1
|
Song Y, Ren X, Zhao L, Zhang B, Chi W, Liu Y, Shi K, Liu S. Foodomics uncovers functional and volatile metabolite dynamics in red raspberry chewable tablet optimized processing. Food Chem 2024; 450:139379. [PMID: 38653050 DOI: 10.1016/j.foodchem.2024.139379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Raspberries are known to contain valuable metabolites and possess a robust antioxidant capacity. However, the impact of different tablet processing stages on the nutritional content and flavor profile of raspberries remains unclear. The dynamic profile of functional and volatile metabolites was investigated through foodomics combined with UPLC-MS/MS-based widely targeted metabolomics and HS-SPME-GC-MS, and antioxidant capacities were assessed during tablet processing. 1336 functional metabolites and 645 volatile metabolites were identified. Results indicated tablets retained 34% ∼ 61% of the total volatile contents. In addition, the conversion intensity of functional metabolites was consistent with the order of "Tableting > Freeze-drying > Crushing". Compared to raspberry, tablets showed higher antioxidant activity, which was positively correlated with vitamin contents. This study elucidated that tablet formation demonstrated advantages in antioxidation and aroma retention, which may provide insights for enhancing quality during the tableting process.
Collapse
Affiliation(s)
- Yangbo Song
- Agriculture and Animal Husbandry College, Qinghai University, Xining 810086, China.
| | - Xiaoli Ren
- Agriculture and Animal Husbandry College, Qinghai University, Xining 810086, China
| | - Lili Zhao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Biying Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Wei Chi
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
| | - Kan Shi
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| |
Collapse
|
2
|
Abstract
Berries are highly regarded as flavorful and healthy fruits that may prevent or delay some chronic diseases attributed to oxidative stress and inflammation. Berries are low in calories and harbor diverse bioactive phytochemicals, antioxidants, dietary fibers, and vitamins. This review delves into the main characteristics of fresh berries and berry products as foods and the technologies associated with their production. The main effects of processing operations and related variables on bioactive components and antioxidants are described. This review critically discusses why some health claims based on in vitro antioxidant data and clinical studies and intervention trials are difficult to assess. The review suggests that the beneficial health effects of berries are derived from a multifactorial combination of complex mixtures of abundant phenolic components, antioxidants, and their metabolites acting synergistically or additively with other nutrients like fibers and vitamins and possibly by modulating the gut microbiota.
Collapse
Affiliation(s)
- José Miguel Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile;
| |
Collapse
|
3
|
Prodić I, Krstić Ristivojević M, Smiljanić K. Antioxidant Properties of Protein-Rich Plant Foods in Gastrointestinal Digestion—Peanuts as Our Antioxidant Friend or Foe in Allergies. Antioxidants (Basel) 2023; 12:antiox12040886. [PMID: 37107261 PMCID: PMC10135473 DOI: 10.3390/antiox12040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Thermally processed peanuts are ideal plant models for studying the relationship between allergenicity and antioxidant capacity of protein-rich foods, besides lipids, carbohydrates and phytochemicals. Peanut is highly praised in the human diet; however, it is rich in allergens (>75% of total proteins). One-third of peanut allergens belong to the products of genes responsible for the defence of plants against stress conditions. The proximate composition of major peanut macromolecules and polyphenols is reviewed, focusing on the identity and relative abundance of all peanut proteins derived from recent proteomic studies. The importance of thermal processing, gastrointestinal digestion (performed by INFOGEST protocol) and their influence on allergenicity and antioxidant properties of protein-rich plant food matrices is elaborated. Antioxidant properties of bioactive peptides from nuts were also considered. Moreover, there are no studies dealing simultaneously with the antioxidant and allergenic properties of protein- and polyphenol-rich foods, considering all the molecules that can significantly contribute to the antioxidant capacity during and after gastrointestinal digestion. In summary, proteins and carbohydrates are underappreciated sources of antioxidant power released during the gastrointestinal digestion of protein-rich plant foods, and it is crucial to decipher their antioxidant contribution in addition to polyphenols and vitamins before and after gastrointestinal digestion.
