1
|
Coppedè F, Bhaduri U, Stoccoro A, Nicolì V, Di Venere E, Merla G. DNA Methylation in the Fields of Prenatal Diagnosis and Early Detection of Cancers. Int J Mol Sci 2023; 24:11715. [PMID: 37511475 PMCID: PMC10380460 DOI: 10.3390/ijms241411715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The central objective of the metamorphosis of discovery science into biomedical applications is to serve the purpose of patients and curtail the global disease burden. The journey from the discovery of DNA methylation (DNAm) as a biological process to its emergence as a diagnostic tool is one of the finest examples of such metamorphosis and has taken nearly a century. Particularly in the last decade, the application of DNA methylation studies in the clinic has been standardized more than ever before, with great potential to diagnose a multitude of diseases that are associated with a burgeoning number of genes with this epigenetic alteration. Fetal DNAm detection is becoming useful for noninvasive prenatal testing, whereas, in very preterm infants, DNAm is also shown to be a potential biological indicator of prenatal risk factors. In the context of cancer, liquid biopsy-based DNA-methylation profiling is offering valuable epigenetic biomarkers for noninvasive early-stage diagnosis. In this review, we focus on the applications of DNA methylation in prenatal diagnosis for delivering timely therapy before or after birth and in detecting early-stage cancers for better clinical outcomes. Furthermore, we also provide an up-to-date commercial landscape of DNAm biomarkers for cancer detection and screening of cancers of unknown origin.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| | - Utsa Bhaduri
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Di Venere
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. J Immunother Cancer 2023; 11:e006284. [PMID: 37349125 PMCID: PMC10314661 DOI: 10.1136/jitc-2022-006284] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.
Collapse
Affiliation(s)
- Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Wang M, Cai J, Chen J, Liu J, Geng X, Yu X, Yang J. PCR Techniques and Their Clinical Applications. POLYMERASE CHAIN REACTION [WORKING TITLE] 2023. [DOI: 10.5772/intechopen.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Kary B. Mullis developed a revolutionary method name polymerase chain reaction (PCR) in 1983, which can synthesize new strand of DNA complementary to the template strand of DNA and produce billions of copies of a DNA fragment only in few hours. Denaturation, annealing, and extension are the three primary steps involved in the PCR process, which generally requires thermocyclers, DNA template, a pair of primers, Taq polymerase, nucleotides, buffers, etc. With the development of PCR, from traditional PCR, quantitative PCR, to next digital PCR, PCR has become a powerful tool in life sciences and medicine. Applications of PCR techniques for infectious diseases include specific or broad-spectrum pathogen detection, assessment and surveillance of emerging infections, early detection of biological threat agents, and antimicrobial resistance analysis. Applications of PCR techniques for genetic diseases include prenatal diagnosis and screening of neonatal genetic diseases. Applications of PCR techniques for cancer research include tumor-related gene detection. This chapter aimed to discuss about the different types of PCR techniques, including traditional PCR, quantitative PCR, digital PCR, etc., and their applications for rapid detection, mutation screen or diagnosis in infectious diseases, inherited diseases, cancer, and other diseases.
Collapse
|
4
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
5
|
Brown I, Fernando S, Menezes M, da Silva Costa F, Ramkrishna J, Meagher S, Rolnik DL. The importance of ultrasound preceding cell-free DNA screening for fetal chromosomal abnormalities. Prenat Diagn 2020; 40:1439-1446. [PMID: 32662897 DOI: 10.1002/pd.5788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study aims to determine the incidence of ultrasound findings that may change clinical management on the day of blood-sampling for cell-free DNA (cfDNA) screening. METHODS A retrospective study was conducted at a tertiary provider of obstetric and gynecological ultrasound in Melbourne, Australia. Individual patient files were reviewed and results were collated for maternal characteristics, pre-cfDNA ultrasound reports, results and test characteristics of both cfDNA and diagnostic testing, and genetic counselling notes. The primary outcome was a potential change in patient management due to findings detected on the pre-cfDNA ultrasound. RESULTS Of 6250 pre-cfDNA ultrasounds, 6207 were included in analysis. Of these, 598 (9.6%) pregnancies had a finding on pre-cfDNA ultrasound that had the potential to change management. The reasons for this potential change in management were detection of gestational age below 10 weeks (245, 3.9%), miscarriage (175, 2.8%), demised twin (43, 0.7%), fetal edema (115, 1.9%) and major structural abnormalities (20, 0.3%). These findings were more common in patients of advanced maternal age and in spontaneous conceptions. CONCLUSIONS An ultrasound prior to cfDNA screening has the potential to change clinical management in almost one in 10 women. The proportion is higher in older age groups and lower in IVF-conceived pregnancies.
Collapse
Affiliation(s)
- Imogen Brown
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Shavi Fernando
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Melody Menezes
- Monash Ultrasound for Women, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Fabricio da Silva Costa
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Daniel L Rolnik
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,Monash Ultrasound for Women, Melbourne, Australia
| |
Collapse
|
6
|
Horton RH, Wellesley DG. Extending non-invasive prenatal testing to non-invasive prenatal diagnosis. Arch Dis Child Fetal Neonatal Ed 2019; 104:F6-F7. [PMID: 29954879 DOI: 10.1136/archdischild-2018-314845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/03/2022]
Affiliation(s)
- Rachel Helen Horton
- Wessex Clinical Genetics Service, G Level, Princess Anne Hospital, Southampton, UK
| | - Diana Gay Wellesley
- Wessex Clinical Genetics Service, G Level, Princess Anne Hospital, Southampton, UK
| |
Collapse
|
7
|
Evaluation of pre-analytical factors affecting plasma DNA analysis. Sci Rep 2018; 8:7375. [PMID: 29743667 PMCID: PMC5943304 DOI: 10.1038/s41598-018-25810-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Pre-analytical factors can significantly affect circulating cell-free DNA (cfDNA) analysis. However, there are few robust methods to rapidly assess sample quality and the impact of pre-analytical processing. To address this gap and to evaluate effects of DNA extraction methods and blood collection tubes on cfDNA yield and fragment size, we developed a multiplexed droplet digital PCR (ddPCR) assay with 5 short and 4 long amplicons targeting single copy genomic loci. Using this assay, we compared 7 cfDNA extraction kits and found cfDNA yield and fragment size vary significantly. We also compared 3 blood collection protocols using plasma samples from 23 healthy volunteers (EDTA tubes processed within 1 hour and Cell-free DNA Blood Collection Tubes processed within 24 and 72 hours) and found no significant differences in cfDNA yield, fragment size and background noise between these protocols. In 219 clinical samples, cfDNA fragments were shorter in plasma samples processed immediately after venipuncture compared to archived samples, suggesting contribution of background DNA by lysed peripheral blood cells. In summary, we have described a multiplexed ddPCR assay to assess quality of cfDNA samples prior to downstream molecular analyses and we have evaluated potential sources of pre-analytical variation in cfDNA studies.
