1
|
Noor L, Upadhyay A, Joshi V. Role of T Lymphocytes in Glioma Immune Microenvironment: Two Sides of a Coin. BIOLOGY 2024; 13:846. [PMID: 39452154 PMCID: PMC11505600 DOI: 10.3390/biology13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Glioma is known for its immunosuppressive microenvironment, which makes it challenging to target through immunotherapies. Immune cells like macrophages, microglia, myeloid-derived suppressor cells, and T lymphocytes are known to infiltrate the glioma tumor microenvironment and regulate immune response distinctively. Among the variety of immune cells, T lymphocytes have highly complex and multifaceted roles in the glioma immune landscape. T lymphocytes, which include CD4+ helper and CD8+ cytotoxic T cells, are known for their pivotal roles in anti-tumor responses. However, these cells may behave differently in the highly dynamic glioma microenvironment, for example, via an immune invasion mechanism enforced by tumor cells. Therefore, T lymphocytes play dual roles in glioma immunity, firstly by their anti-tumor responses, and secondly by exploiting gliomas to promote immune invasion. As an immunosuppression strategy, glioma induces T-cell exhaustion and suppression of effector T cells by regulatory T cells (Tregs) or by altering their signaling pathways. Further, the expression of immune checkpoint inhibitors on the glioma cell surface leads to T cell anergy and dysfunction. Overall, this dynamic interplay between T lymphocytes and glioma is crucial for designing more effective immunotherapies. The current review provides detailed knowledge on the roles of T lymphocytes in the glioma immune microenvironment and helps to explore novel therapeutic approaches to reinvigorate T lymphocytes.
Collapse
Affiliation(s)
- Laiba Noor
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
2
|
Mercado NB, Real JN, Kaiserman J, Panagioti E, Cook CH, Lawler SE. Clinical implications of cytomegalovirus in glioblastoma progression and therapy. NPJ Precis Oncol 2024; 8:213. [PMID: 39343770 PMCID: PMC11439950 DOI: 10.1038/s41698-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Glioblastoma (GBM) is one of the deadliest brain cancers with a median survival of only 15 months. This poor prognosis has prompted exploration of novel therapeutic targets for GBM patients. Human cytomegalovirus (HCMV) has been implicated in GBM; however, its impact remains poorly defined, and there is conflicting data over the presence of HCMV in tumors. Nonetheless, clinical trials targeting HCMV have shown promising initial data, and evidence suggests that HCMV may negatively impact GBM patient survival by multiple mechanisms including changes in GBM cell behavior and the tumor microenvironment (TME) that potentiate tumor progression as well as therapy-induced virus reactivation. Moreover, HCMV has many effects on host immunity that could impact tumor behavior by altering the TME, which are largely unexplored. The goal of this review is to describe these potential interactions between HCMV and GBM. Better understanding of these processes may allow the development of new therapeutic modalities to improve GBM patient outcomes.
Collapse
Affiliation(s)
- Noe B Mercado
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacqueline N Real
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacob Kaiserman
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Sean E Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US.
- The Warren Alpert Medical School, Brown University, Providence, RI, US.
| |
Collapse
|
3
|
Chen S, Jiang Y, Wang C, Tong S, He Y, Lu W, Zhang Z. Epigenetic clocks and gliomas: unveiling the molecular interactions between aging and tumor development. Front Mol Biosci 2024; 11:1446428. [PMID: 39130373 PMCID: PMC11310061 DOI: 10.3389/fmolb.2024.1446428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Gliomas, the most prevalent and aggressive primary brain tumors, represent a diverse group of malignancies originating from glial cells. These tumors account for significant brain tumor-related morbidity and mortality, with higher incidence rates in North America and Europe compared to Asia and Africa. Genetic predispositions and environmental factors, particularly ionizing radiation, critically impact glioma risk. Epigenetics, particularly DNA methylation, plays a pivotal role in glioma research, with IDH-mutant gliomas showing aberrant methylation patterns contributing to tumorigenesis. Epigenetic clocks, biomarkers based on DNA methylation patterns predicting biological age, have revealed significant insights into aging and tumor development. Recent studies demonstrate accelerated epigenetic aging in gliomas, correlating with increased cancer risk and poorer outcomes. This review explores the mechanisms of epigenetic clocks, their biological significance, and their application in glioma research. Furthermore, the clinical implications of epigenetic clocks in diagnosing, prognosticating, and treating gliomas are discussed. The integration of epigenetic clock data into personalized medicine approaches holds promise for enhancing therapeutic strategies and patient outcomes in glioma treatment.
Collapse
Affiliation(s)
- Shiliang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yi Jiang
- Department of Intensive Care Unit, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu, China
| | - Cong Wang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shiyuan Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yibo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wenqiang Lu
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhezhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Jayaram MA, Phillips JJ. Role of the Microenvironment in Glioma Pathogenesis. ANNUAL REVIEW OF PATHOLOGY 2024; 19:181-201. [PMID: 37832944 DOI: 10.1146/annurev-pathmechdis-051122-110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Gliomas are a diverse group of primary central nervous system tumors that affect both children and adults. Recent studies have revealed a dynamic cross talk that occurs between glioma cells and components of their microenvironment, including neurons, astrocytes, immune cells, and the extracellular matrix. This cross talk regulates fundamental aspects of glioma development and growth. In this review, we discuss recent discoveries about the impact of these interactions on gliomas and highlight how tumor cells actively remodel their microenvironment to promote disease. These studies provide a better understanding of the interactions in the microenvironment that are important in gliomas, offer insight into the cross talk that occurs, and identify potential therapeutic vulnerabilities that can be utilized to improve clinical outcomes.
Collapse
Affiliation(s)
- Maya Anjali Jayaram
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Zdioruk M, Jimenez-Macias JL, Nowicki MO, Manz KE, Pennell KD, Koch MS, Finkelberg T, Wu B, Boucher P, Takeda Y, Li W, Piranlioglu R, Ling AL, Chiocca EA, Lawler SE. PPRX-1701, a nanoparticle formulation of 6'-bromoindirubin acetoxime, improves delivery and shows efficacy in preclinical GBM models. Cell Rep Med 2023; 4:101019. [PMID: 37060903 PMCID: PMC10213750 DOI: 10.1016/j.xcrm.2023.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/17/2023]
Abstract
Derivatives of the Chinese traditional medicine indirubin have shown potential for the treatment of cancer through a range of mechanisms. This study investigates the impact of 6'-bromoindirubin-3'-acetoxime (BiA) on immunosuppressive mechanisms in glioblastoma (GBM) and evaluates the efficacy of a BiA nanoparticle formulation, PPRX-1701, in immunocompetent mouse GBM models. Transcriptomic studies reveal that BiA downregulates immune-related genes, including indoleamine 2,3-dioxygenase 1 (IDO1), a critical enzyme in the tryptophan-kynurenine-aryl hydrocarbon receptor (Trp-Kyn-AhR) immunosuppressive pathway in tumor cells. BiA blocks interferon-γ (IFNγ)-induced IDO1 protein expression in vitro and enhances T cell-mediated tumor cell killing in GBM stem-like cell co-culture models. PPRX-1701 reaches intracranial murine GBM and significantly improves survival in immunocompetent GBM models in vivo. Our results indicate that BiA improves survival in murine GBM models via effects on important immunotherapeutic targets in GBM and that it can be delivered efficiently via PPRX-1701, a nanoparticle injectable formulation of BiA.
Collapse
Affiliation(s)
- Mykola Zdioruk
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jorge-Luis Jimenez-Macias
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology and Laboratory Medicine, Department of Neurosurgery, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Michal Oskar Nowicki
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Marilin S Koch
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tomer Finkelberg
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bin Wu
- Phosphorex, Inc, Hopkinton, MA 01748, USA; Cytodigm, Inc., Hopkinton, MA 01748, USA
| | | | | | - Weiyi Li
- Phosphorex, Inc, Hopkinton, MA 01748, USA
| | - Raziye Piranlioglu
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander L Ling
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E Antonio Chiocca
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sean E Lawler
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology and Laboratory Medicine, Department of Neurosurgery, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
6
|
He Y, Alejo S, Johnson JD, Jayamohan S, Sareddy GR. Reticulocalbin 3 Is a Novel Mediator of Glioblastoma Progression. Cancers (Basel) 2023; 15:2008. [PMID: 37046668 PMCID: PMC10093618 DOI: 10.3390/cancers15072008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Molecular mechanisms underlying the pathobiology of glioblastoma are incompletely understood, emphasizing an unmet need for the identification of new therapeutic candidates. Reticulocalbin 3 (RCN3), an ER lumen-residing Ca2+ binding protein, plays an essential role in protein biosynthesis processes via the secretory pathway. Emerging studies demonstrated that RCN3 is a target for therapeutic intervention in various diseases. However, a knowledge gap exists about whether RCN3 plays a role in glioblastoma. Publicly available datasets suggest RCN3 is overexpressed in glioblastoma and portends poor survival rates. The knockdown or knockout of RCN3 using shRNA or CRISPR/Cas9 gRNA, respectively, significantly reduced proliferation, neurosphere formation, and self-renewal of GSCs. The RNA-seq studies showed downregulation of genes related to translation, ribosome, and cytokine signaling and upregulation of genes related to immune response, stem cell differentiation, and extracellular matrix (ECM) in RCN3 knockdown cells. Mechanistic studies using qRT-PCR showed decreased expression of ribosomal and increased expression of ER stress genes. Further, in silico analysis of glioblastoma patient datasets showed RCN3 expression correlated with the ribosome, ECM, and immune response pathway genes. Importantly, the knockdown of RCN3 using shRNA significantly enhanced the survival of tumor-bearing mice in orthotopic glioblastoma models. Our study suggests that RCN3 could be a potential target for the development of a therapeutic intervention in glioblastoma.
Collapse
Affiliation(s)
- Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Jessica D. Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Liu S, Deng Y, Yu Y, Xia X. Knock-down of PGM1 inhibits cell viability, glycolysis, and oxidative phosphorylation in glioma under low glucose condition via the Myc signaling pathway. Biochem Biophys Res Commun 2023; 656:38-45. [PMID: 36947965 DOI: 10.1016/j.bbrc.2023.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
PGM1 is an essential enzyme for glucose metabolism and is involved in cell viability, proliferation, and metabolism. However, the regulatory role of PGMI in glioma progression and the relation between gliomas and PGM1 expression are still unclear. This study aimed to explore the role of PGM1 in glycolysis and oxidative phosphorylation in glioma. Correlation and enrichment analyses of PGM1 in glioma cells were explored in TCGA database and two hospital cohorts. The cell viability, glycolysis, and oxidative phosphorylation were investigated in PGM1 knock-down and overexpression situations. Higher PGM1 expression in glioma patients was associated with a poor survival rate. However, knock-down of PGM1 reduced glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition. Moreover, it suppressed tumor growth in vivo. On the other hand, PGM1 overexpression promoted glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition by a Myc positive feedback loop. Glioma patients with higher PGM1 expression were associated with poor survival rates. Additionally, PGM1 could promote glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition via a myc-positive feedback loop, suggesting PGM1 could be a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Shenghua Liu
- Department of Neurosurgery, Santai Affiliated Hospital of North Sichuan Medical College, Mianyang, 621100, China
| | - Yuanyin Deng
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, 310015, China
| | - Yunhu Yu
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
8
|
Zhang C, Liu H, Tan Y, Xu Y, Li Y, Tong S, Qiu S, Chen Q, Su Z, Tian D, Zhou W, Zhong C. MS4A6A is a new prognostic biomarker produced by macrophages in glioma patients. Front Immunol 2022; 13:865020. [PMID: 36119086 PMCID: PMC9472524 DOI: 10.3389/fimmu.2022.865020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
MS4A6A has been recognized as being associated with aging and the onset of neurodegenerative disease. However, the mechanisms of MS4A6A in glioma biology and prognosis are ill-defined. Here, we show that MS4A6A is upregulated in glioma tissues, resulting in unfavorable clinical outcomes and poor responses to adjuvant chemotherapy. Multivariate Cox regression analysis suggested that MS4A6A expression can act as a strong and independent predictor for glioma outcomes (CGGA1: HR: 1.765, p < 0.001; CGGA2: HR: 2.626, p < 0.001; TCGA: HR: 1.415, p < 0.001; Rembrandt: HR: 1.809, p < 0.001; Gravendeel: HR: 1.613, p < 0.001). A protein–protein interaction (PPI) network revealed that MS4A6A might be coexpressed with CD68, CD163, and macrophage-specific signatures. Enrichment analysis showed the innate immune response and inflammatory response to be markedly enriched in the high MS4A6A expression group. Additionally, single-cell RNA sequencing (scRNA-seq) analysis revealed distinctive expression features for MS4A6A in macrophages in the glioma immune microenvironment (GIME). Immunofluorescence staining confirmed colocalization of CD68/MS4A6A and CD163/MS4A6A in macrophages. Correlation analysis revealed that MS4A6A expression is positively related to the tumor mutation burden (TMB) of glioma, displaying the high potential of applying MS4A6A to evaluate responsiveness to immunotherapy. Altogether, our research indicates that MS4A6A upregulation may be used as a promising and effective indicator for adjuvant therapy and prognosis assessment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, Jiaxing University, The First Affiliated Hospital, Jiaxing, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Shiao Tong
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Qianxue Chen
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Daofeng Tian
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| | - Wei Zhou
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| |
Collapse
|
9
|
El Khayari A, Bouchmaa N, Taib B, Wei Z, Zeng A, El Fatimy R. Metabolic Rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond. Front Oncol 2022; 12:901951. [PMID: 35912242 PMCID: PMC9329787 DOI: 10.3389/fonc.2022.901951] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), a highly invasive and incurable tumor, is the humans’ foremost, commonest, and deadliest brain cancer. As in other cancers, distinct combinations of genetic alterations (GA) in GBM induce a diversity of metabolic phenotypes resulting in enhanced malignancy and altered sensitivity to current therapies. Furthermore, GA as a hallmark of cancer, dysregulated cell metabolism in GBM has been recently linked to the acquired GA. Indeed, Numerous point mutations and copy number variations have been shown to drive glioma cells’ metabolic state, affecting tumor growth and patient outcomes. Among the most common, IDH mutations, EGFR amplification, mutation, PTEN loss, and MGMT promoter mutation have emerged as key patterns associated with upregulated glycolysis and OXPHOS glutamine addiction and altered lipid metabolism in GBM. Therefore, current Advances in cancer genetic and metabolic profiling have yielded mechanistic insights into the metabolism rewiring of GBM and provided potential avenues for improved therapeutic modalities. Accordingly, actionable metabolic dependencies are currently used to design new treatments for patients with glioblastoma. Herein, we capture the current knowledge of genetic alterations in GBM, provide a detailed understanding of the alterations in metabolic pathways, and discuss their relevance in GBM therapy.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Bouchra Taib
- Institute of Sport Professions (IMS), Ibn Tofail University, Avenida de l’Université, Kenitra, Morocco
- Research Unit on Metabolism, Physiology and Nutrition, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ailiang Zeng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Rachid El Fatimy,
| |
Collapse
|
10
|
Lin Z, Wang R, Huang C, He H, Ouyang C, Li H, Zhong Z, Guo J, Chen X, Yang C, Yang X. Identification of an Immune-Related Prognostic Risk Model in Glioblastoma. Front Genet 2022; 13:926122. [PMID: 35783263 PMCID: PMC9247349 DOI: 10.3389/fgene.2022.926122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most common and malignant type of brain tumor. A large number of studies have shown that the immunotherapy of tumors is effective, but the immunotherapy effect of GBM is not poor. Thus, further research on the immune-related hub genes of GBM is extremely important. Methods: The GBM highly correlated gene clusters were screened out by differential expression, mutation analysis, and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and proportional hazards model (COX) regressions were implemented to construct prognostic risk models. Survival, receiver operating characteristic (ROC) curve, and compound difference analyses of tumor mutation burden were used to further verify the prognostic risk model. Then, we predicted GBM patient responses to immunotherapy using the ESTIMATE algorithm, GSEA, and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Results: A total of 834 immune-related differentially expressed genes (DEGs) were identified. The five hub genes (STAT3, SEMA4F, GREM2, MDK, and SREBF1) were identified as the prognostic risk model (PRM) screened out by WGCNA and LASSO analysis of DEGs. In addition, the PRM has a significant positive correlation with immune cell infiltration of the tumor microenvironment (TME) and expression of critical immune checkpoints, indicating that the poor prognosis of patients is due to TIDE. Conclusion: We constructed the PRM composed of five hub genes, which provided a new strategy for developing tumor immunotherapy.
Collapse
|
11
|
Zheng W, Zhang R, Huang Z, Li J, Wu H, Zhou Y, Zhu J, Wang X. A Qualitative Signature to Identify TERT Promoter Mutant High-Risk Tumors in Low-Grade Gliomas. Front Mol Biosci 2022; 9:806727. [PMID: 35495630 PMCID: PMC9047542 DOI: 10.3389/fmolb.2022.806727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Telomerase reverse transcriptase promoter (TERT-p) mutation has been frequently found, but associated with contrary prognosis, in both low-grade gliomas and glioblastomas. For the low-grade gliomas (Grades II-III), TERT-p mutant patients have a better prognosis than the wildtype patients, whereas for the GBMs (Grade IV), TERT-p mutation is related to a poor prognosis. We hypothesize that there exist high-risk patients in LGGs who share GBM-like molecular features, including TERT-p mutation, and need more intensive treatment than other LGGs. A molecular signature is needed to identify these high-risk patients for an accurate and timely treatment. Methods: Using the within-sample relative expression orderings of gene pairs, we identified the gene pairs with significantly stable REOs, respectively, in both the TERT-p mutant LGGs and GBMs but with opposite directions in the two groups. These reversely stable gene pairs were used as the molecular signature to stratify the LGGs into high-risk and low-risk groups. Results: A signature consisting of 21 gene pairs was developed, which can classify LGGs into two groups with significantly different overall survival. The high-risk group has a similar genetic mutation profile and a similar survival profile as GBMs, and these high-risk tumors may progress to a more malignant state. Conclusion: The 21 gene-pair signature based on REOs is capable of identifying high-risk patients in LGGs and guiding the clinical choice for appropriate and timely intervention.
