1
|
Macadangdang BR, Wang Y, Woodward C, Revilla JI, Shaw BM, Sasaninia K, Makanani SK, Berruto C, Ahuja U, Miller JF. Targeted protein evolution in the gut microbiome by diversity-generating retroelements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.621889. [PMID: 39605476 PMCID: PMC11601372 DOI: 10.1101/2024.11.15.621889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Diversity-generating retroelements (DGRs) accelerate evolution by rapidly diversifying variable proteins. The human gastrointestinal microbiota harbors the greatest density of DGRs known in nature, suggesting they play adaptive roles in this environment. We identified >1,100 unique DGRs among human-associated Bacteroides species and discovered a subset that diversify adhesive components of Type V pili and related proteins. We show that Bacteroides DGRs are horizontally transferred across species, that some are highly active while others are tightly controlled, and that they preferentially alter the functional characteristics of ligand-binding residues on adhesive organelles. Specific variable protein sequences are enriched when Bacteroides strains compete with other commensal bacteria in gnotobiotic mice. Analysis of >2,700 DGRs from diverse phyla in mother-infant pairs shows that Bacteroides DGRs are preferentially transferred to vaginally delivered infants where they actively diversify. Our observations provide a foundation for understanding the roles of stochastic, targeted genome plasticity in shaping host-associated microbial communities.
Collapse
Affiliation(s)
- Benjamin R. Macadangdang
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Yanling Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Cora Woodward
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Jessica I. Revilla
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bennett M. Shaw
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kayvan Sasaninia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Sara K. Makanani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chiara Berruto
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Umesh Ahuja
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Jeff F. Miller
- California NanoSystems Institute, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Lead contact
| |
Collapse
|
2
|
Mayo-Muñoz D, Li H, Mestre MR, Pinilla-Redondo R. The role of noncoding RNAs in bacterial immunity. Trends Microbiol 2024:S0966-842X(24)00250-6. [PMID: 39396887 DOI: 10.1016/j.tim.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Huijuan Li
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Monteagudo-Cascales E, Gumerov VM, Fernández M, Matilla MA, Gavira JA, Zhulin IB, Krell T. Ubiquitous purine sensor modulates diverse signal transduction pathways in bacteria. Nat Commun 2024; 15:5867. [PMID: 38997289 PMCID: PMC11245519 DOI: 10.1038/s41467-024-50275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Purines and their derivatives control intracellular energy homeostasis and nucleotide synthesis, and act as signaling molecules. Here, we combine structural and sequence information to define a purine-binding motif that is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism, and second-messenger turnover. Microcalorimetric titrations of selected sensor domains validate their ability to specifically bind purine derivatives, and evolutionary analyses indicate that purine sensors share a common ancestor with amino-acid receptors. Furthermore, we provide experimental evidence of physiological relevance of purine sensing in a second-messenger signaling system that modulates c-di-GMP levels.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain
| | - Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Matilde Fernández
- Department of Microbiology, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies (CSIC-UGR), Avenida de las Palmeras 4, 18100, Armilla, Spain
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
4
|
Handa S, Biswas T, Chakraborty J, Ghosh G, Paul BG, Ghosh P. Structural Requirements for Reverse Transcription by a Diversity-generating Retroelement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563531. [PMID: 37961358 PMCID: PMC10634737 DOI: 10.1101/2023.10.23.563531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diversity-generating retroelements (DGRs) create massive protein sequence variation in ecologically diverse microbes. Variation occurs during reverse transcription of a protein-encoding RNA template coupled to misincorporation at adenosines. In the prototypical Bordetella bacteriophage DGR, the template must be surrounded by upstream and downstream RNA segments for cDNA synthesis by the reverse transcriptase bRT and associated protein Avd. The function of the surrounding RNA was unknown. Cryo-EM revealed that this RNA enveloped bRT and lay over barrel-shaped Avd, forming an intimate ribonucleoprotein (RNP). An abundance of essential interactions between RNA structural elements and bRT-Avd precisely positioned an RNA homoduplex for initiation of cDNA synthesis by cis -priming. Our results explain how the surrounding RNA primes cDNA synthesis, promotes processivity, terminates polymerization, and strictly limits mutagenesis to select proteins through mechanisms that are likely conserved in DGRs from distant taxa.