Collapse
|
8
|
Nectoux J. Current, Emerging, and Future Applications of Digital PCR in Non-Invasive Prenatal Diagnosis. Mol Diagn Ther 2017; 22:139-148. [DOI: 10.1007/s40291-017-0312-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Old RW, Bestwick JP, Wald NJ. Prenatal maternal plasma DNA screening for cystic fibrosis: A computer modelling study of screening performance. F1000Res 2017; 6:1896. [PMID: 29167740 PMCID: PMC5680537 DOI: 10.12688/f1000research.12849.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background: Prenatal cystic fibrosis (CF) screening is currently based on determining the carrier status of both parents. We propose a new method based only on the analysis of DNA in maternal plasma. Methods: The method relies on the quantitative amplification of the CF gene to determine the percentage of DNA fragments in maternal plasma at targeted CF mutation sites that carry a CF mutation. Computer modelling was carried out to estimate the distributions of these percentages in pregnancies with and without a fetus affected with CF. This was done according to the number of DNA fragments counted and fetal fraction, using the 23 CF mutations recommended by the American College of Medical Genetics for parental carrier testing. Results: The estimated detection rate (sensitivity) is 70% (100% of those detected using the 23 mutations), the false-positive rate 0.002%, and the odds of being affected given a positive screening result 14:1, compared with 70%, 0.12%, and 1:3, respectively, with current prenatal screening based on parental carrier testing. Conclusions: Compared with current screening practice based on parental carrier testing, the proposed method would substantially reduce the number of invasive diagnostic procedures (amniocentesis or chorionic villus sampling) without reducing the CF detection rate. The expected advantages of the proposed method justify carrying out the necessary test development for use in a clinical validation study.
Collapse
Affiliation(s)
- Robert W Old
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jonathan P Bestwick
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Nicholas J Wald
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
10
|
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide. Surgery is the standard treatment for early-stage non-small cell lung cancer (NSCLC). Advances in the knowledge of the biology of non-small cell lung cancer have revealed molecular information used for systemic cancer therapy targeting metastatic disease, with an important impact on patients’ overall survival (OS) and quality of life. However, a biopsy of overt metastases is an invasive procedure limited to certain locations and not easily acceptable in the clinic. The analysis of peripheral blood samples of cancer patients represents a new source of cancer-derived material, known as liquid biopsy, and its components (circulating tumour cells (CTCS), circulating free DNA (cfDNA), exosomes, and tumour-educated platelets (TEP)) can be obtained from almost any body fluids. These components have shown to reflect characteristics of the status of both the primary and metastatic diseases, helping the clinicians to move towards a personalized medicine (1). This review focuses on the liquid biopsy component – circulating free DNA, its benefit for non-invasive screening, early diagnosis, prognosis, response to treatment, and real time monitoring of the disease in non-small cell lung cancer patients.
Collapse
Affiliation(s)
| | | | - Saulius Cicėnas
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
11
|
Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol Cancer Res 2017; 15:1197-1205. [PMID: 28550083 DOI: 10.1158/1541-7786.mcr-17-0095] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/03/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Cell-free circulating linear DNA is being explored for noninvasive diagnosis and management of tumors and fetuses, the so-called liquid biopsy. Previously, we observed the presence of small extrachromosomal circular DNA (eccDNA), called microDNA, in the nuclei of mammalian tissues and cell lines. Now, we demonstrate that cell-free microDNA derived from uniquely mapping regions of the genome is detectable in plasma and serum from both mice and humans and that they are significantly longer (30%-60% >250 bases) than cell-free circulating linear DNA (∼150 bases). Tumor-derived human microDNA is detected in the mouse circulation in a mouse xenograft model of human ovarian cancer. Comparing the microDNA from paired tumor and normal lung tissue specimens reveals that the tumors contain longer microDNA. Consistent with human cancers releasing microDNA into the circulation, serum and plasma samples (12 lung and 11 ovarian cancer) collected prior to surgery are enriched for longer cell-free microDNA compared with samples from the same patient obtained several weeks after surgical resection of the tumor. Thus, circular DNA in the circulation is a previously unexplored pool of nucleic acids that could complement miRNAs and linear DNA for diagnosis and for intercellular communication.Implications: eccDNA derived from chromosomal genomic sequence, first discovered in the nuclei of cells, are detected in the circulation, are longer than linear cell-free DNA, and are released from normal tissue and tumors into the circulation. Mol Cancer Res; 15(9); 1197-205. ©2017 AACR.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Laura W Dillon
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Amir A Jazaeri
- Department of Gynecological Oncology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David R Jones
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
12
|
Simple multiplexed PCR-based barcoding of DNA for ultrasensitive mutation detection by next-generation sequencing. Nat Protoc 2017; 12:664-682. [PMID: 28253235 DOI: 10.1038/nprot.2017.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Detection of extremely rare variant alleles within a complex mixture of DNA molecules is becoming increasingly relevant in many areas of clinical and basic research, such as the detection of circulating tumor DNA in the plasma of cancer patients. Barcoding of DNA template molecules early in next-generation sequencing (NGS) library construction provides a way to identify and bioinformatically remove polymerase errors that otherwise make detection of these rare variants very difficult. Several barcoding strategies have been reported, but all require long and complex library preparation protocols. Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing (SiMSen-seq) was developed to generate targeted barcoded libraries with minimal DNA input, flexible target selection and a very simple, short (∼4 h) library construction protocol. The protocol comprises a three-cycle barcoding PCR step followed directly by adaptor PCR to generate the library and then bead purification before sequencing. Thus, SiMSen-seq allows detection of variant alleles at <0.1% frequency with easy customization of library content (from 1 to 40+ PCR amplicons) and a protocol that can be implemented in any molecular biology laboratory. Here, we provide a detailed protocol for assay development and describe software to process the barcoded sequence reads.
Collapse
|
13
|
Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol 2017; 39:63-73. [DOI: 10.1016/j.bpobgyn.2016.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/23/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
|
14
|
Nakagomi H, Hirotsu Y, Amemiya K, Nakada H, Inoue M, Mochizuki H, Oyama T, Omata M. Rapid Changes in Circulating Tumor DNA in Serially Sampled Plasma During Treatment of Breast Cancer: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:26-32. [PMID: 28065930 PMCID: PMC5240877 DOI: 10.12659/ajcr.901295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Patient: Female, 45 Final Diagnosis: Breast cancer Symptoms: Breast tumor Medication: — Clinical Procedure: Analysis of circulating tumor DNA Specialty: Oncology
Collapse
Affiliation(s)
- Hiroshi Nakagomi
- Department of Surgery, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Haruka Nakada
- Department of Surgery, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Masayuki Inoue
- Department of Surgery, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Toshio Oyama
- Department of Pathology, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan.,University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Medina Diaz I, Nocon A, Mehnert DH, Fredebohm J, Diehl F, Holtrup F. Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS One 2016; 11:e0166354. [PMID: 27832189 PMCID: PMC5104415 DOI: 10.1371/journal.pone.0166354] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
Objectives Making liquid biopsy testing widely available requires a concept to ship whole blood at ambient temperatures while retaining the integrity of the cell-free DNA (cfDNA) population and stability of blood cells to prevent dilution of circulating tumor DNA (ctDNA) with wild-type genomic DNA. The cell- and DNA-stabilizing properties of Streck Cell-Free DNA BCT blood collection tubes (cfDNA BCTs) were evaluated to determine if they can be utilized in combination with highly sensitive mutation detection technologies. Methods Venous blood from healthy donors or patients with advanced colorectal cancer (CRC) was collected in cfDNA BCTs and standard K2EDTA tubes. Tubes were stored at different temperatures for various times before plasma preparation and DNA extraction. The isolated cfDNA was analyzed for overall DNA yield of short and long DNA fragments using qPCR as well as for mutational changes using BEAMing and Plasma Safe-Sequencing (Safe-SeqS). Results Collection of whole blood from healthy individuals in cfDNA BCTs and storage for up to 5 days at room temperature did not affect the DNA yield and mutation background levels (n = 60). Low-frequency mutant DNA spiked into normal blood samples as well as mutant circulating tumor DNA in blood samples from CRC patients collected in cfDNA BCTs were reliably detected after 3 days of storage at room temperature. However, blood samples stored at ≤ 10°C and at 40°C for an extended period of time showed elevated normal genomic DNA levels and an abnormally large cellular plasma interface as well as lower plasma volumes. Conclusion Whole blood shipped in cfDNA BCTs over several days can be used for downstream liquid biopsy testing using BEAMing and Safe-SeqS. Since the shipping temperature is a critical factor, special care has to be taken to maintain a defined room temperature range to obtain reliable mutation testing results.
Collapse
Affiliation(s)
- Inga Medina Diaz
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
| | - Annette Nocon
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
| | | | | | - Frank Diehl
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
- * E-mail:
| | - Frank Holtrup
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
| |
Collapse
|
16
|
Abstract
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.,Codiak BioSciences Inc., Woburn, Massachusetts 01801
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
17
|
Butchbach MER. Applicability of digital PCR to the investigation of pediatric-onset genetic disorders. BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 10:9-14. [PMID: 27990344 PMCID: PMC5154671 DOI: 10.1016/j.bdq.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Early-onset rare diseases have a strong impact on child healthcare even though the incidence of each of these diseases is relatively low. In order to better manage the care of these children, it is imperative to quickly diagnose the molecular bases for these disorders as well as to develop technologies with prognostic potential. Digital PCR (dPCR) is well suited for this role by providing an absolute quantification of the target DNA within a sample. This review illustrates how dPCR can be used to identify genes associated with pediatric-onset disorders, to identify copy number status of important disease-causing genes and variants and to quantify modifier genes. It is also a powerful technology to track changes in genomic biomarkers with disease progression. Based on its capability to accurately and reliably detect genomic alterations with high sensitivity and a large dynamic detection range, dPCR has the potential to become the tool of choice for the verification of pediatric disease-associated mutations identified by next generation sequencing, copy number determination and noninvasive prenatal screening.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Ståhlberg A, Krzyzanowski PM, Jackson JB, Egyud M, Stein L, Godfrey TE. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res 2016; 44:e105. [PMID: 27060140 PMCID: PMC4914102 DOI: 10.1093/nar/gkw224] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Department of Surgery, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA Department of Pathology, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 405 30 Gothenberg, Sweden
| | - Paul M Krzyzanowski
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Jennifer B Jackson
- Department of Surgery, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Matthew Egyud
- Department of Surgery, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Lincoln Stein
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Tony E Godfrey
- Department of Surgery, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
19
|
Jiang P, Lo YD. The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of Molecular Diagnostics. Trends Genet 2016; 32:360-371. [DOI: 10.1016/j.tig.2016.03.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
|
20
|
Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PEY, Van Meerbeeck J, Lardon F, Rolfo C, Pauwels P. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer 2016; 107:100-107. [PMID: 27180141 DOI: 10.1016/j.lungcan.2016.04.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022]
Abstract
Lung cancer is the predominant cause of cancer-related mortality in the world. The majority of patients present with locally advanced or metastatic non-small-cell lung cancer (NSCLC). Treatment for NSCLC is evolving from the use of cytotoxic chemotherapy to personalized treatment based on molecular alterations. Unfortunately, the quality of the available tumor biopsy and/or cytology material is not always adequate to perform the necessary molecular testing, which has prompted the search for alternatives. This review examines the use of circulating cell-free nucleic acids (cfNA), consisting of both circulating cell-free (tumoral) DNA (cfDNA-ctDNA) and RNA (cfRNA), as a liquid biopsy in lung cancer. The development of sensitive and accurate techniques such as Next-Generation Sequencing (NGS); Beads, Emulsion, Amplification, and Magnetics (BEAMing); and Digital PCR (dPCR), have made it possible to detect the specific genetic alterations (e.g. EGFR mutations, MET amplifications, and ALK and ROS1 translocations) for which targeted therapies are already available. Moreover, the ability to detect and quantify these tumor mutations has enabled the follow-up of tumor dynamics in real time. Liquid biopsy offers opportunities to detect resistance mechanisms, such as the EGFR T790M mutation in the case of EGFR TKI use, at an early stage. Several studies have already established the predictive and prognostic value of measuring ctNA concentration in the blood. To conclude, using ctNA analysis as a liquid biopsy has many advantages and allows for a variety of clinical and investigational applications.
Collapse
Affiliation(s)
- L Sorber
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium.
| | - K Zwaenepoel
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - V Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - P E Y Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - J Van Meerbeeck
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Thoracic Oncology/MOCA, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - F Lardon
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - C Rolfo
- Oncology & Phase I Unit-Early Clinical Trials, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - P Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| |
Collapse
|
21
|
Toro PV, Erlanger B, Beaver JA, Cochran RL, VanDenBerg DA, Yakim E, Cravero K, Chu D, Zabransky DJ, Wong HY, Croessmann S, Parsons H, Hurley PJ, Lauring J, Park BH. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem 2015; 48:993-8. [PMID: 26234639 DOI: 10.1016/j.clinbiochem.2015.07.097] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Circulating plasma DNA is being increasingly used for biomedical and clinical research as a substrate for genetic testing. However, cell lysis can occur hours after venipuncture when using standard tubes for blood collection, leading to an increase in contaminating cellular DNA that may hinder analysis of circulating plasma DNA. Cell stabilization agents can prevent cellular lysis for several days, reducing the need for immediate plasma preparation after venipuncture, thereby facilitating the ease of blood collection and sample preparation for clinical research. However, the majority of cell stabilizing reagents have not been formally tested for their ability to preserve circulating plasma tumor DNA. DESIGN & METHODS In this study, we compared the properties of two cell stabilizing reagents, the cell-free DNA BCT tube and the PAXgene tube, by collecting blood samples from metastatic breast cancer patients and measuring genome equivalents of plasma DNA by droplet digital PCR. We compared wild type PIK3CA genome equivalents and also assayed for two PIK3CA hotspot mutations, E545K and H1047R. RESULTS Our results demonstrate that blood stored for 7 days in BCT tubes did not show evidence of cell lysis, whereas PAXgene tubes showed an order of magnitude increase in genome equivalents, indicative of considerable cellular lysis. CONCLUSIONS We conclude that BCT tubes can prevent lysis and cellular release of genomic DNA of blood samples from cancer patients when stored at room temperature, and could therefore be of benefit for blood specimen collections in clinical trials.
Collapse
Affiliation(s)
- Patricia Valda Toro
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bracha Erlanger
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia A Beaver
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rory L Cochran
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin A VanDenBerg
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Yakim
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Cravero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hong Yuen Wong
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Croessmann
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Parsons
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paula J Hurley
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Brady Urologic Institute, Department of Urology, USA
| | - Josh Lauring
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
Qi YH, Teng F, Zhou Q, Liu YX, Wu JF, Yu SS, Zhang X, Ma MY, Zhou N, Chen LJ. Unmethylated-maspin DNA in maternal plasma is associated with severe preeclampsia. Acta Obstet Gynecol Scand 2015; 94:983-8. [PMID: 26095742 DOI: 10.1111/aogs.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cell-free fetal DNA in maternal plasma is associated with complications of pregnancy, including preeclampsia. Determination of levels is affected by fetal gender and genetic polymorphisms. Unmethylated maspin (u-maspin) is present in the placenta, and is placental-specific. The purpose of this study was to determine whether u-maspin DNA in maternal blood could serve as a marker of preeclampsia by measuring levels in different trimesters of normal pregnancies and in those complicated by preeclampsia. MATERIAL AND METHODS This case-control study was set in a tertiary care hospital. The population consisted of 45 women with normal pregnancies (15 in the 1st trimester, 15 in the 2nd trimester, 15 in the 3rd trimester), 20 women with mild preeclampsia, 25 women with severe preeclampsia, and six women with gestational trophoblastic disease. Peripheral blood was collected and methylation-specific PCR and fluorescence quantitative PCR were performed to measure the content of u-maspin DNA in maternal blood. RESULTS U-maspin DNA was 5.5-fold higher in women with severe preeclampsia than in those with a normal 3rd trimester pregnancy (p < 0.05). During normal pregnancy, u-maspin DNA in maternal plasma tended to increase with advancing gestational age (p = 0.06). U-maspin DNA was not detected in healthy non-pregnant women or those with gestational trophoblastic disease. CONCLUSION U-maspin DNA in maternal blood is associated with severe preeclampsia.
Collapse
Affiliation(s)
- Yan-Hua Qi
- Department of Ultrasound, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fei Teng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Department of Obstetrics and Gynecology, First Affiliated Hospital, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Qi Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu-Xin Liu
- Human Resources, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Fang Wu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shan-Shan Yu
- Department of Ultrasound, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Miao-Yan Ma
- Department of Ultrasound, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ni Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Li-Juan Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
23
|
Mokari-Zadeh N, Mesbah-Namin SA. Evaluation of an Improved Non-invasive Fetal Sex Determination in Haemophilia A Patients. J Clin Diagn Res 2015; 9:GC01-4. [PMID: 26393142 DOI: 10.7860/jcdr/2015/12556.6175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Haemophilia A (HA) is the most severe sex-linked bleeding disorder that is characterized with non-controlled and often threatening Haemorrhage. Routine fetal sex determination in early pregnancy with Haemophilia is based on invasive procedures that can be dangerous to the mother and fetus. AIM The goal of this study is to present an improved assay for the non-invasive fetal sex determination using a Real-Time duplex PCR on the free fetal DNA (ffDNA) obtained from the maternal serum of the HA carriers. MATERIALS AND METHODS Blood samples were eventually collected from 23 pregnant HA carriers between the 8(th) and 12(th) weeks of gestation, and after amplification by duplex-PCR of the single copy of Y chromosome-specific sequence (SRY), the product was then subjected to Real-Time PCR analysis. RESULTS Data were compared with the outcome of chorionic villus sampling (CVS) and indicated that the SRY sequence was detected in 6 of 6 serum samples from male pregnancies and that sequence was absent in 9 samples where the fetus was female. The remaining samples determined without having the CVS positive samples. CONCLUSION We tried to develop a Real-Time duplex PCR for accurate diagnosis of fetal gender early in the pregnancy of HA carriers. This study has brought up two remarkable points, the first is the method's improvement with high specificity in sex determination, especially in screening of prenatal sex-linked disorders in male gender and the second is that fresh serum samples would be a good source for this purpose, advocated by similar studies carried out in this regard.
Collapse
Affiliation(s)
- Narmin Mokari-Zadeh
- Faculty, Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- Faculty, Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
24
|
Bioinformatics analysis of circulating cell-free DNA sequencing data. Clin Biochem 2015; 48:962-75. [PMID: 25966961 DOI: 10.1016/j.clinbiochem.2015.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022]
Abstract
The discovery of cell-free DNA molecules in plasma has opened up numerous opportunities in noninvasive diagnosis. Cell-free DNA molecules have become increasingly recognized as promising biomarkers for detection and management of many diseases. The advent of next generation sequencing has provided unprecedented opportunities to scrutinize the characteristics of cell-free DNA molecules in plasma in a genome-wide fashion and at single-base resolution. Consequently, clinical applications of circulating cell-free DNA analysis have not only revolutionized noninvasive prenatal diagnosis but also facilitated cancer detection and monitoring toward an era of blood-based personalized medicine. With the remarkably increasing throughput and lowering cost of next generation sequencing, bioinformatics analysis becomes increasingly demanding to understand the large amount of data generated by these sequencing platforms. In this Review, we highlight the major bioinformatics algorithms involved in the analysis of cell-free DNA sequencing data. Firstly, we briefly describe the biological properties of these molecules and provide an overview of the general bioinformatics approach for the analysis of cell-free DNA. Then, we discuss the specific upstream bioinformatics considerations concerning the analysis of sequencing data of circulating cell-free DNA, followed by further detailed elaboration on each key clinical situation in noninvasive prenatal diagnosis and cancer management where downstream bioinformatics analysis is heavily involved. We also discuss bioinformatics analysis as well as clinical applications of the newly developed massively parallel bisulfite sequencing of cell-free DNA. Finally, we offer our perspectives on the future development of bioinformatics in noninvasive diagnosis.
Collapse
|
25
|
Li X, Zhao Z. MicroRNA biomarkers for early detection of embryonic malformations in pregnancy. JOURNAL OF BIOMOLECULAR RESEARCH & THERAPEUTICS 2015; 3. [PMID: 25859419 DOI: 10.4172/2167-7956.1000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital birth defects, manifested in newborn infants, are formed during early embryogenesis. Targeted and individualized interventions to prevent birth defects require early detection of risk and signs of developmental abnormalities. Current diagnosis of structural anomalies largely relies on ultrasonography, which can only detect abnormities after their formation in fetuses. Biomolecules, mainly proteins, in maternal blood have been used as indicators of fetal anomalies; however, they lack adequate sensitivity for detecting embryonic malformations. Recently, cell-free microRNAs (miRNAs) have been found in blood and evaluated as biomarkers for diseases. Expression of certain miRNAs in maternal plasma has been shown to be correlated with birth defects in infants. Although their reliability and sensitivity remain to be validated, miRNAs, which can be amplified and sequenced, are potentially sensitive and specific biomarkers for early embryonic dysmorphogenesis.
Collapse
Affiliation(s)
- Xuezheng Li
- Department of Pharmacy, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
The Diagnosis Pattern of Mid-Trimester Fetal Chromosomal Aneuploidy in Xuzhou and the Clinical Applications. Cell Biochem Biophys 2015; 73:267-270. [DOI: 10.1007/s12013-015-0594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Abstract
Cell-free fetal DNA in maternal circulation is higher during preeclampsia. It is unclear whether it is the cause or the consequence of the disease. The aim of this study was to prove whether injected rat fetal DNA induces preeclampsia-like symptoms in pregnant Wistar rats. They received daily i.p. injections of water or rat fetal DNA (400 μg) from gestation day 14 to 18. Blood pressure, proteinuria, placental and fetal weight were measured at gestation day 19. Plasma DNase activity, proteinuria and creatinine clearance were assessed. There was no significant difference in any of the measured parameters. The results of this study do not confirm the hypothesis that fetal DNA might induce preeclampsia. This is in contrast to others using human fetal DNA in mice. Further studies should be focused on the effects of fetal DNA from the same species protected from DNase activity.
Collapse
|
28
|
Liu S, Chen L, Zhang X, Li J, Lin H, Liu L, Xie J, Ge H, Ye M, Chen C, Ji X, Zhang C, Xu F, Jiang H, Zhen H, Chen S, Wang W. Primer-introduced restriction analysis polymerase chain reaction method for non-invasive prenatal testing of β-thalassemia. Hemoglobin 2014; 39:18-23. [PMID: 25548039 DOI: 10.3109/03630269.2014.984071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have developed a new method for non-invasive prenatal testing (NIPT) of paternally inherited fetal mutants for β-thalassemia (β-thal). Specially designed primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) were used to detect four major mutations [IVS-II-654, HBB: c.316-197C > T; codon 17 (A > T), HBB: c.52A > T; -28 (A > G), HBB: c.-78A > G and codons 41/42 (-TTCT), HBB: c.126_129delCTTT] causing β-thal in China. The PIRA-PCR assay was first tested in a series of mixed DNA with different concentrations and mixed proportions. Subsequently, this assay was further tested in 10 plasma DNA samples collected from pregnant women. In the DNA mixture simulation test, the PIRA-PCR assay was able to detect 3.0% target genomic DNA (gDNA) mixed in 97.0% wild-type gDNA isolated from whole blood. For plasma DNA testing, the results detected by PIRA-PCR assay achieved 100.0% consistency with those obtained from the amniocentesis analysis. This new method could potentially be used for NIPT of paternally inherited fetal mutants for β-thal.