Collapse
Affiliation(s)
- Weicheng Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ruolan Zhang
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ziru Huang
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jianpeng Li
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Haonan Wu
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yuwei Zhou
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jinwei Zhu
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xianlong Wang
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- *Correspondence: Xianlong Wang,
| |
Collapse
|
12
|
Pesce A, Armocida D, Paglia F, Palmieri M, Frati A, D'Andrea G, Salvati M, Santoro A. IDH Wild-type Glioblastoma Presenting with Seizure: Clinical Specificity, and Oncologic and Surgical Outcomes. J Neurol Surg A Cent Eur Neurosurg 2021; 83:351-360. [PMID: 34794192 DOI: 10.1055/s-0041-1735515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive primary brain neoplasia in adults. Seizure is a common manifestation in GBM. Up to 25 to 60% of patients with GBM have seizures. We aim to summarize all the relevant clinical, surgical, radiologic, and molecular features of a cohort of patients suffering from GBM-related epilepsy and measure the outcome, to understand the possible existence of a clinical/phenotypical specificity of this subgroup of patients. METHODS We retrospectively analyzed a cohort of 177 patients affected by isocitrate dehydrogenase wild-type (IDH-WT) GBM; 49 patients presented seizure at onset (SaO) and 128 were seizure free (SF). We investigated the relationship between seizures and other prognostic factors of GBMs. RESULTS A statistically significant association between the location of the lesions in the parietal lobe and seizures was observed. The left side was more commonly affected. Interestingly, there was a statistical relationship between tumors involving the subventricular zone (SVZ) and SaO patients. The tumors were also smaller on average at diagnosis, and generalized SaOs were associated with longer overall survival. CONCLUSIONS The typical patient with IDH-WT GBM with SaO is a young (<55 year) male without a history of headache. The lesion is typically small to medium in size and located in the temporoparietal dominant lobe, with a high tendency to involve the SVZ.
Collapse
Affiliation(s)
| | - Daniele Armocida
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Francesco Paglia
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Mauro Palmieri
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Alessandro Frati
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy.,IRCCS "Neuromed" Pozzilli (IS), Italy
| | | | - Maurizio Salvati
- IRCCS "Neuromed" Pozzilli (IS), Italy.,Department of Mental and Neurological, Dental and Sensory Organs Health, Tor Vergata University, Rome Italy
| | | |
Collapse
|
13
|
Gramatiuk SM, Bagmut IY, Sheremet MI, Sargsyan K, Yushko AM, Filipchenko SM, Maksymyuk VV, Tarabanchuk VV, Moroz PV, Popovich AI. Pediatric biobanks and parents of disabled children associations opinions on establishing children repositories in developing countries. J Med Life 2021; 14:50-55. [PMID: 33767785 PMCID: PMC7982269 DOI: 10.25122/jml-2020-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pediatric biobanks are an indispensable resource for the research needed to bring advances in personalized medicine into pediatric medical care. It is unclear how or when these advances in medical care may reach children, but it is unlikely that research in adults will be adequate. We conducted the screening for a hypothetic problem in various European and American pediatric biobanks based on online surveys through e-mail distribution based on the Biobank Economic Modeling Tool (BEMT) questionnaire model. Participants in the survey had work experience in biobanking for at least 3 years or more. Contact information about the survey participants was confirmed on the social networks profiles (LinkedIn), as well as on generally available websites. First, we tried creating a model which can show the pediatric preclinical and basic clinical phase relationship and demonstrate how pediatric biobanking is linked to this process. Furthermore, we tried to look for new trends, and the final goal is to put the acquired knowledge into practice, so medical experts and patients could gain usable benefit from it. We concluded that leading positions must take into account ethical and legal aspects when considering the decision to include children in the biobank collection. However, communication with parents and children is essential. The biobank characteristics influence the biobank's motives to include children in the consent procedure. Moreover, the motives to include children influence how the children are involved in the consent procedure and the extent to which children are able to make voluntary decisions as part of the consent procedure.
Collapse
Affiliation(s)
| | | | | | | | - Alla Mironovna Yushko
- Ukraine Association of Biobank, Institute of Cellular Biorehabilitation, Kharkiv, Ukraine.,Yaroslav Mudryi National Law University, Kharkiv, Ukraine
| | | | | | | | | | - Andriy Ivanovich Popovich
- Department of Pathology (Pathology and Forensic Medicine), Bukovinian State Medical University, Chernivtsi, Ukraine
| |
Collapse
|
14
|
Zhou C, Zhao H, Yang F, Huangfu L, Dong C, Wang S, Zhang J. Clinical and Genetic Features of Brainstem Glioma in Adults: A Report of 50 Cases in a Single Center. J Clin Neurol 2021; 17:220-228. [PMID: 33835742 PMCID: PMC8053546 DOI: 10.3988/jcn.2021.17.2.220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
Background and Purpose Brainstem gliomas (BSGs) in adults are rare brain tumors with dismal outcomes. The aim of this study was to determine the clinical and genetic features in a series of BSGs and their association with the prognosis. Methods Fifty patients who underwent a stereotactic biopsy between January 2016 and April 2018 at a single institution were collected. Data on clinicopathological characteristics were analyzed and factors associated with patient survival were identified using a Cox regression model. Results The median age at diagnosis was 55.5 years, and 62% of the patients were male. Glioblastoma (44%) accounted for the largest proportion of BSGs, and oligodendroglioma (2 of 50) was rarely encountered. The IDH mutation (6 of 44) occurred infrequently in astrocytomas, and IDH-mutant tumors harbored both ATRX loss and MGMT promoter methylation at a relatively low level. Wild-type IDH astrocytomas were identified as having high rates of 1p/19q codeletion (5 of 38) and loss of heterozygosity 1p (8 of 38) or 19q (8 of 38) only. In diffuse midline glioma H3K27M mutant, MGMT promoter methylation occurred in three of four cases. Patients were offered radiotherapy and/or concurrent/adjuvant temozolomide chemotherapy, and their median survival time was 13 months. Multivariate analysis revealed that a low tumor grade, absence of tumor enhancement, duration of symptoms ≥3 months, Karnofsky performance status ≥70, and ATRX loss conferred a survival advantage. Conclusions Adult BSGs showed different molecular genetic characteristics, but also resembled supratentorial gliomas in their clinical features associated with oncological outcomes.
