1
|
Pan DN, Hoid D, Wolf OT, Merz CJ, Li X. Conflict Dynamics of Post-Retrieval Extinction: A Comparative Analysis of Unconditional and Conditional Reminders Using Skin Conductance Responses and EEG. Brain Topogr 2024; 37:834-848. [PMID: 38635017 DOI: 10.1007/s10548-024-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The post-retrieval extinction paradigm, rooted in reconsolidation theory, holds promise for enhancing extinction learning and addressing anxiety and trauma-related disorders. This study investigates the impact of two reminder types, mild US-reminder (US-R) and CS-reminder (CS-R), along with a no-reminder extinction, on fear recovery prevention in a categorical fear conditioning paradigm. Scalp EEG recordings during reminder and extinction processes were conducted in a three-day design. Results show that the US-R group exhibits a distinctive extinction learning pattern, characterized by a slowed-down yet successful process and pronounced theta-alpha desynchronization (source-located in the prefrontal cortex) during CS processing, followed by enhanced synchronization (source-located in the anterior cingulate) after shock cancellation in extinction trials. These neural dynamics correlate with the subtle advantage of US-R in the Day 3 recovery test, presenting faster spontaneous recovery fading and generally lower fear reinstatement responses. Conversely, the CS reminder elicits CS-specific effects in later episodic tests. The unique neural features of the US-R group suggest a larger prediction error and subsequent effortful conflict learning processes, warranting further exploration.
Collapse
Affiliation(s)
- Dong-Ni Pan
- School of Psychology, Beijing Language and Culture University, Beijing, 100083, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Delhii Hoid
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 100083, China
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Xuebing Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
2
|
Song Y, Zhao S, Rong M, Liu Y, Gao Y, Chen W, Zhang D, Zheng X. The Impact of Continuous and Partial Reinforcement on the Acquisition and Generalization of Human-Conditioned Fear. Behav Sci (Basel) 2024; 14:630. [PMID: 39199026 PMCID: PMC11351138 DOI: 10.3390/bs14080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Fear over-generalization as a core symptom of anxiety disorders is manifested by fear responses even to safe stimuli that are very dissimilar to the original dangerous stimulus. The present study investigated the effects of two separate conditioned stimuli-unconditioned stimuli (CS-US) pairing procedures on fear acquisition and generalization using a perceptual discrimination fear-conditioning paradigm, with US expectancy ratings and skin conductance response (SCR) as indicators. One group accepted continuous followed by partial CS-US pairings (C-P group); the other group accepted partial followed by continuous CS-US pairings (P-C group). It was found that compared to the P-C group, the C-P group showed stronger perceptual discrimination of CS+ and CS- in the fear acquisition and showed weaker SCRs and stronger extinction of US expectancy in the generalization. These findings emphasize that CS-US pairings significantly influence fear acquisition and generalization and suggest that continuous-following partial CS-US pairings promote individual discrimination of threat and safety signals and inhibit the generalization of conditioned fear. The results of this study have implications for clinical interventions for patients experiencing negative events.
Collapse
Affiliation(s)
- Yidan Song
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Shaochen Zhao
- Research Center for Guangdong-HongKong-Marcao Policing Model Innovation, China People’s Police University, Guangzhou 510663, China
| | - Muxin Rong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Ying Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Yu Gao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Wei Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Donghuan Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xifu Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Tiunova AA, Bezriadnov DV, Anokhin KV. Non-competitive NMDA antagonist MK-801 prevents memory reconsolidation impairment caused by protein synthesis inhibitors in young chicks. Front Pharmacol 2024; 15:1378612. [PMID: 39027332 PMCID: PMC11254664 DOI: 10.3389/fphar.2024.1378612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction: Reactivation of already consolidated memory can initiate its destabilization, making the memory trace labile. Normally, this destabilization is followed by reconsolidation of the memory trace, enriched by newly acquired experience. Disrupting the reconsolidation process, for example, by inhibiting protein synthesis, impairs subsequent memory retrieval, leading to reminder-related amnesia. Previous studies in various species have shown that this impairment can be prevented by using NMDA receptor antagonists, which interfere with memory destabilization. Methods: In the present study we examined this phenomenon using a one-trial passive avoidance learning model in newborn chicks, the hypothesis being that inactivation of the NMDA-mediated transmission during memory reactivation would inhibit the memory trace labilization and thus prevent the reminder-related amnesia. Results: We found that reminder-associated administration of the NMDA receptor antagonist MK-801 or one of the protein synthesis inhibitors (anisomycin, cycloheximide, 2-deoxygalactose) each alone produced amnesia. However, when combined, injection of MK-801 before the reminder prevented amnesia induced by protein synthesis inhibitors. Discussion: We suggest that the observed paradoxical effect implicates the involvement of NMDA receptors in both protein synthesis-independent engram destabilization upon its retrieval and protein synthesismediated engram stabilization after its updating. This puzzling dual role of NMDA receptors in memory destabilization/restabilization requires further investigation.