Collapse
Affiliation(s)
- Saijun Liu
- Department of Science and Technology, BGI-Shenzhen , Shenzhen , People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sayres LC, Allyse M, Goodspeed TA, Cho MK. Demographic and experiential correlates of public attitudes towards cell-free fetal DNA screening. J Genet Couns 2014; 23:957-67. [PMID: 24715419 PMCID: PMC4192103 DOI: 10.1007/s10897-014-9704-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/19/2014] [Indexed: 02/06/2023]
Abstract
This study seeks to inform clinical application of cell-free fetal DNA (cffDNA) screening as a novel method for prenatal trisomy detection by investigating public attitudes towards this technology and demographic and experiential characteristics related to these attitudes. Two versions of a 25-item survey assessing interest in cffDNA and existing first-trimester combined screening for either trisomy 13 and 18 or trisomy 21 were distributed among 3,164 members of the United States public. Logistic regression was performed to determine variables predictive of interest in screening options. Approximately 47% of respondents expressed an interest in cffDNA screening for trisomy 13, 18, and 21, with a majority interested in cffDNA screening as a stand-alone technique. A significantly greater percent would consider termination of pregnancy following a diagnosis of trisomy 13 or 18 (52%) over one of trisomy 21 (44%). Willingness to consider abortion of an affected pregnancy was the strongest correlate to interest in both cffDNA and first-trimester combined screening, although markedly more respondents expressed an interest in some form of screening (69% and 71%, respectively) than would consider termination. Greater educational attainment, higher income, and insurance coverage predicted interest in cffDNA screening; stronger religious identification also corresponded to decreased interest. Prior experience with disability and genetic testing was associated with increased interest in cffDNA screening. Several of these factors, in addition to advanced age and Asian race, were, in turn, predictive of respondents' increased willingness to consider post-diagnosis termination of pregnancy. In conclusion, divergent attitudes towards cffDNA screening--and prenatal options more generally--appear correlated with individual socioeconomic and religious backgrounds and experiences with disability and genetic testing. Clinical implementation and counseling for novel prenatal technologies should take these diverse stakeholder values into consideration.
Collapse
Affiliation(s)
| | - Megan Allyse
- Science & Society, Duke University; Durham, North Carolina
| | - Taylor A. Goodspeed
- Stanford Center for Biomedical Ethics, Stanford University; Stanford, California
| | - Mildred K. Cho
- Stanford Center for Biomedical Ethics, Stanford University; Stanford, California
- Department of Pediatrics, Division of Genetics, Stanford University; Stanford, California
| |
Collapse
|
30
|
Chiu RWK. Noninvasive prenatal testing by maternal plasma DNA analysis: current practice and future applications. Scand J Clin Lab Invest Suppl 2014; 244:48-53; discussion 51-2. [PMID: 25083893 DOI: 10.3109/00365513.2014.936681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prenatal screening of fetal chromosomal aneuploidies and some common genetic diseases is an integral part of antenatal care. Definitive prenatal diagnosis is conventionally achieved by the sampling of fetal genetic material by amniocentesis or chorionic villus sampling. Due to the invasiveness of those procedures, they are associated with a 1 in 200 chance of fetal miscarriage. Hence, researchers have been exploring noninvasive ways to sample fetal genetic material. The presence of cell-free DNA released by the fetus into the circulation of its mother was demonstrated in 1997. Circulating fetal DNA is therefore obtainable through the collection of a blood sample from the pregnant woman without posing any physical harm to the fetus. By analyzing this source of fetal genetic material, researchers have succeeded in developing DNA-based noninvasive tests for the assessment of Down syndrome and single gene diseases. Since the end of 2011, tests for the noninvasive assessment of chromosomal aneuploidies have become commercially available in parts of the world. Recommendations from professional groups have since been made regarding how these tests could be incorporated into the framework of existing prenatal screening programs. More recently, cell-free circulating fetal DNA analysis have been shown to be applicable to the deciphering of the fetal molecular karyotype, genome and methylome. It is envisioned that an increasing number of the noninvasive prenatal tests will become clinically available. The ethical, social and legal implications of the introduction of some of these tests would need to be discussed in the context of different cultures, societal values and the legal framework.
Collapse
Affiliation(s)
- Rossa W K Chiu
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences, and Department of Chemical Pathology, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR , China
| |
Collapse
|
31
|
Gekas J, Langlois S, Ravitsky V, Audibert F, van den Berg DG, Haidar H, Rousseau F. Identification of trisomy 18, trisomy 13, and Down syndrome from maternal plasma. APPLICATION OF CLINICAL GENETICS 2014; 7:127-31. [PMID: 25053891 PMCID: PMC4104725 DOI: 10.2147/tacg.s35602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current prenatal diagnosis for fetal aneuploidies (including trisomy 21 [T21]) generally relies on an initial biochemical serum-based noninvasive prenatal testing (NIPT) after which women who are deemed to be at high risk are offered an invasive confirmatory test (amniocentesis or chorionic villi sampling for a fetal karyotype), which is associated with a risk of fetal miscarriage. Recently, genomics-based NIPT (gNIPT) was proposed for the analysis of fetal genomic DNA circulating in maternal blood. The diffusion of this technology in routine prenatal care could be a major breakthrough in prenatal diagnosis, since initial research studies suggest that this novel approach could be very effective and could reduce substantially the number of invasive procedures. However, the limitations of gNIPT may be underappreciated. In this review, we examine currently published literature on gNIPT to highlight advantages and limitations. At this time, the performance of gNIPT is relatively well-documented only in high-risk pregnancies for T21 and trisomy 18. This additional screening test may be an option for women classified as high-risk of aneuploidy who wish to avoid invasive diagnostic tests, but it is crucial that providers carefully counsel patients about the test's advantages and limitations. The gNIPT is currently not recommended as a first-tier prenatal screening test for T21. Since gNIPT is not considered as a diagnostic test, a positive gNIPT result should always be confirmed by an invasive test, such as amniocentesis or chorionic villus sampling. Validation studies are needed to optimally introduce this technology into the existing routine workflow of prenatal care.