Collapse
Affiliation(s)
- Chunhui Zhou
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Hao Zhao
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Fan Yang
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Luokai Huangfu
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Chao Dong
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Shuwei Wang
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
15
|
Lawler SE, Nowicki MO, Ricklefs FL, Chiocca EA. Immune Escape Mediated by Exosomal PD-L1 in Cancer. ADVANCED BIOSYSTEMS 2020; 4:e2000017. [PMID: 32383351 PMCID: PMC7968115 DOI: 10.1002/adbi.202000017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are now well established as important mediators of intercellular communication. EVs constitute a diverse group of secreted vesicles which function by the delivery of protein and nucleic acid cargoes from donor to recipient cells. In cancer, tumor cell-derived EVs are shown to promote disease progression by facilitating local reprogramming of the tumor microenvironment. EVs also have more distant systemic effects via transport in biofluids, and therefore have great potential as biomarkers for disease detection and monitoring. Recently, the discovery that EVs derived from glioblastoma cells can mediate immunosuppression by activation of immune checkpoint signaling and T cell dysfunction was reported. Mechanistically we showed that this occurs via direct binding of PD-L1 secreted in EVs, to its receptor PD1 expressed on the surface of activated T cells. This previously unidentified mechanism of tumor immunosuppression has been confirmed in subsequent independent studies, which have demonstrated the biologic importance of this mechanism across multiple tumor types. These studies have established a new and significant paradigm in which PD-L1 containing tumor cell-derived EVs cause immune suppression by the direct engagement of PD1 on T cells, decreasing their activation and providing a further barrier to protect tumors from T cell killing.
Collapse
Affiliation(s)
- Sean E Lawler
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Michal O Nowicki
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - E Antonio Chiocca
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Ni H, Ji D, Huang Z, Li J. SMAGP knockdown inhibits the malignant phenotypes of glioblastoma cells by inactivating the PI3K/Akt pathway. Arch Biochem Biophys 2020; 695:108628. [PMID: 33049294 DOI: 10.1016/j.abb.2020.108628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
Small trans-membrane and glycosylated protein (SMAGP), a novel small trans-membrane glycoprotein, is reported to be upregulated in multiple cancers and involved in tumor development. However, little is known about its role in the development of glioblastoma (GBM). GEPIA database was used to analyze SMAGP expression and evaluate the prognostic value of SMAGP in GBM. GO and KEGG pathway enrichment analyses were used to predict the biological functions and pathways of SMAGP and 948 SMAGP-correlated genes using DAVID database. Cell viability, colony formation ability, apoptosis, and invasion were evaluated by MTT, colony formation assay, flow cytometry analysis, and Transwell invasion assay, respectively. Western blot was applied to detect the expression of SMAGP, matrix metalloproteinase (MMP)-2, and MMP-9 and analyze the changes of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Results showed that SMAGP was upregulated and correlated with poor prognosis in GBM. Functional annotation analysis revealed that SMAGP and 948 SMAGP-correlated genes were primarily associated with cell adhesion and PI3K/Akt pathway. SMAGP interference inhibited cell viability and colony formation ability and promoted apoptosis in GBM cells. Moreover, SMAGP interference inhibited GBM cell invasion and suppressed MMP-2 and MMP-9 expression. Additionally, SMAGP silencing inhibited the PI3K/Akt pathway in GBM cells. Overexpression of Akt abolished the effects of SMAGP knockdown on the malignant phenotypes of GBM cells. In conclusion, SMAGP silencing inhibited the malignant phenotypes of GBM cells by inactivating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhixiong Huang
- Department of Neurology, Nanshi Hospital, Nanyang, 473065, China
| | - Jing Li
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China.
| |
Collapse
|
17
|
Sareddy GR, Pratap UP, Viswanadhapalli S, Venkata PP, Nair BC, Krishnan SR, Zheng S, Gilbert AR, Brenner AJ, Brann DW, Vadlamudi RK. PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling. Neurooncol Adv 2019; 1:vdz042. [PMID: 32309805 PMCID: PMC7147719 DOI: 10.1093/noajnl/vdz042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array. PELP1 expression in established and primary GBM cell lines was analyzed by Western blotting. The effect of PELP1 knockdown was studied using cell proliferation, colony formation, migration, and invasion assays. Mechanistic studies were conducted using RNA-seq, RT-qPCR, immunoprecipitation, reporter gene assays, and signaling analysis. Mouse orthotopic models were used for preclinical evaluation of PELP1 knock down. Results Nuclear receptor coregulator PELP1 is highly expressed in gliomas compared to normal brain tissues, with the highest expression in GBM. PELP1 expression was elevated in established and patient-derived GBM cell lines compared to normal astrocytes. Knockdown of PELP1 resulted in a significant decrease in cell viability, survival, migration, and invasion. Global RNA-sequencing studies demonstrated that PELP1 knockdown significantly reduced the expression of genes involved in the Wnt/β-catenin pathway. Mechanistic studies demonstrated that PELP1 interacts with and functions as a coactivator of β-catenin. Knockdown of PELP1 resulted in a significant increase in survival of mice implanted with U87 and GBM PDX models. Conclusions PELP1 expression is upregulated in GBM and PELP1 signaling via β-catenin axis contributes to GBM progression. Thus, PELP1 could be a potential target for the development of therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Binoj C Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
18
|
Wang W, Zhang L, Gao W, Zhang D, Zhao Z, Bao Y. miR‑489 promotes apoptosis and inhibits invasiveness of glioma cells by targeting PAK5/RAF1 signaling pathways. Oncol Rep 2019; 42:2390-2401. [PMID: 31638257 PMCID: PMC6859450 DOI: 10.3892/or.2019.7381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/24/2019] [Indexed: 12/03/2022] Open
Abstract
Glioma patients receiving therapy are at a high risk of relapse and rapid progression and, thus, more effective treatments are required. The aim of the present study was to determine the suppressive role of miR-489 as an alternative therapeutic target for preventing glioma progression. The results of the present study demonstrated that patients with relatively lower levels of expression of miR-489 had more favorable clinical outcomes. Furthermore, miR-489 expression was inversely correlated with p21-activated kinase 5 (PAK5) mRNA expression levels in glioma specimens. A dual luciferase reporter assay revealed that miR-489 suppressed PAK5 expression by directly targeting the PAK5 3′-untranslated region. The effects of miR-489 on cell viability were measured using MTT and Cell Counting Kit-8 assays. The results demonstrated that ectopic expression of miR-489 mimic decreased cell viability by interfering with cyclin D1 and c-Myc signaling. Additionally, the effect of miR-489 on apoptosis was determined using Hoechst 33258 staining and flow cytometry. The results demonstrated that miR-489 decreased the activity of RAF1, reduced Bcl-2 and promoted Bax expression, resulting in increased cell apoptosis. Furthermore, the effect of miR-489 mimic on cellular motility was assessed using migration and invasion assays. miR-489 was shown to abolish the PAK5/RAF1/MMP2 pathway, resulting in decreased cell invasion ability. These results indicated that miR-489 may be involved in PAK5-mediated regulation of glioma progression, demonstrating the potential therapeutic benefits of targeting miR-489 in glioma.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Luyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dongyong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zilong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yijun Bao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Li L, Liu X, Ma X, Deng X, Ji T, Hu P, Wan R, Qiu H, Cui D, Gao L. Identification of key candidate genes and pathways in glioblastoma by integrated bioinformatical analysis. Exp Ther Med 2019; 18:3439-3449. [PMID: 31602219 PMCID: PMC6777220 DOI: 10.3892/etm.2019.7975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM), characterized by high morbidity and mortality, is one of the most common lethal diseases worldwide. To identify the molecular mechanisms that contribute to the development of GBM, three cohort profile datasets (GSE50161, GSE90598 and GSE104291) were integrated and thoroughly analyzed; these datasets included 57 GBM cases and 22 cases of normal brain tissue. The current study identified differentially expressed genes (DEGs), and analyzed potential candidate genes and pathways. Additionally, a DEGs-associated protein-protein interaction (PPI) network was established for further investigation. Then, the hub genes associated with prognosis were identified using a Kaplan-Meier analysis based on The Cancer Genome Atlas database. Firstly, the current study identified 378 consistent DEGs (240 upregulated and 138 downregulated). Secondly, a cluster analysis of the DEGs was performed based on functions of the DEGs and signaling pathways were analyzed using the enrichment analysis tool on DAVID. Thirdly, 245 DEGs were identified using PPI network analysis. Among them, two co-expression modules comprising of 30 and 27 genes, respectively, and 35 hub genes were identified using Cytoscape MCODE. Finally, Kaplan-Meier analysis of the hub genes revealed that the increased expression of calcium-binding protein 1 (CABP1) was negatively associated with relapse-free survival. To summarize, all enriched Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways may participate in mechanisms underlying GBM occurrence and progression, however further studies are required. CABP1 may be a key gene associated with the biological process of GBM development and may be involved in a crucial mechanism of GBM progression.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaohui Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoye Ma
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xianyu Deng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Tao Ji
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Pingping Hu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Ronghao Wan
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Huijia Qiu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Department of Neurosurgery, Ninghai First Hospital, Ningbo, Zhejiang 315600, P.R. China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Department of Neurosurgery, Ninghai First Hospital, Ningbo, Zhejiang 315600, P.R. China
| |
Collapse
|
20
|
Zhang Y, Zhang R, Sui R, Chen Y, Liang H, Shi J, Piao H. MicroRNA-374a Governs Aggressive Cell Behaviors of Glioma by Targeting Prokineticin 2. Technol Cancer Res Treat 2019; 18:1533033818821401. [PMID: 30803356 PMCID: PMC6373991 DOI: 10.1177/1533033818821401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-374a has been abnormally expressed in several cancer types; however, its role in
glioma remains unclear. Therefore, we aimed to investigate whether microR-374a
participated in the progression of glioma. Expression of microR-374a in glioma cell lines
and normal cell line was measured by quantitative real-time polymerase chain reaction.
Luciferase reporter assay and Western blot were used to detect the targets of microR-374a.
In vitro functional experiments were conducted to investigate the
biological role of microR-374a. Low expression of microR-374a was found in glioma cell
lines. Prokineticin 2 was identified as a direct target of microR-374a in glioma.
Investigations on the mechanisms related to glioma progression showed that microR-374a
inhibited glioma cell proliferation, cell cycle progression, and cell invasion through
targeting Prokineticin 2. Taken together, these results revealed that microR-374a
functions as tumor suppressor by targeting Prokineticin 2, suggesting it might be a novel
therapeutic target for glioma.