Collapse
Affiliation(s)
| | | | - K. V. Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Shi P, Chen W, Li J, Weng Y, Zhang M, Zheng X. Novelty-retrieval-extinction paradigm to decrease high-intensity fear memory recurrence. J Affect Disord 2024; 354:26-35. [PMID: 38452938 DOI: 10.1016/j.jad.2024.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The retrieval-extinction paradigm based on memory reconsolidation can prevent fear memory recurrence more effectively than the extinction paradigm. High-intensity fear memories tend to resist reconsolidation. Novelty-retrieval-extinction can promote the reconsolidation of fear memory lacking neuroplasticity in rodents; however, whether it could effectively promote high-intensity fear memory reconsolidation in humans remains unclear. METHODS Using 120 human participants, we implemented the use of the environment (novel vs. familiar) with the help of virtual reality technology. Novelty environment exploration was combined with retrieval-extinction in fear memory of two intensity levels (normal vs. high) to examine whether novelty facilitates the reconsolidation of high-intensity fear memory and prevents recurrence. Skin conductance responses were used to clarify novelty-retrieval-extinction effects at the behavioral level across three experiments. RESULTS Retrieval-extinction could prevent the reinstatement of normal-intensity fear memory; however, for high-intensity fear memory, only the novelty-retrieval-extinction could prevent recurrence; we further validated that novelty-retrieval-extinction may be effective only when the environment is novel. LIMITATIONS Although the high-intensity fear memory is higher than normal-intensity in this study, it may be insufficient relative to fear experienced in real-world contexts or by individuals with mental disorders. CONCLUSIONS To some extent, these findings indicate that the novelty-retrieval-extinction paradigm could prevent the recurrence of high-intensity fear memory, and we infer that novelty of environment may play an important role in novelty-retrieval-extinction paradigm. The results of this study have positive implications for the existing retrieval extinction paradigm and the clinical treatment of phobia.
Collapse
Affiliation(s)
- Pei Shi
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Wei Chen
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Junjiao Li
- College of Teacher Education, Guangdong University of Education, Guangzhou, China
| | - Yuhan Weng
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Mingyue Zhang
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xifu Zheng
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Huff AE, O'Neill OS, Messer WS, Winters BD. Muscarinic receptor activation promotes destabilization and updating of object location memories in mice. Behav Brain Res 2024; 461:114847. [PMID: 38185383 DOI: 10.1016/j.bbr.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The storage of long-term memories is a dynamic process. Reminder cues can destabilize previously consolidated memories, rendering them labile and modifiable. However, memories that are strongly encoded or relatively remote at the time of reactivation can resist destabilization only being rendered labile under conditions that favour memory updating. Using the object location recognition task, here we show in male C57BL/6 mice that novelty-induced destabilization of strongly-encoded memories requires muscarinic acetylcholine receptor (mAChR) activation. Furthermore, we use the objects-in-updated locations task to show that updating of object location memories is mAChR-dependent. Thus, mAChR stimulation appears to be critical for spatial memory destabilization and related memory updating. Enhancing our understanding of the role of ACh in memory updating should inform future research into the underlying causes of behavioural disorders that are characterized by persistent maladaptive memories, such as age-related cognitive inflexibility and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Andrew Ethan Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Olivia S O'Neill
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - William S Messer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, USA
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Haubrich J, Nader K. Network-level changes in the brain underlie fear memory strength. eLife 2023; 12:RP88172. [PMID: 38047914 PMCID: PMC10695559 DOI: 10.7554/elife.88172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