Collapse
Affiliation(s)
- Jean Gekas
- Prenatal Diagnosis Unit, Department of Medical Genetics and Pediatrics, Faculty of Medicine, Laval University, Québec City, Quebec, Canada ; Department of Medical Biology, Centre Hospitalier Universitaire de Québec, Québec City, Quebec, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Vardit Ravitsky
- Bioethics Program, Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - François Audibert
- Department of Obstetrics and Gynecology, Sainte Justine Hospital, Montreal, Canada
| | - David-Gradus van den Berg
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Québec City, Quebec, Canada
| | - Hazar Haidar
- Bioethics Program, Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - François Rousseau
- Department of Medical Biology, Centre Hospitalier Universitaire de Québec, Québec City, Quebec, Canada ; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec City, Quebec, Canada
| |
Collapse
|
32
|
Banch Clausen F, Steffensen R, Christiansen M, Rudby M, Jakobsen MA, Jakobsen TR, Krog GR, Madsen RD, Nielsen KR, Rieneck K, Sprogøe U, Homburg KM, Baech J, Dziegiel MH, Grunnet N. Routine noninvasive prenatal screening for fetalRHDin plasma of RhD-negative pregnant women-2 years of screening experience from Denmark. Prenat Diagn 2014; 34:1000-5. [DOI: 10.1002/pd.4419] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/20/2022]
Affiliation(s)
- F. Banch Clausen
- Department of Clinical Immunology; Copenhagen University Hospital; Copenhagen Denmark
| | - R. Steffensen
- Department of Clinical Immunology; Aalborg University Hospital; Aalborg Denmark
| | - M. Christiansen
- Department of Clinical Immunology; Aarhus University Hospital; Skejby Aarhus Denmark
| | - M. Rudby
- Department of Clinical Immunology; Naestved Hospital; Naestved Denmark
| | - M. A. Jakobsen
- Department of Clinical Immunology; Odense University Hospital; Odense Denmark
| | - T. R. Jakobsen
- Department of Obstetrics and Gynecology; Copenhagen University Hospital; Copenhagen Denmark
| | - G. R. Krog
- Department of Clinical Immunology; Copenhagen University Hospital; Copenhagen Denmark
| | - R. D. Madsen
- Department of Clinical Immunology; Aarhus University Hospital; Skejby Aarhus Denmark
| | - K. R. Nielsen
- Department of Clinical Immunology; Aalborg University Hospital; Aalborg Denmark
| | - K. Rieneck
- Department of Clinical Immunology; Copenhagen University Hospital; Copenhagen Denmark
| | - U. Sprogøe
- Department of Clinical Immunology; Odense University Hospital; Odense Denmark
| | - K. M. Homburg
- Department of Clinical Immunology; Naestved Hospital; Naestved Denmark
| | - J. Baech
- Department of Clinical Immunology; Aalborg University Hospital; Aalborg Denmark
| | - M. H. Dziegiel
- Department of Clinical Immunology; Copenhagen University Hospital; Copenhagen Denmark
| | - N. Grunnet
- Department of Clinical Immunology; Aarhus University Hospital; Skejby Aarhus Denmark
| |
Collapse
|
33
|
Chiu RWK, Lo YMD. Clinical applications of maternal plasma fetal DNA analysis: translating the fruits of 15 years of research. Clin Chem Lab Med 2014; 51:197-204. [PMID: 23072857 DOI: 10.1515/cclm-2012-0601] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/06/2023]
Abstract
The collection of fetal genetic materials is required for the prenatal diagnosis of fetal genetic diseases. The conventional methods for sampling fetal genetic materials, such as amniocentesis and chorionic villus sampling, are invasive in nature and are associated with a risk of fetal miscarriage. For decades, scientists had been pursuing studies with goals to develop non-invasive methods for prenatal diagnosis. In 1997, the existence of fetal derived cell-free DNA molecules in plasma of pregnant women was first demonstrated. This finding provided a new source of fetal genetic material that could be obtained safely through the collection of a maternal blood sample and provided a new avenue for the development of non-invasive prenatal diagnostic tests. Now 15 years later, the diagnostic potential of circulating fetal DNA analysis has been realized. Fruitful research efforts have resulted in the clinical implementation of a number of non-invasive prenatal tests based on maternal plasma DNA analysis and included tests for fetal sex assessment, fetal rhesus D blood group genotyping and fetal chromosomal aneuploidy detection. Most recently, research groups have succeeded in decoding the entire fetal genome from maternal plasma DNA analysis which paved the way for the achievement of non-invasive prenatal diagnosis of many single gene diseases. A paradigm shift in the practice of prenatal diagnosis has begun.
Collapse
Affiliation(s)
- Rossa Wai Kwun Chiu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, P.R. China.
| | | |
Collapse
|
34
|
Abstract
Genotyping tumor tissue in search of somatic genetic alterations for actionable information has become routine practice in clinical oncology. Although these sequence alterations are highly informative, sampling tumor tissue has significant inherent limitations; tumor tissue is a single snapshot in time, is subject to selection bias resulting from tumor heterogeneity, and can be difficult to obtain. Cell-free fragments of DNA are shed into the bloodstream by cells undergoing apoptosis or necrosis, and the load of circulating cell-free DNA (cfDNA) correlates with tumor staging and prognosis. Moreover, recent advances in the sensitivity and accuracy of DNA analysis have allowed for genotyping of cfDNA for somatic genomic alterations found in tumors. The ability to detect and quantify tumor mutations has proven effective in tracking tumor dynamics in real time as well as serving as a liquid biopsy that can be used for a variety of clinical and investigational applications not previously possible.
Collapse
Affiliation(s)
- Luis A Diaz
- Luis A. Diaz Jr, Swim Across America Laboratory and Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD; and Alberto Bardelli, Institute for Cancer Research and Treatment at Candiolo, University of Torino, Candiolo, and the Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
35
|
Marzese DM, Hirose H, Hoon DSB. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn 2014; 13:827-44. [DOI: 10.1586/14737159.2013.845088] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
|
37
|
Intrauterine Diagnosis of Genodermatoses. CURRENT DERMATOLOGY REPORTS 2013. [DOI: 10.1007/s13671-013-0060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A 2013; 110:18761-8. [PMID: 24191000 DOI: 10.1073/pnas.1313995110] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We explored the detection of genome-wide hypomethylation in plasma using shotgun massively parallel bisulfite sequencing as a marker for cancer. Tumor-associated copy number aberrations (CNAs) could also be observed from the bisulfite DNA sequencing data. Hypomethylation and CNAs were detected in the plasma DNA of patients with hepatocellular carcinoma, breast cancer, lung cancer, nasopharyngeal cancer, smooth muscle sarcoma, and neuroendocrine tumor. For the detection of nonmetastatic cancer cases, plasma hypomethylation gave a sensitivity and specificity of 74% and 94%, respectively, when a mean of 93 million reads per case were obtained. Reducing the sequencing depth to 10 million reads per case was found to have no adverse effect on the sensitivity and specificity for cancer detection, giving respective figures of 68% and 94%. This characteristic thus indicates that analysis of plasma hypomethylation by this sequencing-based method may be a relatively cost-effective approach for cancer detection. We also demonstrated that plasma hypomethylation had utility for monitoring hepatocellular carcinoma patients following tumor resection and for detecting residual disease. Plasma hypomethylation can be combined with plasma CNA analysis for further enhancement of the detection sensitivity or specificity using different diagnostic algorithms. Using the detection of at least one type of aberration to define an abnormality, a sensitivity of 87% could be achieved with a specificity of 88%. These developments have thus expanded the applications of plasma DNA analysis for cancer detection and monitoring.
Collapse
|
39
|
Lee DE, Kim SY, Lim JH, Park SY, Ryu HM. Non-invasive prenatal testing of trisomy 18 by an epigenetic marker in first trimester maternal plasma. PLoS One 2013; 8:e78136. [PMID: 24223769 PMCID: PMC3815335 DOI: 10.1371/journal.pone.0078136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/09/2013] [Indexed: 12/14/2022] Open
Abstract
Background Quantification of cell-free fetal DNA by methylation-based DNA discrimination has been used in non-invasive prenatal testing of fetal chromosomal aneuploidy. The maspin (Serpin peptidase inhibitor, clade B (ovalbumin), member 5; SERPINB5) gene, located on chromosome 18q21.33, is hypomethylated in the placenta and completely methylated in maternal blood cells. The objective of this study was to evaluate the accuracy of non-invasive detection of fetal trisomy 18 using the unmethylated-maspin (U-maspin) gene as a cell-free fetal DNA marker and the methylated-maspin (M-maspin) gene as a cell-free total DNA marker in the first trimester of pregnancy. Methodology/Principal Findings A nested case-control study was conducted using maternal plasma collected from 66 pregnant women, 11 carrying fetuses with trisomy 18 and 55 carrying normal fetuses. Median U-maspin concentrations were significantly elevated in women with trisomy 18 fetuses compared with controls (27.2 vs. 6.7 copies/mL; P<0.001). Median M-maspin concentrations were also significantly higher in women with trisomy 18 fetuses than in controls (96.9 vs. 19.5 copies/mL, P<0.001). The specificities of U-maspin and M-maspin concentrations for non-invasive fetal trisomy 18 detection were 96.4% and 74.5%, respectively, with a sensitivity of 90.9%. Conclusions Our results suggest that U-maspin and M-maspin concentrations may be useful as potential biomarkers for non-invasive detection of fetal trisomy 18 in the first trimester of pregnancy, irrespective of the sex and genetic variations of the fetus.
Collapse
Affiliation(s)
- Da Eun Lee
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women’s Healthcare Center, Seoul, Korea
| | - Shin Young Kim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women’s Healthcare Center, Seoul, Korea
| | - Ji Hyae Lim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women’s Healthcare Center, Seoul, Korea
| | - So Yeon Park
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women’s Healthcare Center, Seoul, Korea
| | - Hyun Mee Ryu
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women’s Healthcare Center, Seoul, Korea
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women’s Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
40
|
Pre-analytical conditions in non-invasive prenatal testing of cell-free fetal RHD. PLoS One 2013; 8:e76990. [PMID: 24204719 PMCID: PMC3800077 DOI: 10.1371/journal.pone.0076990] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 02/03/2023] Open
Abstract
Background Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening. Methods Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110) and ambient outdoor temperatures (n = 1539) on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104). Results The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10°C to 28°C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10–39, n = 1317). Conclusion The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification.
Collapse
|
41
|
Etheridge A, Gomes CPC, Pereira RW, Galas D, Wang K. The complexity, function and applications of RNA in circulation. Front Genet 2013; 4:115. [PMID: 23785385 PMCID: PMC3684799 DOI: 10.3389/fgene.2013.00115] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023] Open
Abstract
Blood carries a wide array of biomolecules, including nutrients, hormones, and molecules that are secreted by cells for specific biological functions. The recent finding of stable RNA of both endogenous and exogenous origin in circulation raises a number of questions and opens a broad, new field: exploring the origins, functions, and applications of these extracellular RNA molecules. These findings raise many important questions, including: what are the mechanisms of export and cellular uptake, what is the nature and source of their stability, what molecules do they interact with in the blood, and what are the possible biological functions of the circulating RNA? This review summarizes some key recent developments in circulating RNA research and discusses some of the open questions in the field.
Collapse
Affiliation(s)
- Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle WA, USA
| | | | | | | | | |
Collapse
|
42
|
Ma Y, Gong H, Wen Y. Nucleic acid-based non-invasive prenatal diagnosis of genetic skin diseases: are we ready? Exp Dermatol 2013; 22:392-5. [PMID: 23711062 DOI: 10.1111/exd.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 01/02/2023]
Abstract
The discovery of circulating fetal nucleic acids is a great step on the way of developing non-invasive prenatal diagnosis (NIPD) for genetic disorders. Here, we briefly discuss the current applications of circulating fetal nucleic acids in genetic testing for different kinds of hereditary diseases with an emphasis on using circulating cell-free fetal DNA in diagnosis of monogenic disorders. As the genetic skin disorders impair the quality of life at different levels, we next discuss some ethical issues in NIPD for genetic skin diseases of various severities and in particular, the responsibility of doctors and parents, respectively, in the prenatal genetic testing.
Collapse
Affiliation(s)
- Yonghui Ma
- Institute for Science, Ethics and Innovation, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
43
|
Yu SCY, Jiang P, Choy KW, Chan KCA, Won HS, Leung WC, Lau ET, Tang MHY, Leung TY, Lo YMD, Chiu RWK. Noninvasive prenatal molecular karyotyping from maternal plasma. PLoS One 2013; 8:e60968. [PMID: 23613765 PMCID: PMC3629174 DOI: 10.1371/journal.pone.0060968] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Fetal DNA is present in the plasma of pregnant women. Massively parallel sequencing of maternal plasma DNA has been used to detect fetal trisomies 21, 18, 13 and selected sex chromosomal aneuploidies noninvasively. Case reports describing the detection of fetal microdeletions from maternal plasma using massively parallel sequencing have been reported. However, these previous reports were either polymorphism-dependent or used statistical analyses which were confined to one or a small number of selected parts of the genome. In this report, we reported a procedure for performing noninvasive prenatal karyotyping at 3 Mb resolution across the whole genome through the massively parallel sequencing of maternal plasma DNA. This method has been used to analyze the plasma obtained from 6 cases. In three cases, fetal microdeletions have been detected successfully from maternal plasma. In two cases, fetal microduplications have been detected successfully from maternal plasma. In the remaining case, the plasma DNA sequencing result was consistent with the pregnant mother being a carrier of a microduplication. Simulation analyses were performed for determining the number of plasma DNA molecules that would need to be sequenced and aligned for enhancing the diagnostic resolution of noninvasive prenatal karyotyping to 2 Mb and 1 Mb. In conclusion, noninvasive prenatal molecular karyotyping from maternal plasma by massively parallel sequencing is feasible and would enhance the diagnostic spectrum of noninvasive prenatal testing.
Collapse
Affiliation(s)
- Stephanie C. Y. Yu
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kwong W. Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kwan Chee Allen Chan
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Hye-Sung Won
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | - Elizabeth T. Lau
- Tsan Yuk Hospital, Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Mary H. Y. Tang
- Tsan Yuk Hospital, Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Tak Y. Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Ming Dennis Lo
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W. K. Chiu
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
44
|
Berryessa CM, Cho MK. Ethical, legal, social, and policy implications of behavioral genetics. Annu Rev Genomics Hum Genet 2013; 14:515-34. [PMID: 23452225 DOI: 10.1146/annurev-genom-090711-163743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The field of behavioral genetics has engendered a host of moral and social concerns virtually since its inception. The policy implications of a genetic basis for behaviors are widespread and extend beyond the clinic to the socially important realms of education, criminal justice, childbearing, and child rearing. The development of new techniques and analytic approaches, including whole-genome sequencing, noninvasive prenatal genetic testing, and optogenetics, has clearly changed the study of behavioral genetics. However, the social context of biomedical research has also changed profoundly over the past few decades, and in ways that are especially relevant to behavioral genetics. The ever-widening scope of behavioral genetics raises ethical, legal, social, and policy issues in the potential new applications to criminal justice, education, the military, and reproduction. These issues are especially critical to address because of their potentially disproportionate effects on vulnerable populations such as children, the unborn, and the incarcerated.
Collapse
|
45
|
Mersy E, Smits LJM, van Winden LAAP, de Die-Smulders CEM, Paulussen ADC, Macville MVE, Coumans ABC, Frints SGM. Noninvasive detection of fetal trisomy 21: systematic review and report of quality and outcomes of diagnostic accuracy studies performed between 1997 and 2012. Hum Reprod Update 2013; 19:318-29. [PMID: 23396607 DOI: 10.1093/humupd/dmt001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Research on noninvasive prenatal testing (NIPT) of fetal trisomy 21 is developing fast. Commercial tests have become available. To provide an up-to-date overview of NIPT of trisomy 21, an evaluation of the methodological quality and outcomes of diagnostic accuracy studies was made. METHODS We undertook a systematic review of the literature published between 1997 and 2012 after searching PubMed, using MeSH terms 'RNA', 'DNA' and 'Down Syndrome' in combination with 'cell-free fetal (cff) RNA', 'cffDNA', 'trisomy 21' and 'noninvasive prenatal diagnosis' and searching reference lists of reported literature. From 79 abstracts, 16 studies were included as they evaluated the diagnostic accuracy of a molecular technique for NIPT of trisomy 21, and the test sensitivity and specificity were reported. Meta-analysis could not be performed due to the use of six different molecular techniques and different cutoff points. Diagnostic parameters were derived or calculated, and possible bias and applicability were evaluated utilizing the revised tool for Quality Assessment of Diagnostic Accuracy (QUADAS-2). RESULTS Seven of the included studies were recently published in large cohort studies that examined massively parallel sequencing (MPS), with or without pre-selection of chromosomes, and reported sensitivities between 98.58% [95% confidence interval (CI) 95.9-99.5%] and 100% (95% CI 96-100%) and specificities between 97.95% (95% CI 94.1-99.3%) and 100% (95% CI 99.1-100%). None of these seven large studies had an overall low risk of bias and low concerns regarding applicability. MPS with or without pre-selection of chromosomes exhibits an excellent negative predictive value (100%) in conditions with disease odds from 1:1500 to 1:200. However, positive predictive values were lower, even in high-risk pregnancies (19.7-100%). The other nine cohort studies were too small to give precise estimates (number of trisomy 21 cases: ≤25) and were not included in the discussion. CONCLUSIONS NIPT of trisomy 21 by MPS with or without pre-selection of chromosomes is promising and likely to replace the prenatal serum screening test that is currently combined with nuchal translucency measurement in the first trimester of pregnancy. Before NIPT can be introduced as a screening test in a social insurance health-care system, more evidence is needed from large prospective diagnostic accuracy studies in first trimester pregnancies. Moreover, we believe further assessment, of whether NIPT can be provided in a cost-effective, timely and equitable manner for every pregnant woman, is required.