Collapse
Affiliation(s)
- Ye Zhang
- 1 Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dadong District, Shenyang, PR China
| | - Rui Zhang
- 2 Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dadong District, Shenyang, PR China
| | - Rui Sui
- 1 Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dadong District, Shenyang, PR China
| | - Yi Chen
- 1 Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dadong District, Shenyang, PR China
| | - Haiyang Liang
- 1 Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dadong District, Shenyang, PR China
| | - Ji Shi
- 1 Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dadong District, Shenyang, PR China
| | - Haozhe Piao
- 1 Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dadong District, Shenyang, PR China
| |
Collapse
|
21
|
Pediatric Langerhans cell histiocytosis: the impact of mutational profile on clinical progression and late sequelae. Ann Hematol 2019; 98:1617-1626. [DOI: 10.1007/s00277-019-03678-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
|
22
|
Abstract
Diffuse gliomas are the most common human primary brain tumors and remain incurable. They are complex entities in which diverse genetic and nongenetic effects determine tumor biology and clinical course. Our current understanding of gliomas in patients is primarily based on genomic and transcriptomic methods that have profiled them as bulk, providing critical information yet masking the diversity of cells within each tumor. Recent advances in single-cell DNA and RNA profiling have paved the way to studying tumors at cellular resolution. Here, we review initial studies deploying single-cell analysis in clinical glioma samples, with a focus on RNA expression profiling. We highlight how these studies provide new insights into glioma biology, tumor heterogeneity, cancer cell lineages, cancer stem cell programs, the tumor microenvironment, and glioma classification.
Collapse
Affiliation(s)
- Itay Tirosh
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Abstract
Recent advances in molecular pathology have reshaped the practice of brain tumor diagnostics. The classification of gliomas has been restructured with the discovery of isocitrate dehydrogenase (IDH) 1/2 mutations in the vast majority of lower grade infiltrating gliomas and secondary glioblastomas (GBM), with IDH-mutant astrocytomas further characterized by TP53 and ATRX mutations. Whole-arm 1p/19q codeletion in conjunction with IDH mutations now define oligodendrogliomas, which are also enriched for CIC, FUBP1, PI3K, NOTCH1, and TERT-p mutations. IDH-wild-type (wt) infiltrating astrocytomas are mostly primary GBMs and are characterized by EGFR, PTEN, TP53, NF1, RB1, PDGFRA, and CDKN2A/B alterations, TERT-p mutations, and characteristic copy number alterations including gains of chromosome 7 and losses of 10. Other clinically and genetically distinct infiltrating astrocytomas include the aggressive H3K27M-mutant midline gliomas, and smaller subsets that occur in the setting of NF1 or have BRAF V600E mutations. Low-grade pediatric gliomas are both genetically and biologically distinct from their adult counterparts and often harbor a single driver event often involving BRAF, FGFR1, or MYB/MYBL1 genes. Large scale genomic and epigenomic analyses have identified distinct subgroups of ependymomas tightly linked to tumor location and clinical behavior. The diagnosis of embryonal neoplasms also integrates molecular testing: (I) 4 molecularly defined, biologically distinct subtypes of medulloblastomas are now recognized; (II) 3 histologic entities have now been reclassified under a diagnosis of "embryonal tumor with multilayered rosettes (ETMR), C19MC-altered"; and (III) atypical teratoid/rhabdoid tumors (AT/RT) now require SMARCB1 (INI1) or SMARCA4 (BRG1) alterations for their diagnosis. We discuss the practical use of contemporary biomarkers for an integrative diagnosis of central nervous system neoplasia.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW In this review, we seek to summarize the literature concerning the use of single-cell RNA-sequencing for CNS gliomas. RECENT FINDINGS Single-cell analysis has revealed complex tumor heterogeneity, subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment influence in the disease process. Although bulk RNA-sequencing has guided our initial understanding of glioma genetics, this method does not accurately define the heterogeneous subpopulations found within these tumors. Single-cell techniques have appealing applications in cancer research, as diverse cell types and the tumor microenvironment have important implications in therapy. High cost and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued innovation will improve accessibility and expand our of knowledge gliomas.
Collapse
|
25
|
Li Y, He ZC, Liu Q, Zhou K, Shi Y, Yao XH, Zhang X, Kung HF, Ping YF, Bian XW. Large Intergenic Non-coding RNA-RoR Inhibits Aerobic Glycolysis of Glioblastoma Cells via Akt Pathway. J Cancer 2018; 9:880-889. [PMID: 29581766 PMCID: PMC5868152 DOI: 10.7150/jca.20869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Reprogramming energy metabolism is a hallmark of malignant tumors, including glioblastoma (GBM). Aerobic glycolysis is often utilized by tumor cells to maintain survival and proliferation. However, the underlying mechanisms of aerobic glycolysis in GBM remain elusive. Herein, we demonstrated that large intergenic non-coding RNA-RoR (LincRNA-RoR) functioned as a critical suppressor to inhibit the aerobic glycolysis and viability of GBM cells. We found that LincRNA-RoR was markedly reduced in GBM tissues compared with adjacent non-tumor tissues from 10 cases of GBM patients. Consistently, LincRNA-RoR expression in GBM cells was significantly lower than that in normal glial cells. The aerobic glycolysis of GBM cells, as determined by the measurement of glucose uptake and lactate production, was impaired by LincRNA-RoR overexpression. Mechanistically, LincRNA-RoR inhibited the expression of Rictor, the key component of mTORC2 (mammalian target of rapamycin complex 2), to suppress the activity of Akt pathway and impair the expression of glycolytic effectors, including Glut1, HK2, PKM2 and LDHA. Finally, enforced expression of LincRNA-RoR reduced the proliferation of GBM cells in vitro, restrained tumor growth in vivo, and repressed the expression of glycolytic molecules in GBM xenografts. Collectively, our results underscore LincRNA-RoR as a new suppressor of GBM aerobic glycolysis with therapeutic potential.
