1
|
Daneshmand M, SalarAmoli J, BaghbanZadeh N. A QSAR study for predicting malformation in zebrafish embryo. Toxicol Mech Methods 2024; 34:743-749. [PMID: 38586962 DOI: 10.1080/15376516.2024.2338907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Developmental toxicity tests are extremely expensive, require a large number of animals, and are time-consuming. It is necessary to develop a new approach to simplify the analysis of developmental endpoints. One of these endpoints is malformation, and one group of ongoing methods for simplifying is in silico models. In this study, we aim to develop a quantitative structure-activity relationship (QSAR) model and identify the best algorithm for predicting malformations, as well as the most important and effective physicochemical properties associated with malformation. METHODS The dataset was extracted from a reliable database called COMPTOX. Physicochemical properties (descriptors) were calculated using Mordred and RDKit chemoinformatics software. The data were cleaned, preprocessed, and then split into training and testing sets. Machine learning algorithms, such as gradient boosting model (GBM) and logistic regression (LR), as well as deep learning models, including multilayer perceptron (MLP) and neural networks (NNs) trained with train set data and different sets of descriptors. The models were then validated with test set and various statistical parameters, such as Matthew's correlation coefficient (MCC) and balanced accuracy (BAC) score, were used to compare the models. RESULTS A set of descriptors containing with 78% AUC was identified as the best set of descriptors. Gradient boosting was determined to be the best algorithm with 78% predictive power. CONCLUSIONS The descriptors that were the most effective for developing models directly impact the mechanism of malformation, and GBM is the best model due to its MCC and BAC.
Collapse
Affiliation(s)
- Mahsa Daneshmand
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jamileh SalarAmoli
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
2
|
Montoya XC, Thompson WA, Smith CM, Wilson JM, Vijayan MM. Exposure to Total Suspended Solids (TSS) Impacts Gill Structure and Function in Adult Zebrafish. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:14. [PMID: 39012477 DOI: 10.1007/s00128-024-03922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
Total suspended solids (TSS) are a major contributor of anthropogenic impacts to aquatic systems. TSS exposure have been shown to affect the function of gills, but the mode of action is unclear. Zebrafish (Danio rerio) is emerging as an excellent model for mechanistic toxicology, and as there are no baseline studies on TSS effects in zebrafish gills, we tested the hypothesis that environmental concentrations of TSS damages gill structure and function in this species. Adult zebrafish were exposed to either 0, 10, 100, 500, 1000, or 2000 mg/L TSS for 4 days to assess the gill morphology. The minimal concentration that affected the gill structure was further tested for the distribution of key ion transporters, including Na+/K+- ATPase (NKA) and vacuolar-type H+-ATPase (VHA), using confocal microscopy. Our results reveal that TSS concentration as low as 100 mg/L alters the morphology of gills, including greater filament thickness, lamellae thickness, and epithelial lifting. This was also associated with a reduction in NKA immunoreactive (IR) cell count and intensity in the 100 mg/L TSS group, while there was neither a change in the VHA-IR cell count or expression nor the transcript abundance of atp6v1a and atp1a1a4 in the gills. Markers of stress response in these animals, including levels of cortisol, glucose, lactate, and glycogen were not altered after 4 days of TSS exposure. Overall, environmentally relevant concentrations of TSS can damage the gill structure and function in zebrafish and has the potential to enhance the toxicity of contaminants acting via the gills.