Collapse
|
5
|
Doré H, Eisenberg AR, Junkins EN, Leventhal GE, Ganesh A, Cordero OX, Paul BG, Valentine DL, O’Malley MA, Wilbanks EG. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc Natl Acad Sci U S A 2024; 121:e2316469121. [PMID: 38354254 PMCID: PMC10907252 DOI: 10.1073/pnas.2316469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Diversity-generating retroelements (DGRs) are used by bacteria, archaea, and viruses as a targeted mutagenesis tool. Through error-prone reverse transcription, DGRs introduce random mutations at specific genomic loci, enabling rapid evolution of these targeted genes. However, the function and benefits of DGR-diversified proteins in cellular hosts remain elusive. We find that 82% of DGRs from one of the major monophyletic lineages of DGR reverse transcriptases are encoded by multicellular bacteria, which often have two or more DGR loci in their genomes. Using the multicellular purple sulfur bacterium Thiohalocapsa sp. PB-PSB1 as an example, we characterized nine distinct DGR loci capable of generating 10282 different combinations of target proteins. With environmental metagenomes from individual Thiohalocapsa aggregates, we show that most of PB-PSB1's DGR target genes are diversified across its biogeographic range, with spatial heterogeneity in the diversity of each locus. In Thiohalocapsa PB-PSB1 and other bacteria hosting this lineage of cellular DGRs, the diversified target genes are associated with NACHT-domain anti-phage defenses and putative ternary conflict systems previously shown to be enriched in multicellular bacteria. We propose that these DGR-diversified targets act as antigen sensors that confer a form of adaptive immunity to their multicellular consortia, though this remains to be experimentally tested. These findings could have implications for understanding the evolution of multicellularity, as the NACHT-domain anti-phage systems and ternary systems share both domain homology and conceptual similarities with the innate immune and programmed cell death pathways of plants and metazoans.
Collapse
Affiliation(s)
- H. Doré
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - A. R. Eisenberg
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| | - E. N. Junkins
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - G. E. Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - O. X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - B. G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - D. L. Valentine
- Department of Earth Science, University of California, Santa Barbara, CA93106
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - M. A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| | - E. G. Wilbanks
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
6
|
Matilla MA, Krell T. Sensing the environment by bacterial plant pathogens: What do their numerous chemoreceptors recognize? Microb Biotechnol 2024; 17:e14368. [PMID: 37929806 PMCID: PMC10832524 DOI: 10.1111/1751-7915.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
Bacteria have evolved multiple sensing strategies to efficiently adapt to their natural hosts and environments. In the context of plant pathology, chemotaxis allows phytopathogenic bacteria to direct their movement towards hosts through the detection of a landscape of plant-derived molecules, facilitating the initiation of the infective process. The importance of chemotaxis for the lifestyle of phytopathogens is also reflected in the fact that they have, on average, twice as many chemoreceptors as bacteria that do not interact with plants. Paradoxically, the knowledge about the function of plant pathogen chemoreceptors is scarce. Notably, many of these receptors seem to be specific to plant-interacting bacteria, suggesting that they may recognize plant-specific compounds. Here, we highlight the need to advance our knowledge of phytopathogen chemoreceptor function, which may serve as a base for the development of anti-infective therapies for the control of phytopathogens.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Tino Krell
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
7
|
Arkhipova IR, Burns KH, Chiappinelli KB, Chuong EB, Goubert C, Guarné A, Larracuente AM, Lee EA, Levin HL. Meeting report: transposable elements at the crossroads of evolution, health and disease 2023. Mob DNA 2023; 14:19. [PMID: 38012685 PMCID: PMC10680173 DOI: 10.1186/s13100-023-00307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
The conference "Transposable Elements at the Crossroads of Evolution, Health and Disease" was hosted by Keystone Symposia in Whistler, British Columbia, Canada, on September 3-6, 2023, and was organized by Kathleen Burns, Harmit Malik and Irina Arkhipova. The central theme of the meeting was the incredible diversity of ways in which transposable elements (TEs) interact with the host, from disrupting the existing genes and pathways to creating novel gene products and expression patterns, enhancing the repertoire of host functions, and ultimately driving host evolution. The meeting was organized into six plenary sessions and two afternoon workshops with a total of 50 invited and contributed talks, two poster sessions, and a career roundtable. The topics ranged from TE roles in normal and pathological processes to restricting and harnessing TE activity based on mechanistic insights gained from genetic, structural, and biochemical studies.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Clement Goubert