Collapse
Affiliation(s)
- Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Kai Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Hsiang-Fu Kung
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| |
Collapse
|
26
|
Ge J, Hu W, Zhou H, Yu J, Sun C, Chen W. Ubiquitin carboxyl-terminal hydrolase isozyme L5 inhibits human glioma cell migration and invasion via downregulating SNRPF. Oncotarget 2017; 8:113635-113649. [PMID: 29371935 PMCID: PMC5768352 DOI: 10.18632/oncotarget.23071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin C-terminal Hydrolase-L5 (UCH-L5/UCH37), a member of the deubiquitinases (DUBs), suppresses protein degeneration via removing ubiquitin from the distal subunit of the polyubiquitin chain. The activity of UCH-L5 is enhanced when UCH-L5 combines with proteasome 19S regulatory subunit by Rpn13/Admr1 receptor and inhibited when UCH-L5 interacts with NFRKB. But the role of UCH-L5 in gliomas remains unknown. In this study, analysis of 19 frozen and 51 paraffin-embedded clinic pathological cases showed that UCH-L5 expression in glioma tissues was lower than normal brain tissues. In vitro, we found that UCH-L5 could inhibit migration and invasion of U87MG and U251 cells. It has been reported that the expression of SNRPN, SNRPF, and CKLF was abnormal in gliomas or other tumors. We also found that SNRPF-siRNA, SNRPN-siRNA and CKLF-siRNA could inhibit migration and invasion of U87MG cells. And knockdown of UCH-L5 expression improved both mRNA expression and protein level of SNRPF. The relationship between UCH-L5 and SNRPF was further confirmed in 293T cells. Our study showed that UCH-L5 could inhibit migration and invasion of glioma cells via down regulating expression of SNRPF. And the above findings suggest that UCH-L5 may inhibit occurrence and metastasis of gliomas.
Collapse
Affiliation(s)
- Jiafeng Ge
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiwei Hu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Juan Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chongran Sun
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weilin Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| |
Collapse
|
27
|
Sun XY, Qu Y, Ni AR, Wang GX, Huang WB, Chen ZP, Lv ZF, Zhang S, Lindsay H, Zhao S, Li XN, Feng BH. Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3. Oncotarget 2017; 8:75232-75242. [PMID: 29088860 PMCID: PMC5650415 DOI: 10.18632/oncotarget.20744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/06/2017] [Indexed: 11/25/2022] Open
Abstract
N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Qu
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - An-Ran Ni
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gui-Xiang Wang
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Bin Huang
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Clinical Pharmacy, Puning People's Hospital, Puning, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhu-Fen Lv
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China
| | - Song Zhang
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Pharmacy, The First People's Hospital of Guangyuan, Guangyuan, China
| | - Holly Lindsay
- Preclinical Neuro-Oncology Research Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sibo Zhao
- Preclinical Neuro-Oncology Research Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xiao-Nan Li
- Preclinical Neuro-Oncology Research Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bing-Hong Feng
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
28
|
Juratli TA, Qin N, Cahill DP, Filbin MG. Molecular pathogenesis and therapeutic implications in pediatric high-grade gliomas. Pharmacol Ther 2017; 182:70-79. [PMID: 28830841 DOI: 10.1016/j.pharmthera.2017.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade gliomas (HGG) are the most common malignant brain tumors in the pediatric population and account for a large subset of all pediatric central nervous system neoplasms. The management of pediatric HGG continues to be challenging, with poor outcome in many cases despite aggressive treatments. Consequently, parallel research efforts have been focused on identifying the underlying genetic and biological basis of pediatric HGG in order to more clearly define prognostic subgroups for treatment stratification as well as identify new treatment targets. These cutting-edge advances have revolutionized pediatric neuro-oncology and have revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Promising treatments - including pathway-targeting small molecules as well as epigenetic therapy - are being evaluated in clinical trials, and recent genomic discoveries in rare glioma subgroups have led to the identification of additional new potentially-actionable alterations. This review summarizes the current state of knowledge about the molecular characterization of pediatric HGG in correlation to the revised World Health Organization (WHO) classification, as well as provides an overview of some targeted treatment approaches in the modern clinical management of high-grade gliomas.
Collapse
Affiliation(s)
- Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) - partner site Essen/Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review will discuss the role of several key players in glioma classification and biology, namely isocitrate dehydrogenase 1 and 2 (IDH1/2), alpha thalassemia/mental retardation syndrome X-linked (ATRX), B-Raf (BRAF), telomerase reverse transcriptase (TERT), and H3K27M. RECENT FINDINGS IDH1/2 mutation delineates oligoden-droglioma, astrocytoma, and secondary glioblastoma (GBM) from primary GBM and lower-grade gliomas with biology similar to GBM. Additional mutations including TERT, 1p/19q, and ATRX further guide glioma classification and diagnosis, as well as pointing directions toward individualized treatments for these distinct molecular subtypes. ATRX and TERT mutations suggest the importance of telomere maintenance in gliomagenesis. BRAF alterations are key in certain low-grade gliomas and pediatric gliomas but rarely in high-grade gliomas in adults. Histone mutations (e.g., H3K27M) and their effect on chromatin modulation are novel mechanisms of cancer generation and uniquely seen in midline gliomas in children and young adults. Over the past decade, a remarkable accumulation of knowledge from the genomic study of gliomas has led to reclassification of tumors, new understanding of oncogenic mechanisms, and novel treatment strategies.
Collapse
|
30
|
Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma—From molecular mechanisms to therapeutic perspectives. Sci Signal 2017; 10:10/470/eaal2323. [DOI: 10.1126/scisignal.aal2323] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Chen S, Wang Y, Ni C, Meng G, Sheng X. HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells. Biomed Pharmacother 2016; 83:898-904. [DOI: 10.1016/j.biopha.2016.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 01/04/2023] Open
|
32
|
The ubiquitin-like modifier FAT10 in cancer development. Int J Biochem Cell Biol 2016; 79:451-461. [PMID: 27393295 DOI: 10.1016/j.biocel.2016.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022]
Abstract
During the last years it has emerged that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 expression is highly up-regulated by pro-inflammatory cytokines IFN-γ and TNF-α in all cell types and tissues and it was also found to be up-regulated in many cancer types such as glioma, colorectal, liver or gastric cancer. While pro-inflammatory cytokines within the tumor microenvironment probably contribute to FAT10 overexpression, an increasing body of evidence argues that pro-malignant capacities of FAT10 itself largely underlie its broad and intense overexpression in tumor tissues. FAT10 thereby regulates pathways involved in cancer development such as the NF-κB- or Wnt-signaling. Moreover, FAT10 directly interacts with and influences downstream targets such as MAD2, p53 or β-catenin, leading to enhanced survival, proliferation, invasion and metastasis formation of cancer cells but also of non-malignant cells. In this review we will provide an overview of the regulation of FAT10 expression as well as its function in carcinogenesis.
Collapse
|