Collapse
Affiliation(s)
- Xena C Montoya
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - W Andrew Thompson
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Courtney M Smith
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
3
|
Tang Q, Zhao B, Cao S, Wang S, Liu Y, Bai Y, Song J, Pan C, Zhao H, Lan X. Neurodevelopmental toxicity of a ubiquitous disinfection by-product, bromoacetic acid, in Zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135211. [PMID: 39024767 DOI: 10.1016/j.jhazmat.2024.135211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Disinfection of public drinking water and swimming pools is crucial for preventing waterborne diseases, but it can produce harmful disinfection by-products (DBPs), increasing the risk of various diseases for those frequently exposed to such environments. Bromoacetic acid (BAA) is a ubiquitous DBP, with toxicity studies primarily focused on its in vitro cytotoxicity, and insufficient research on its neurodevelopmental toxicity. Utilizing zebrafish as a model organism, this study comprehensively explored BAA's toxic effects and uncovered the molecular mechanisms through neurobehavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention and molecular biological detection. Results demonstrated BAA induced significant changes on various indicators in the early development of zebrafish. Furthermore, BAA disrupted behavioral patterns in zebrafish larvae across locomotion activity, light-dark stimulation, and vibration stimulation paradigms. Subsequent investigation focused on larvae revealed BAA inhibited neuronal development, activated neuroinflammatory responses, and altered vascular morphology. Transcriptomic analysis revealed BAA-stressed zebrafish exhibited downregulation of visual transduction-related genes and activation of ferroptosis and cellular apoptosis. Neurobehavioral disorders were recovered by inhibiting ferroptosis and apoptosis. This study elucidates the neurodevelopmental toxicity associated with BAA, which is crucial for understanding health risks of DBPs and for the development of more effective detection methods and regulatory strategies.
Collapse
Affiliation(s)
- Qi Tang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Bixi Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Siqi Cao
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yue Liu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yangyang Bai
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jiajun Song
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Xianyong Lan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Azevedo RDSD, Falcão KVG, Almeida SMVD, Araújo MC, Silva-Filho RC, Souza Maia MBD, Amaral IPGD, Leite ACR, de Souza Bezerra R. The tissue-specific nature of physiological zebrafish mitochondrial bioenergetics. Mitochondrion 2024; 77:101901. [PMID: 38777222 DOI: 10.1016/j.mito.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.
Collapse
Affiliation(s)
- Rafael David Souto de Azevedo
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Garanhuns, PE, Brazil.
| | - Kivia Vanessa Gomes Falcão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | - Marlyete Chagas Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | | | | | | | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
5
|
Chen X, Li Y, Qin Z. Developing a novel quantitative parameter for characterizing spatial distribution of fish following exposure to chemicals and wastewater: Behavioral Gini coefficient. J Environ Sci (China) 2024; 141:129-138. [PMID: 38408814 DOI: 10.1016/j.jes.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 02/28/2024]
Abstract
While the spatial distribution pattern of fish is increasingly used for toxicological test of chemicals or wastewater, no ideal parameter is available for quantitative assessment of spatial distribution, especially uneven distribution with multiple hotspots. Here, to develop a quantitative assessment parameter for spatial distribution, the zebrafish were exposed to ethanol, pentylenetetrazole (PTZ), paraquat dichloride (paraquat) and wastewater, followed by a behavioral test in a narrow tank. Behavioral data was acquired and analyzed by idTracker and MATLAB. By comparing the effects of all treatments on behavior parameters, we confirmed that the spatial distribution was more easily altered rather than general locomotor parameters, e.g. 0.7-70 mg/L PTZ and 5-20 mg/L paraquat being effective for altering spatial distribution but having little effects on general locomotor parameters. Based on the heatmap, i.e., the cumulative proportion of grids and that of frequency in grids, we calculated the behavioral Gini coefficient (Gb) for quantitative assessment of fish spatial distribution. The Gini coefficient ranged from zero to 1, with larger values meaning poorer evenness of spatial distribution. Of note, Gb showed smaller coefficient of variations (CV) with 3%-19% between replicate tanks in all treatments than the highest frequency (4%-79%), displaying well robustness. Especially, Gb addressed the challenge of the complicated heatmap with multiple hotspots. Overall, the behavioral Gini coefficient we established is an ideal parameter to quantitatively assess spatial distribution of fish shoal, which is expected to be applied in toxicity testing for chemicals and wastewater and automatic quality monitoring for surface water and aquaculture water.
Collapse
Affiliation(s)
- Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Xia J, Wang H, Zhong Z, Jiang J. Inhibition of PIKfyve Leads to Lysosomal Disorders via Dysregulation of mTOR Signaling. Cells 2024; 13:953. [PMID: 38891085 PMCID: PMC11171791 DOI: 10.3390/cells13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PIKfyve is an endosomal lipid kinase that synthesizes phosphatidylinositol 3,5-biphosphate from phosphatidylinositol 3-phsphate. Inhibition of PIKfyve activity leads to lysosomal enlargement and cytoplasmic vacuolation, attributed to impaired lysosomal fission processes and homeostasis. However, the precise molecular mechanisms underlying these effects remain a topic of debate. In this study, we present findings from PIKfyve-deficient zebrafish embryos, revealing enlarged macrophages with giant vacuoles reminiscent of lysosomal storage disorders. Treatment with mTOR inhibitors or effective knockout of mTOR partially reverses these abnormalities and extend the lifespan of mutant larvae. Further in vivo and in vitro mechanistic investigations provide evidence that PIKfyve activity is essential for mTOR shutdown during early zebrafish development and in cells cultured under serum-deprived conditions. These findings underscore the critical role of PIKfyve activity in regulating mTOR signaling and suggest potential therapeutic applications of PIKfyve inhibitors for the treatment of lysosomal storage disorders.
Collapse
Affiliation(s)
- Jianhong Xia
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
| | - Haiyun Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Zhihang Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. G3 (BETHESDA, MD.) 2024; 14:jkae050. [PMID: 38466753 PMCID: PMC11075544 DOI: 10.1093/g3journal/jkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex-determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting that Chr4R transcriptomics might differ from the rest of the genome. To test this hypothesis, we conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes in the Nadia strain and identified 4 regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brains and livers validated reduced transcripts from Region-2 in somatic cells, but without sex specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. Region-2 lacks protein-coding genes with human orthologs; has zinc finger genes expressed early in zygotic genome activation; has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and a distinct set of repetitive elements. The colocalization of (1) genes silenced in ovaries but not in testes that are (2) expressed in embryos briefly at the onset of zygotic genome activation; (3) maternal-specific genes for translation machinery; (4) maternal-specific spliceosome components; and (5) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a maternal-to-zygotic-transition gene regulatory block.
Collapse
|
8
|
Tjeerdema E, Lee Y, Metry R, Hamdoun A. Semi-automated, high-content imaging of drug transporter knockout sea urchin (Lytechinus pictus) embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:313-329. [PMID: 38087422 DOI: 10.1002/jez.b.23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 05/01/2024]
Abstract
A defining feature of sea urchins is their extreme fecundity. Urchins produce millions of transparent, synchronously developing embryos, ideal for spatial and temporal analysis of development. This biological feature has been effectively utilized for ensemble measurement of biochemical changes. However, it has been underutilized in imaging studies, where single embryo measurements are used. Here we present an example of how stable genetics and high content imaging, along with machine learning-based image analysis, can be used to exploit the fecundity and synchrony of sea urchins in imaging-based drug screens. Building upon our recently created sea urchin ABCB1 knockout line, we developed a high-throughput assay to probe the role of this drug transporter in embryos. We used high content imaging to compare accumulation and toxicity of canonical substrates and inhibitors of the transporter, including fluorescent molecules and antimitotic cancer drugs, in homozygous knockout and wildtype embryos. To measure responses from the resulting image data, we used a nested convolutional neural network, which rapidly classified embryos according to fluorescence or cell division. This approach identified sea urchin embryos with 99.8% accuracy and determined two-cell and aberrant embryos with 96.3% and 89.1% accuracy, respectively. The results revealed that ABCB1 knockout embryos accumulated the transporter substrate calcein 3.09 times faster than wildtypes. Similarly, knockouts were 4.71 and 3.07 times more sensitive to the mitotic poisons vinblastine and taxol. This study paves the way for large scale pharmacological screens in the sea urchin embryo.
Collapse
Affiliation(s)
- Evan Tjeerdema
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Rachel Metry
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Luo R, He C, He J, Li Z, Wang Y, Hou M, Li P, Yu W, Cheng S, