes during Consumption of Sports Drinks. Foods 2024; 13:1266. [PMID: 38672938 PMCID: PMC11049042 DOI: 10.3390/foods13081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
An online survey was conducted to show that most respondents preferred sports drinks with sweet and fruity characteristics. Eleven sports drinks with higher consumers' preferences were further selected for aroma and taste evaluation. Temporal dominance of sensations analysis showed that fruity and fresh attributes were dominant, while sour and fruity sweet were dominant tastes during consumption. β-Damascenone, β-ionone, and linalool contributing to floral perception, γ-decalactone, ethyl cinnamate, and isoamyl acetate contributing to fruity perception, and menthol contributing to fresh perception were confirmed by odor activity value analysis. Running affected the nasal air flow and the saliva secretion, resulting in the flavor perception changing from fruity sweet, sweet, and fruity to sour because the recognition threshold decreased for sweet, fruity, floral, and fresh flavors and increased for saltiness, astringency, and sour tastes.
Collapse
Affiliation(s)
- Biwen Pu
- Department of Physical Education and Sport Research, Guangdong University of Finance, Guangzhou 510521, China;
- School of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Ruixin Meng
- China Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (R.M.); (Y.S.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yige Shi
- China Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (R.M.); (Y.S.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- China Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (R.M.); (Y.S.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Li W, Zhao Q, Mao Q. Effect of modifying pumpkin preparation on oral processing of breads. J Texture Stud 2024; 55:e12827. [PMID: 38486420 DOI: 10.1111/jtxs.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
There is an increasing demand for texture sensations of bread during mastication, with reformulation being needed. This study investigated how bread structure influences oral processing behavior and texture perception. Variations in bread structure were created by manipulating ingredient additions, including pumpkin content and pumpkin processing methods. Results indicated that the physical, chemical, and structural properties drove the oral processing behaviors, and texture sensations were highly correlated with bolus properties. At the beginning and middle of the mastication, bolus from breads with low pumpkin-content required more saliva and exhibited greater hardness, lower adhesiveness, and a higher proportion of small-piece particles than the bolus from high pumpkin-content breads. Bolus from pumpkin pulp breads required more saliva, and was softer, stickier, and generated particles with a lower degree of degradation than the bolus from pumpkin puree breads. However, at the end period, the bolus properties tended to change to similar values. Low pumpkin content breads were initially perceived chewy, whereas high pumpkin content, soft. The dominance rate for soft sensation was higher and lasted longer in breads with pumpkin puree than in breads with pumpkin pulp. Finally, six bread samples were all perceived as hydrated, sticky, and crumbly. This study contributes to a better understanding of the impact of reformulation on oral behavior and sensory properties.
Collapse
Affiliation(s)
- Wenjiao Li
- Department of Food Science and Engineering, College of Light Industry, Liaoning University, Shenyang, China
| | - Qi Zhao
- Department of Information, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Qian Mao
- Department of Food Science and Engineering, College of Light Industry, Liaoning University, Shenyang, China
| |
Collapse
|
10
|
Zhang Y, Chen Y, Chen C, Zhu Y, Liu M, Chen J. The enhancement mechanisms of mucin and lactoferrin on α-amylase activity in saliva: Exploring the interactions using QCM-D and molecular docking. Int J Biol Macromol 2024; 257:128710. [PMID: 38101660 DOI: 10.1016/j.ijbiomac.2023.128710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
α-Amylase activity differs between individuals and is influenced by dietary behavior and salivary constituents, but limited information is available on the relationship between α-amylase activity and saliva components. This study investigated the impact of salivary proteins on α-amylase activity, their various correlations, the effect of mucin (MUC5B and MUC7) and lactoferrin on the enzymatic kinetics of α-amylase, and the mechanisms of these interactions using the quartz crystal microbalance with dissipation (QCM-D) technique and molecular docking. The results showed that α-amylase activity was significantly correlated with the concentrations of MUC5B (R2 = 0.42, p < 0.05), MUC7 (R2 = 0.35, p < 0.05), and lactoferrin (R2 = 0.35, p < 0.05). An in vitro study demonstrated that α-amylase activity could be significantly increased by mucins and lactoferrin by decreasing the Michaelis constant (Km) of α-amylase. Moreover, the results from the QCM-D and molecule docking suggested that mucin and lactoferrin could interact with α-amylase to form stable α-amylase-mucin and α-amylase-lactoferrin complexes through hydrophobic interactions, electrostatic interactions, Van der Waals forces, and hydrogen bonds. In conclusion, these findings indicated that the salivary α-amylase activity depended not only on the α-amylase content, but also could be enhanced by the interactions of mucin/lactoferrin with α-amylase.