The strength of a fear memory significantly influences whether it drives adaptive or maladaptive behavior in the future. Yet, how mild and strong fear memories differ in underlying biology is not well understood. We hypothesized that this distinction may not be exclusively the result of changes within specific brain regions, but rather the outcome of collective changes in connectivity across multiple regions within the neural network. To test this, rats were fear conditioned in protocols of varying intensities to generate mild or strong memories. Neuronal activation driven by recall was measured using c-fos immunohistochemistry in 12 brain regions implicated in fear learning and memory. The interregional coordinated brain activity was computed and graph-based functional networks were generated to compare how mild and strong fear memories differ at the systems level. Our results show that mild fear recall is supported by a well-connected brain network with small-world properties in which the amygdala is well-positioned to be modulated by other regions. In contrast, this connectivity is disrupted in strong fear memories and the amygdala is isolated from other regions. These findings indicate that the neural systems underlying mild and strong fear memories differ, with implications for understanding and treating disorders of fear dysregulation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill UniversityMontréalCanada
- Department of Neurophysiology, Ruhr-University BochumBochumGermany
| | - Karim Nader
- Department of Psychology, McGill UniversityMontréalCanada
| |
Collapse
|
8
|
Kozyrev SA, Solntseva SV, Storozheva ZI, Nikitin VP. Epigenetic Processes of DNA Methylation Are Selectively Involved in the Mechanisms of Retrograde and Anteograde Amnesia. Bull Exp Biol Med 2023; 175:427-432. [PMID: 37768459 DOI: 10.1007/s10517-023-05879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 09/29/2023]
Abstract
The participation of DNA methylation processes in the mechanisms of anterograde and retrograde amnesia caused by impaired reconsolidation of conditioned food aversion memory by NMDA glutamate receptor antagonists or serotonin receptor antagonists, respectively, were studied on grape snails. Anterograde amnesia was characterized by impaired formation of long-term memory during repeated learning. Administration of a DNA methyltransferase (DNMT) inhibitor to amnestic animals resulted in accelerated formation of long-term memory during 1 day of repetitive training vs 3 days during initial training. In serotonin-dependent retrograde amnesia, repeated learning without DNMT inhibitor administration or after inhibitor injections led to the formation of long-term memory. The dynamics of memory formation was similar in both cases and did not differ from that during the initial training: the memory was formed within 3 days of training. Thus, epigenetic processes of DNA methylation are selectively involved in the mechanisms of anterograde amnesia, but do not participate in the mechanisms of retrograde amnesia.
Collapse
Affiliation(s)
- S A Kozyrev
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - S V Solntseva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Z I Storozheva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - V P Nikitin
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| |
Collapse
|
9
|
Sacktor TC. Karim Nader and the unification of memory erasure: PKMζ inhibition and reconsolidation blockade. Brain Res Bull 2023; 194:124-127. [PMID: 36739095 DOI: 10.1016/j.brainresbull.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Karim Nader is rightly celebrated for his seminal studies on memory reconsolidation. This commentary celebrates another related contribution - his work on memory maintenance by the autonomously active PKC isoform, PKMζ. There are two methods for "erasing" previously established long-term memory maintenance: 1) inhibiting PKMζ, and 2) blocking reconsolidation. Prior to Nader's research on PKMζ, these two forms of memory erasure were thought to be fundamentally different. Inhibiting PKMζ in a brain region disrupts memory held in storage. But if the inhibitor is injected into the same region immediately after memory retrieval, the drug has no effect. Conversely, inhibiting protein synthesis immediately after memory retrieval blocks reconsolidation. But protein synthesis inhibitors have no effect on memory held in storage without retrieval. The work of Paolo Virginia Migues, Nader, and colleagues, however, revealed an unexpected link between the mechanisms of memory maintenance by PKMζ and the kinase's regulation of postsynaptic AMPAR trafficking that potentiates synaptic transmission and expresses memory during retrieval. This insight led Matteo Bernabo, Nader, and colleagues to observe that memory retrieval first rapidly degrades PKMζ, and then induces the resynthesis of the kinase to restore maintenance of the retrieved memory. This finding explains why a PKMζ inhibitor such as ZIP, if injected in a brain region storing a memory, does not erase the memory immediately after retrieval - the kinase maintaining the retrieved memory has been degraded but not yet resynthesized. Moreover, Bernabo et al. showed that suppressing the resynthesis of PKMζ after its degradation prevents memory reconsolidation, reproducing the effect of general protein synthesis inhibition. Thus, Nader and colleagues demonstrated PKMζ inhibition and reconsolidation blockade disrupt in different ways the same molecular mechanism of memory maintenance - PKMζ inhibition erases all memories maintained in storage by the kinase; reconsolidation blockade disrupts specific recalled memories maintained by PKMζ by preventing resynthesis of the kinase after its degradation.