Collapse
Affiliation(s)
- E Mersy
- Department of Clinical Genetics, Reproductive Genetics, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qu JZZ, Leung TY, Jiang P, Liao GJW, Cheng YKY, Sun H, Chiu RWK, Chan KCA, Lo YMD. Noninvasive Prenatal Determination of Twin Zygosity by Maternal Plasma DNA Analysis. Clin Chem 2013; 59:427-35. [DOI: 10.1373/clinchem.2012.194068] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND
The current methods for distinguishing the zygosities of twins include ultrasound scanning, which is nondefinitive, and amniocentesis, which is invasive. We explored the use of massively parallel sequencing of maternal plasma DNA for the noninvasive prenatal assessment of the zygosities of twin pregnancies.
METHODS
Plasma DNA was extracted from blood collected from 8 women pregnant with twins. Target enrichment and massively parallel sequencing were performed for each plasma DNA library. Apparent fractional fetal DNA concentrations were calculated for multiple genomic regions by determining the ratio of minor to major alleles among single-nucleotide polymorphism sites. Variations in the apparent fractional fetal DNA concentrations between genomic regions were used to infer whether individual fetuses in a twin pair were genotypically different and hence dizygotic.
RESULTS
The extent of the variation in the apparent fractional fetal DNA concentration across chromosomes was 0.82–1.35 SDs for monozygotic twin pregnancies and 2.42–4.80 SDs for dizygotic twin pregnancies. The proportions of apparent fractional fetal DNA concentration values that deviated beyond the range expected for stochastic variation were 0.00%–1.93% for monozygotic twin pregnancies and 36.2%–78.1% for dizygotic twin pregnancies. After identifying a pair of twins as likely dizygotic, the method also allowed determination of the fractional fetal DNA concentrations contributed by the individual fetuses of a dizygotic twin pair.
CONCLUSIONS
Noninvasive prenatal determination of twin zygosity by maternal plasma DNA sequencing is feasible. It is also possible to determine the relative fractional fetal DNA concentrations for each fetus for dizygotic twin pregnancies.
Collapse
Affiliation(s)
- James ZZ Qu
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Tak Y Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Gary JW Liao
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Yvonne KY Cheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hao Sun
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Rossa WK Chiu
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - KC Allen Chan
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - YM Dennis Lo
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| |
Collapse
|
47
|
Wei Y, Xu F, Li P. Technology-Driven and Evidence-Based Genomic Analysis for Integrated Pediatric and Prenatal Genetics Evaluation. J Genet Genomics 2013; 40:1-14. [DOI: 10.1016/j.jgg.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
|
48
|
Chan KCA, Jiang P, Zheng YWL, Liao GJW, Sun H, Wong J, Siu SSN, Chan WC, Chan SL, Chan ATC, Lai PBS, Chiu RWK, Lo YMD. Cancer Genome Scanning in Plasma: Detection of Tumor-Associated Copy Number Aberrations, Single-Nucleotide Variants, and Tumoral Heterogeneity by Massively Parallel Sequencing. Clin Chem 2013; 59:211-24. [DOI: 10.1373/clinchem.2012.196014] [Citation(s) in RCA: 395] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND
Tumor-derived DNA can be found in the plasma of cancer patients. In this study, we explored the use of shotgun massively parallel sequencing (MPS) of plasma DNA from cancer patients to scan a cancer genome noninvasively.
METHODS
Four hepatocellular carcinoma patients and a patient with synchronous breast and ovarian cancers were recruited. DNA was extracted from the tumor tissues, and the preoperative and postoperative plasma samples of these patients were analyzed with shotgun MPS.
RESULTS
We achieved the genomewide profiling of copy number aberrations and point mutations in the plasma of the cancer patients. By detecting and quantifying the genomewide aggregated allelic loss and point mutations, we determined the fractional concentrations of tumor-derived DNA in plasma and correlated these values with tumor size and surgical treatment. We also demonstrated the potential utility of this approach for the analysis of complex oncologic scenarios by studying the patient with 2 synchronous cancers. Through the use of multiregional sequencing of tumoral tissues and shotgun sequencing of plasma DNA, we have shown that plasma DNA sequencing is a valuable approach for studying tumoral heterogeneity.
CONCLUSIONS
Shotgun DNA sequencing of plasma is a potentially powerful tool for cancer detection, monitoring, and research.
Collapse
Affiliation(s)
- KC Allen Chan
- Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology
- State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology
| | - Yama WL Zheng
- Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology
| | - Gary JW Liao
- Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology
| | | | - Shing Shun N Siu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wing C Chan
- Department of Surgery, North District Hospital, Sheung Shui, New Territories, Hong Kong SAR, China
| | - Stephen L Chan
- State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Anthony TC Chan
- State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | | | - Rossa WK Chiu
- Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology
| | - YMD Lo
- Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology
- State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer
| |
Collapse
|
49
|
Tsui NBY, Jiang P, Chow KCK, Su X, Leung TY, Sun H, Chan KCA, Chiu RWK, Lo YMD. High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS One 2012; 7:e48319. [PMID: 23118982 PMCID: PMC3485143 DOI: 10.1371/journal.pone.0048319] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background Fetal DNA in maternal urine, if present, would be a valuable source of fetal genetic material for noninvasive prenatal diagnosis. However, the existence of fetal DNA in maternal urine has remained controversial. The issue is due to the lack of appropriate technology to robustly detect the potentially highly degraded fetal DNA in maternal urine. Methodology We have used massively parallel paired-end sequencing to investigate cell-free DNA molecules in maternal urine. Catheterized urine samples were collected from seven pregnant women during the third trimester of pregnancies. We detected fetal DNA by identifying sequenced reads that contained fetal-specific alleles of the single nucleotide polymorphisms. The sizes of individual urinary DNA fragments were deduced from the alignment positions of the paired reads. We measured the fractional fetal DNA concentration as well as the size distributions of fetal and maternal DNA in maternal urine. Principal Findings Cell-free fetal DNA was detected in five of the seven maternal urine samples, with the fractional fetal DNA concentrations ranged from 1.92% to 4.73%. Fetal DNA became undetectable in maternal urine after delivery. The total urinary cell-free DNA molecules were less intact when compared with plasma DNA. Urinary fetal DNA fragments were very short, and the most dominant fetal sequences were between 29 bp and 45 bp in length. Conclusions With the use of massively parallel sequencing, we have confirmed the existence of transrenal fetal DNA in maternal urine, and have shown that urinary fetal DNA was heavily degraded.
Collapse
Affiliation(s)
- Nancy B Y Tsui
- Centre for Research into Circulating Fetal Nucleic Acids, Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | |
Collapse
|