Collapse
Affiliation(s)
- Yufeng Zhang
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yong Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| | - Chen Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yang Zhu
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ming Liu
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University - Qishan Campus, Fuzhou, Fujian 350108, China
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
11
|
Pessoa P, Aboim S, Afonso L, Lopes JB, Sá-Pinto X. Tasting to preserve: An educational activity to promote children's positive attitudes towards intraspecific diversity conservation. PLoS One 2024; 19:e0285649. [PMID: 38198443 PMCID: PMC10781109 DOI: 10.1371/journal.pone.0285649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 01/12/2024] Open
Abstract
On the edge of causing the sixth big mass extinction event, the development of positive attitudes towards the conservation of intraspecific diversity from early ages is essential to overcome the biodiversity crisis we currently face. However, there is no information available on elementary school students' attitudes toward intraspecific diversity conservation nor is there a framework available to perform such analysis. For this study we designed, implemented, and evaluated an educational activity planned for third graders (8 to 13 years old) to explore the intraspecific diversity of vegetables and promote healthy eating habits. Additionally, a framework was developed to evaluate students' attitudes towards intraspecific diversity conservation and applied to semi-structured interviews conducted with students before and after engaging in the educational activity. In this paper we present a reliable framework, developed aligned with the ABC model of attitudes, based on literature, and adapted to elementary school students' responses, to evaluate students' attitudes toward intraspecific diversity. Our results show that, before the educational activity, most students choose a non-biodiverse option, justifying this choice with the affective component of attitudes: mostly emotional factors but also aesthetic and social/cultural factors. After the educational activity, we observed a significant increase in the frequency of students that choose the biodiverse option and that justified it with the cognitive component of attitudes: mainly with biology and health knowledge factors, but also with economic and ethical knowledge factors. Our findings support the positive impact of educational activities that explore vegetable varieties on students' attitudes toward intraspecific diversity conservation. This activity may also be used to foster education for sustainability and address socioscientific issues aligned with diverse sustainable development goals.
Collapse
Affiliation(s)
- Patrícia Pessoa
- Research Centre in the Didactics and Technology in the Education of Trainers of University of Aveiro (CIDTFF.UA), Aveiro, Portugal
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Sara Aboim
- P. Porto: School of Education and Centre for Research and Innovation in Education (inED), Porto, Portugal
| | - Lisa Afonso
- Center for Psychology, Faculty of Psychology and Educational Sciences of the University of Porto, Porto, Portugal
| | - J. Bernardino Lopes
- Research Centre in the Didactics and Technology in the Education of Trainers of University of Aveiro (CIDTFF.UA), Aveiro, Portugal
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Xana Sá-Pinto
- Research Centre in the Didactics and Technology in the Education of Trainers of University of Aveiro (CIDTFF.UA), Aveiro, Portugal
| |
Collapse
|
12
|
Zhang Y, Zhang R, Lu Y, Gao Y, Mao L. Effect of simulated saliva on rheological and tribological properties of oleogel-in-water HIPEs during oral processing. J Colloid Interface Sci 2024; 653:1018-1027. [PMID: 37778151 DOI: 10.1016/j.jcis.2023.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
HYPOTHESIS High internal phase emulsions (HIPEs) have great potentials in the food industry to control fat consumption. Textural perception of HIPEs during oral processing is strongly influenced by saliva, which has not been systematically investigated. Therefore, we investigated the roles of saliva in the rheological and tribological properties of HIPEs during oral processing. EXPERIMENTS HIPEs (O/W) stabilized by oleogel and a protein were fabricated. Small (SAOS) and large (LAOS) amplitude oscillatory shearing measurements and tribological tests were performed, in combination with structural characterization of the emulsions. FINDINGS Particle size and CLSM observation indicated that saliva induced coalescence of droplets by weakening the interface and more EC resulted in faster clustering. SAOS tests revealed that emulsions mixed with saliva had weaker structural strength and lower resistance to deformation. Particularly in large deformation, the HIPEs mixed with saliva presented an acceleration in the droplet-droplet structure breakdown, which led to the pronounced strain-thinning behavior and energy dissipation. Tribological curves further revealed that the corporation of saliva contributed to the release of oil to reduce friction coefficient.