Collapse
Affiliation(s)
- Todd Charlton Sacktor
- Departments of Physiology and Pharmacology, Anesthesiology, and Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
10
|
Solntseva SV, Nikitin VP, Kozyrev SA, Nikitin PV. DNA methylation inhibition participates in the anterograde amnesia key mechanism through the suppression of the transcription of genes involved in memory formation in grape snails. Behav Brain Res 2023; 437:114118. [PMID: 36116736 DOI: 10.1016/j.bbr.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The study of the amnesia mechanisms is of both theoretical and practical importance. The mechanisms of anterograde amnesia are the least studied, due to the lack of an experimental model that allows studying this amnesia type molecular and cellular mechanisms. Previously, we found that conditional food aversion memory reconsolidation impairment in snails by NMDA glutamate receptor antagonists led to the amnesia induction, in the late stages of which (>10 days) repeated training did not cause long-term memory formation. In the same animals, long-term memory aversion to a new food type was formed. We characterized this amnesia as specific anterograde amnesia. In the present work we studied the role of epigenetic DNA methylation processes as well as protein and mRNA synthesis in the mechanisms of anterograde amnesia and memory recovery. DNMT methyltransferase inhibitors (iDNMT: zebularine, RG108 (N-Phthalyl-1-tryptophan), and 5-AZA (5-Aza-2'-deoxycytidine)) were used to alter DNA methylation. It was found that in amnesic animals the iDNMT administration before or after shortened repeated training led to the rapid long-term conditional food aversion formation (Ebbinghaus saving effect). This result suggests that amnestic animals retain a latent memory, which is the basis for accelerated memory formation during repeated training. Protein synthesis inhibitors administration (cycloheximide) before or immediately after repeated training or administration of RNA synthesis inhibitor (actinomycin D) after repeated training prevented memory formation under iDNMT action. The earlier protein synthesis inhibitor effect suggests that the proteins required for memory formation are translated from the pre-existing, translationally repressed mRNAs. Thus, we have shown for the first time that the anterograde amnesia key mechanism is DNMT-dependent suppression of the transcription of genes involved in memory mechanisms. Inhibition of DNMT during repeated training reversed these genes expression blockade, opening access to them by transcription factors synthesized during training from the pre-existing mRNAs.