Collapse
Affiliation(s)
- Ivana Prodić
- Innovative Centre of the Faculty of Chemistry in Belgrade Ltd., University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Krstić Ristivojević
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| | - Katarina Smiljanić
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| |
Collapse
|
4
|
Mandalari G, Gervasi T, Rosenberg DW, Lapsley KG, Baer DJ. Effect of Nuts on Gastrointestinal Health. Nutrients 2023; 15:1733. [PMID: 37049572 PMCID: PMC10096892 DOI: 10.3390/nu15071733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nuts are high nutrient-dense foods containing healthy lipids, dietary fiber, and bioactive phytochemicals, including vitamins and minerals. Although the beneficial effect of nut consumption on different chronic diseases has been well documented, especially in relation to their cardiometabolic benefits, less scientific evidence is available on their possible beneficial effects on gastrointestinal health. In this narrative review, we summarize the most important findings and new research perspectives in relation to the importance of nut consumption on gastrointestinal health. The integrity of the cell wall structure, cell size and particle size after mastication are known to play a crucial role in energy, nutrient and bioactive release from nuts during digestion, therefore affecting bioaccessibility. Other mechanisms, such as cell wall composition, thickness and porosity, as well as stability of the membranes surrounding the oil bodies within the cell, are also important for energy extraction. As the undigested nutrients and phytochemicals are delivered to the colon, effects on gut microbiota composition are predicted. Although the overall effect of nut consumption on microbial alpha- and beta-diversity has been inconsistent, some scientific evidence suggests an increase in fecal butyrate after almond consumption, and a beneficial role of walnuts on the prevention of ulcerative colitis and protection against the development of gastric mucosal lesions.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Daniel W. Rosenberg
- Centre for Molecular Oncology, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| | | | - David J. Baer
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
5
|
Hussain Zaki U, Fryganas C, Trijsburg L, Feskens E, Capuano E. Influence of different processing method on lignan content of selected Malaysian plant-based foods. Food Chem 2023; 404:134607. [DOI: 10.1016/j.foodchem.2022.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
6
|
Tong SC, Siow LF, Tang TK, Lee YY. Plant-based milk: unravel the changes of the antioxidant index during processing and storage - a review. Crit Rev Food Sci Nutr 2022; 64:4603-4621. [PMID: 36377721 DOI: 10.1080/10408398.2022.2143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a nutrient rich emulsion extracted from plant materials, plant-based milk (PBM) has been the latest trend and hot topic in the food industry due to the growing awareness of consumers toward plant-based products in managing the environmental (carbon footprint and land utility), ethical (animal well-fare) and societal (health-conscious) issues. There have been extensive studies and reviews done to discuss the distinct perspective of PBM including its production, health effects and market acceptance. However, not much has been emphasized on the valuable antioxidants present in PBM which is one of the attributes making them stand apart from dairy milk. The amounts of antioxidants in PBM are important. They offered tremendous health benefits in maintaining optimum health and reducing the risk of various health disorders. Therefore, enhancing the extraction of antioxidants and preserving their activity during production and storage is important. However, there is a lack of a comprehensive review of how these antioxidants changes in response to different processing steps involved in PBM production. Presumably, antioxidants in PBM could be potentially lost due to thermal degradation, oxidation or leaching into processing water. Hence, this paper aims to fill the gaps by addressing an extensive review of how different production steps (germination, roasting, soaking, blanching, grinding and filtration, and microbial inactivation) affect the antioxidant content in PBM. In addition, the effect of different microbial inactivation treatments (thermal or non-thermal processing) on the alteration of antioxidant in PBM was also highlighted. This paper can provide useful insight for the industry that aims in selecting suitable processing steps to produce PBM products that carry with them a health declaration.
Collapse
Affiliation(s)
- S C Tong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - L F Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - T K Tang
- School of Food Studies and Gastronomy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Y Y Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
7
|
Effect of food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chem X 2022; 14:100334. [PMID: 35712535 PMCID: PMC9194584 DOI: 10.1016/j.fochx.2022.100334] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/16/2022] [Accepted: 05/15/2022] [Indexed: 12/15/2022] Open
Abstract
Processing alters the amount, matrix interaction, and structure of antioxidants. It is not easy to dissociate processing effects from food matrix effects. It is still difficult to make general statements on the effects of processing on bioavailability. Facilitated release by heat, pressure, etc. contributes to increased bioaccessibility.
It has long been recognized that the antioxidants present in fresh plant materials may be very different to those we ingest via our foods. This is often due to the use of food processing strategies involving thermal/non-thermal treatments. Current research mostly focuses on determining what is present in vegetative starting materials; how this is altered during processing; how this influences activity in the gut and following uptake into bloodstream; and which in vivo physiological effects this may have on human body. Having a better understanding of these different steps and their importance in a health-and-nutrition-context will place us in a better position to breed for improved crop varieties and to advise the food industry on how to optimize processing strategies to enhance biochemical composition of processed foods. This review provides an overview of what is currently known about the influence which food processing treatments can have on antioxidants and gives some pointers as to their potential relevance.
Collapse
|
8
|
Ianni F, Barola C, Blasi F, Moretti S, Galarini R, Cossignani L. Investigation on chlorogenic acid stability in aqueous solution after microwave treatment. Food Chem 2022; 374:131820. [PMID: 35021582 DOI: 10.1016/j.foodchem.2021.131820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022]
Abstract
Recently, several health benefits associated with the consumption of foods rich in chlorogenic acid (5-CQA) have been reported. However, an important issue is its low stability during extraction and food processing, resulting in isomerization to neochlorogenic and cryptochlorogenic acids and the formation of further degradation products. This work describes the evaluation of 5-CQA reactivity in commercial waters after microwave treatment. An optimized HPLC-UV method was used to monitor 5-CQA conversion to its main isomers, while LC-HRMS/MS was performed for the elucidation of transformation products. Results revealed different degrees of isomerization in 5-CQA depending on the water sample, and the formation of oxidation derivatives of CQA isomers. This study highlights the importance of analytical monitoring of food compounds, during microwave treatment for example. In the case of 5-CQA, understanding of the degradation process would allow better preservation of bioactive constituent in foods and beverages and health promoting effects.
Collapse
Affiliation(s)
- Federica Ianni
- Food Science and Nutrition Section, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy
| | - Francesca Blasi
- Food Science and Nutrition Section, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy.
| | - Lina Cossignani
- Food Science and Nutrition Section, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy.
| |
Collapse
|