Collapse
Affiliation(s)
- Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yao Lu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Oppen D, Weiss J. Oral processing, rheology, and mechanical response: Relations in a two-phase food model with anisotropic compounds. J Texture Stud 2023; 54:808-823. [PMID: 37718549 DOI: 10.1111/jtxs.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Food-material poses a challenging matrix for objective material scientific description that matches the consumers' perception. With eyes on the emerging structured food materials from alternative protein sources, objectively describing perceived texture characteristics became a topic of interest to the food industry. This work made use of the well-known methodologies of jaw tracking and electromyography from the field of "food oral processing" and compared outcomes with mechanical responses to the deformation of model food systems to meat alternatives. To enable transferability to meat alternative products, an anisotropic structuring ingredient for alternative products, high-moisture texturized vegetable protein (HM-TVP), was embedded in an isotropic hydrocolloid gel. Data of the jaw movement and muscle activities exerted during mastication were modeled in a linear mixed model and set in relation to characteristic values obtained from small- and large-strain deformation. For improvement of the model fit, this work makes use of two new data-processing strategies in the field of oral processing: (i) Muscle activity data were set in relation to true forces and (ii) measured data were standardized and subjected to dimensional reduction. Based on that, model terms showed decreased p-values on various oral processing features. As a key outcome, it could be shown that an anisotropic structured phase induces more lateral jaw movement than isotropic samples, as was shown in meat model systems.
Collapse
Affiliation(s)
- Dominic Oppen
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Zhang M, Zuo Z, Zhang X, Wang L. Food biopolymer behaviors in the digestive tract: implications for nutrient delivery. Crit Rev Food Sci Nutr 2023; 64:8709-8727. [PMID: 37216487 DOI: 10.1080/10408398.2023.2202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biopolymers are prevalent in both natural and processed foods, serving as thickeners, emulsifiers, and stabilizers. Although specific biopolymers are known to affect digestion, the mechanisms behind their influence on the nutrient absorption and bioavailability in processed foods are not yet fully understood. The aim of this review is to elucidate the complex interplay between biopolymers and their behavior in vivo, and to provide insights into the possible physiological consequences of their consumption. The colloidization process of biopolymer in various phases of digestion was analyzed and its impact on nutrition absorption and gastrointestinal tract was summarized. Furthermore, the review discusses the methodologies used to assess colloidization and emphasizes the need for more realistic models to overcome challenges in practical applications. By controlling macronutrient bioavailability using biopolymers, it is possible to enhance health benefits, such as improving gut health, aiding in weight management, and regulating blood sugar levels. The physiological effect of extracted biopolymers utilized in modern food structuring technology cannot be predicted solely based on their inherent functionality. It is essential to account for factors such as their initial consuming state and interactions with other food components to better understand the potential health benefits of biopolymers.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Liu G, Wang R, Liu S, Xu M, Guo L, Zhang H, Wei H. Relationship between starch fine structure and simulated oral processing of cooked japonica rice. Front Nutr 2022; 9:1046061. [DOI: 10.3389/fnut.2022.1046061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
BackgroundSimulated oral processing can be used to evaluate the palatability of cooked rice. Previously, we established a simulated oral processing method using a texture analyzer equipped with a multiple extrusion cell probe (TA/MEC). However, the relationship between oral processing and starch fine structure remains unknown.MethodsIn this study, we analyzed the oral processing properties using TA/MEC and characterized the starch fine structure of japonica rice by size-exclusion chromatography (SEC) and fluorophore-assisted capillary electrophoresis (FACE). The relationship between starch fine structure and oral processing of cooked japonica rice was further investigated.ResultsCooked rice structure contains fast-breakdown (Type I structure), slow-breakdown (Type II structure) and unbreakable structures (Type III structure). Fast-breakdown and slow-breakdown structure were positively correlated with the content of amylose and shorter amylopectin branches. The content of longer amylopectin branches was positively correlated with the contribution of unbreakable structure.ConclusionThe results indicated that cooked japonica rice varieties with more amylose and shorter amylopectin branches tend to form a harder texture and need more work to break down the fast and slow breakdown structures related to rice kernel fragmentation. Meanwhile, cooked japonica rice varieties possess stronger molecular entanglements due to their longer amylopectin branches and contribute more to the breakdown of unbreakable structures. These results can guide breeders to select rice varieties with desirable eating qualities for cultivation.
Collapse
|