Collapse
Affiliation(s)
- S V Solntseva
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - V P Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - S A Kozyrev
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - P V Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| |
Collapse
|
11
|
|
12
|
Polley DB, Schiller D. The promise of low-tech intervention in a high-tech era: Remodeling pathological brain circuits using behavioral reverse engineering. Neurosci Biobehav Rev 2022; 137:104652. [PMID: 35385759 DOI: 10.1016/j.neubiorev.2022.104652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
As an academic pursuit, neuroscience is enjoying a golden age. From a clinical perspective, our field is failing. Conventional 20th century drugs and devices are not well-matched to the heterogeneity, scale, and connectivity of neural circuits that produce aberrant mental states and behavior. Laboratory-based methods for editing neural genomes and sculpting activity patterns are exciting, but their applications for hundreds of millions of people with mental health disorders is uncertain. We argue that mechanisms for regulating adult brain plasticity and remodeling pathological activity are substantially pre-wired, and we suggest new minimally invasive strategies to harness and direct these endogenous systems. Drawing from studies across the neuroscience literature, we describe approaches that identify neural biomarkers more closely linked to upstream causes-rather than downstream consequences-of disordered behavioral states. We highlight the potential for innovation and discovery in reverse engineering approaches that refine bespoke behavioral "agonists" to drive upstream neural biomarkers in normative directions and reduce clinical symptoms for select classes of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| | - Daniela Schiller
- Department of Psychiatry, Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
The effect of partial and continuous reinforcement on the generalization of conditioned fear in humans. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Beisel JMS, Maza FJ, Justel N, Larrosa PNF, Delorenzi A. Embodiment of an Emotional State Concurs with a Stress-Induced Reconsolidation Impairment Effect on an Auditory Verbal Word-List Memory. Neuroscience 2022; 497:239-256. [PMID: 35472504 DOI: 10.1016/j.neuroscience.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Stress alters memory. Understanding how and when acute stress improves or impairs memory is a challenge. Stressors can affect memory depending on a combination of factors. Typically, mild stressors and stress hormones might promote consolidation of memory processing and impair memory retrieval. However, studies have shown that during reconsolidation, stressors may either enhance or impair recalled memory. We propose that a function of reconsolidation is to induce changes in the behavioral expression of memory. Here, we adapted the Rey Auditory Verbal Learning Test (RAVLT) to evaluate the effect of cold pressor stress (CPS) during the reconsolidation of this declarative memory. A decay in memory performance attributable to forgetting was found at the time of memory reactivation 5 d after training (day 6). Contrary to our initial predictions, the administration of CPS after memory reactivation impaired long-term memory expression (day 7), an effect dependent on the presence of a mismatch during Reactivation Session. No differences in recognition tests were found. To assess putative sources of the negative memory modulation effects induced during reconsolidation, current emotional state was evaluated immediately after Testing Session (day 7). An increase in arousal was revealed only when CPS was administered concurrently with memory reactivation-labilization. The possibility of integration during reconsolidation of independent associations of these emotive components in the trace is a critical factor in modulating neutral memories during reconsolidation by stressors.
Collapse
Affiliation(s)
- Jessica Mariel Sánchez Beisel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Francisco Javier Maza
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Nadia Justel
- Lab. Interdisciplinario de Neurociencia Cognitiva (LINC), CEMSC3, ICIFI, UNSAM CONICET, Argentina
| | - Pablo Nicolas Fernandez Larrosa
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| | - Alejandro Delorenzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| |
Collapse
|
15
|
Solntseva SV, Nikitin VP, Kozyrev SA, Nikitin PV. The Role of DNA Methylation and Activity of Neurotransmitter Receptors in the Mechanisms of Specific Anterograde Amnesia and Memory Recovery. Bull Exp Biol Med 2022; 172:528-533. [DOI: 10.1007/s10517-022-05426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/25/2022]
|
16
|
Mugnaini M, Alfei JM, Bueno AM, Ferrer Monti RI, Urcelay GP. Fear memory modulation by incentive down and up-shifts. Behav Brain Res 2022; 422:113766. [DOI: 10.1016/j.bbr.2022.113766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
|
17
|
Stemerding LE, Stibbe D, van Ast VA, Kindt M. Demarcating the boundary conditions of memory reconsolidation: An unsuccessful replication. Sci Rep 2022; 12:2285. [PMID: 35145138 PMCID: PMC8831535 DOI: 10.1038/s41598-022-06119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
Disrupting memory reconsolidation provides an opportunity to abruptly reduce the behavioural expression of fear memories with long-lasting effects. The success of a reconsolidation intervention is, however, not guaranteed as it strongly depends on the destabilization of the memory. Identifying the necessary conditions to trigger destabilization remains one of the critical challenges in the field. We aimed to replicate a study from our lab, showing that the occurrence of a prediction error (PE) during reactivation is necessary but not sufficient for destabilization. We tested the effectiveness of a reactivation procedure consisting of a single PE, compared to two control groups receiving no or multiple PEs. All participants received propranolol immediately after reactivation and were tested for fear retention 24 h later. In contrast to the original results, we found no evidence for a reconsolidation effect in the single PE group, but a straightforward interpretation of these results is complicated by the lack of differential fear retention in the control groups. Our results corroborate other failed reconsolidation studies and exemplify the complexity of experimentally investigating this process in humans. Thorough investigation of the interaction between learning and memory reactivation is essential to understand the inconsistencies in the literature and to improve reconsolidation interventions.