- McGill Genome Centre, Department of Human Genomics, Canadian Centre for Computational Genomics, McGill University, Montréal, Canada
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Alba Guarné
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, H3G 0B1, Canada
| | | | - E Alice Lee
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Henry L Levin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Medvedeva S, Borrel G, Krupovic M, Gribaldo S. A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment. Nat Microbiol 2023; 8:2170-2182. [PMID: 37749252 DOI: 10.1038/s41564-023-01485-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Methanogenic archaea are major producers of methane, a potent greenhouse gas and biofuel, and are widespread in diverse environments, including the animal gut. The ecophysiology of methanogens is likely impacted by viruses, which remain, however, largely uncharacterized. Here we carried out a global investigation of viruses associated with all current diversity of methanogens by assembling an extensive CRISPR database consisting of 156,000 spacers. We report 282 high-quality (pro)viral and 205 virus-like/plasmid sequences assigned to hosts belonging to ten main orders of methanogenic archaea. Viruses of methanogens can be classified into 87 families, underscoring a still largely undiscovered genetic diversity. Viruses infecting gut-associated archaea provide evidence of convergence in adaptation with viruses infecting gut-associated bacteria. These viruses contain a large repertoire of lysin proteins that cleave archaeal pseudomurein and are enriched in glycan-binding domains (Ig-like/Flg_new) and diversity-generating retroelements. The characterization of this vast repertoire of viruses paves the way towards a better understanding of their role in regulating methanogen communities globally, as well as the development of much-needed genetic tools.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Unit Archaeal Virology, Paris, France.
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| |
Collapse
|
9
|
Monteagudo-Cascales E, Gumerov VM, Fernández M, Matilla MA, Gavira JA, Zhulin IB, Krell T. Ubiquitous purine sensor modulates diverse signal transduction pathways in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564149. [PMID: 37961346 PMCID: PMC10634846 DOI: 10.1101/2023.10.26.564149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purines and their derivatives are key molecules for controlling intracellular energy homeostasis and nucleotide synthesis. In eukaryotes, including humans, purines also act as signaling molecules that mediate extracellular communication and control key cellular processes, such as proliferation, migration, differentiation, and apoptosis. However, the signaling role of purines in bacteria is largely unknown. Here, by combining structural and sequence information, we define a purine-binding motif, which is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism and second messenger turnover. The screening of compound libraries and microcalorimetric titrations of selected sensor domains validated their ability to specifically bind purine derivatives. The physiological relevance of purine sensing was demonstrated in a second messenger signaling system that modulates c-di-GMP levels.
Collapse
|
10
|
Deng P, Tan SQ, Yang QY, Fu L, Wu Y, Zhu HZ, Sun L, Bao Z, Lin Y, Zhang QC, Wang H, Wang J, Liu JJG. Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon. Cell 2023; 186:2865-2879.e20. [PMID: 37301196 DOI: 10.1016/j.cell.2023.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.
Collapse
Affiliation(s)
- Pujuan Deng
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shun-Qing Tan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi-Yu Yang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liangzheng Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Zhou Zhu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhangbin Bao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yi Lin
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jun-Jie Gogo Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Colizzi ES, van Dijk B, Merks RMH, Rozen DE, Vroomans RMA. Evolution of genome fragility enables microbial division of labor. Mol Syst Biol 2023; 19:e11353. [PMID: 36727665 PMCID: PMC9996244 DOI: 10.15252/msb.202211353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK
| | - Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Renske M A Vroomans
- Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK.,Informatic Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria. mBio 2023; 14:e0336322. [PMID: 36602305 PMCID: PMC9973260 DOI: 10.1128/mbio.03363-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Collapse
|