Collapse
Affiliation(s)
- Lotte E Stemerding
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Danielle Stibbe
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Vanessa A van Ast
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Netto CA. Role of brain Β-endorphin in memory modulation revisited. Neuroscience 2022; 497:30-38. [DOI: 10.1016/j.neuroscience.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
|
19
|
Mechanisms of Memory Updating: State Dependency vs. Reconsolidation. J Cogn 2022; 5:7. [PMID: 35083410 PMCID: PMC8740636 DOI: 10.5334/joc.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Reactivating a memory trace has been argued to put it in a fragile state where it must undergo a stabilization process known as reconsolidation. During this process, memories are thought to be susceptible to interference and can be updated with new information. In the spatial context paradigm, memory updating has been shown to occur when new information is presented in the same spatial context as old information, an effect attributed to a reconsolidation process. However, the integration concept holds that memory change can only occur when reactivation and test states are the same, similar to a state-dependent effect. Thus, in human episodic memory, memory updating should only be found when state is the same across the study, reactivation, and test sessions. We investigated whether memory updating can be attributed to state dependency in two experiments using mood as a state. We found evidence of memory updating only when mood was the same across all sessions of the experiments, lending support to the integration concept and posing a challenge to a reconsolidation explanation.
Collapse
|
20
|
Duran JM, Sierra RO, Corredor K, Cardenas FP. Cathodal transcranial direct current stimulation on the prefrontal cortex applied after reactivation attenuates fear memories and prevent reinstatement after extinction. J Psychiatr Res 2021; 145:213-221. [PMID: 34929471 DOI: 10.1016/j.jpsychires.2021.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND In the last decade, pharmacological strategies targeting reconsolidation after memory retrieval have shown promising efforts to attenuate persistent memories and overcome fear recovery. However, most reconsolidation inhibiting agents have not been approved for human testing. While non-invasive neuromodulation can be considered an alternative approach to pharmacological treatments, there is a lack of evidence about the efficacy of these technologies when modifying memory traces via reactivation/reconsolidation mechanism. OBJECTIVE In this study, we evaluate the effect of cathodal (c-tDCS) and anodal (a-DCS) transcranial direct current stimulation applied after memory reactivation and extinction in rats. METHODS Male Wistar rats were randomly assigned into three groups: one sham group, one anodal tDCS group, and one cathodal tDCS group (500 μA, 20 min). Reconsolidation and extinction of fear memories were evaluated using a contextual fear conditioning. RESULTS Our results showed that c-tDCS and a-tDCS after memory reactivation can attenuate mild fear memories. However, only c-tDCS stimulation prevented both fear expression under strong fear learning and fear recovery after a reinstatement protocol without modification of learning rate or extinction retrieval. Nevertheless, the remote memories were resistant to modification through this type of neuromodulation. Our results are discussed considering the interaction between intrinsic excitability promoted by learning and memory retrieval and the electric field applied during tDCS. CONCLUSION These results point out some of the boundary conditions influencing the efficacy of tDCS in fear attenuation and open new ways for the development of noninvasive interventions aimed to control fear-related disorders via reconsolidation.
Collapse
Affiliation(s)
- Johanna M Duran
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia.
| | | | - Karen Corredor
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia
| | - Fernando P Cardenas
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia.
| |
Collapse
|
21
|
Alfei JM, De Gruy H, De Bundel D, Luyten L, Beckers T. Apparent reconsolidation interference without generalized amnesia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110161. [PMID: 33186637 PMCID: PMC7610545 DOI: 10.1016/j.pnpbp.2020.110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Memories remain dynamic after consolidation, and when reactivated, they can be rendered vulnerable to various pharmacological agents that disrupt the later expression of memory (i.e., amnesia). Such drug-induced post-reactivation amnesia has traditionally been studied in AAA experimental designs, where a memory is initially created for a stimulus A (be it a singular cue or a context) and later reactivated and tested through exposure to the exact same stimulus. Using a contextual fear conditioning procedure in rats and midazolam as amnestic agent, we recently demonstrated that drug-induced amnesia can also be obtained when memories are reactivated through exposure to a generalization stimulus (GS, context B) and later tested for that same generalization stimulus (ABB design). However, this amnestic intervention leaves fear expression intact when at test animals are instead presented with the original training stimulus (ABA design) or a novel generalization stimulus (ABC design). The underlying mechanisms of post-reactivation memory malleability and of MDZ-induced amnesia for a generalization context remain largely unknown. Here, we evaluated whether, like typical CS-mediated (or AAA) post-reactivation amnesia, GS-mediated (ABB) post-reactivation amnesia displays key features of a destabilization-based phenomenon. We first show that ABB post-reactivation amnesia is critically dependent on prediction error at the time of memory reactivation and provide evidence for its temporally graded nature. In line with the known role of GluN2B-NMDA receptor activation in memory destabilization, we further demonstrate that pre-reactivation administration of ifenprodil, a selective antagonist of GluN2B-NMDA receptors, prevents MDZ-induced ABB amnesia. In sum, our data reveal that ABB MDZ-induced post-reactivation amnesia exhibits the hallmark features of a destabilization-dependent phenomenon. Implication of our findings for a reconsolidation-based account of post-reactivation amnesia are discussed.
Collapse
Affiliation(s)
- Joaquín M. Alfei
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Hérnan De Gruy
- Department of Biology, University of Rome, 185 Rome, Italy
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Laura Luyten
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.
| | - Tom Beckers
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
22
|
Bernabo M, Haubrich J, Gamache K, Nader K. Memory Destabilization and Reconsolidation Dynamically Regulate the PKMζ Maintenance Mechanism. J Neurosci 2021; 41:4880-4888. [PMID: 33888608 PMCID: PMC8260165 DOI: 10.1523/jneurosci.2093-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Useful memory must balance between stability and malleability. This puts effective memory storage at odds with plasticity processes, such as reconsolidation. What becomes of memory maintenance processes during synaptic plasticity is unknown. Here we examined the fate of the memory maintenance protein PKMζ during memory destabilization and reconsolidation in male rats. We found that NMDAR activation and proteasome activity induced a transient reduction in PKMζ protein following retrieval. During reconsolidation, new PKMζ was synthesized to re-store the memory. Failure to synthesize new PKMζ during reconsolidation impaired memory but uninterrupted PKMζ translation was not necessary for maintenance itself. Finally, NMDAR activation was necessary to render memories vulnerable to the amnesic effect of PKMζ-antisense. These findings outline a transient disruption and renewal of the PKMζ memory maintenance mechanism during plasticity. We argue that dynamic changes in PKMζ protein levels can serve as an exemplary model of the molecular changes underlying memory destabilization and reconsolidation.SIGNIFICANCE STATEMENT Maintenance of long-term memory relies on the persistent activity of PKMζ. However, after retrieval, memories can become transiently destabilized and must be reconsolidated within a few hours to persist. During this period of plasticity, what happens to maintenance processes, such as those involving PKMζ, is unknown. Here we describe dynamic changes to PKMζ expression during both destabilization and reconsolidation of auditory fear memory in the amygdala. We show that destabilization induces a NMDAR- and proteasome-dependent loss of synaptic PKMζ and that reconsolidation requires synthesis of new PKMζ. This work provides clear evidence that memory destabilization disrupts ongoing synaptic maintenance processes which are restored during reconsolidation.
Collapse
Affiliation(s)
- Matteo Bernabo
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Josue Haubrich
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Karine Gamache
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
23
|
Levy I, Schiller D. Neural Computations of Threat. Trends Cogn Sci 2021; 25:151-171. [PMID: 33384214 PMCID: PMC8084636 DOI: 10.1016/j.tics.2020.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022]
Abstract
A host of learning, memory, and decision-making processes form the individual's response to threat and may be disrupted in anxiety and post-trauma psychopathology. Here we review the neural computations of threat, from the first encounter with a dangerous situation, through learning, storing, and updating cues that predict it, to making decisions about the optimal course of action. The overview highlights the interconnected nature of these processes and their reliance on shared neural and computational mechanisms. We propose an integrative approach to the study of threat-related processes, in which specific computations are studied across the various stages of threat experience rather than in isolation. This approach can generate new insights about the evolution, diagnosis, and treatment of threat-related psychopathology.
Collapse
Affiliation(s)
- Ifat Levy
- Departments of Comparative Medicine, Neuroscience, and Psychology, Yale University, New Haven, CT, USA.
| | - Daniela Schiller
- Department of Psychiatry, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Rosiles T, Nguyen M, Duron M, Garcia A, Garcia G, Gordon H, Juarez L, Calin-Jageman IE, Calin-Jageman RJ. Registered Report: Transcriptional Analysis of Savings Memory Suggests Forgetting is Due to Retrieval Failure. eNeuro 2020; 7:ENEURO.0313-19.2020. [PMID: 32928882 PMCID: PMC7665899 DOI: 10.1523/eneuro.0313-19.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible because of retrieval failure. These different accounts of forgetting lead to different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is because of decay, then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is because of retrieval failure, then savings should be mechanistically distinct from encoding. In this registered report, we conducted a preregistered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 d after training), a forgotten memory (8 d after training), and a savings memory (8 d after training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We found that the reactivation of sensitization during savings does not involve a substantial transcriptional response. Thus, savings is transcriptionally distinct relative to a newer (1-d-old) memory, with no coregulated transcripts, negligible similarity in regulation-ranked ordering of transcripts, and a negligible correlation in training-induced changes in gene expression (r = 0.04 95% confidence interval (CI) [-0.12, 0.20]). Overall, our results suggest that forgetting of sensitization memory represents retrieval failure.
Collapse
Affiliation(s)
- Tania Rosiles
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Melissa Nguyen
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Monica Duron
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Annette Garcia
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - George Garcia
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Hannah Gordon
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Lorena Juarez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | | | | |
Collapse
|
25
|
Effects of ∆ 9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry 2020; 20:420. [PMID: 32842985 PMCID: PMC7448997 DOI: 10.1186/s12888-020-02813-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) may stem from the formation of aberrant and enduring aversive memories. Some PTSD patients have recreationally used Cannabis, probably aiming at relieving their symptomatology. However, it is still largely unknown whether and how Cannabis or its psychotomimetic compound Δ9-tetrahydrocannabinol (THC) attenuates the aversive/traumatic memory outcomes. Here, we seek to review and discuss the effects of THC on aversive memory extinction and anxiety in healthy humans and PTSD patients. METHODS Medline, PubMed, Cochrane Library, and Central Register for Controlled Trials databases were searched to identify peer-reviewed published studies and randomized controlled trials in humans published in English between 1974 and July 2020, including those using only THC and THC combined with cannabidiol (CBD). The effect size of the experimental intervention under investigation was calculated. RESULTS At low doses, THC can enhance the extinction rate and reduce anxiety responses. Both effects involve the activation of cannabinoid type-1 receptors in discrete components of the corticolimbic circuitry, which could couterbalance the low "endocannabinoid tonus" reported in PTSD patients. The advantage of associating CBD with THC to attenuate anxiety while minimizing the potential psychotic or anxiogenic effect produced by high doses of THC has been reported. The effects of THC either alone or combined with CBD on aversive memory reconsolidation, however, are still unknown. CONCLUSIONS Current evidence from healthy humans and PTSD patients supports the THC value to suppress anxiety and aversive memory expression without producing significant adverse effects if used in low doses or when associated with CBD. Future studies are guaranteed to address open questions related to their dose ratios, administration routes, pharmacokinetic interactions, sex-dependent differences, and prolonged efficacy.
Collapse
|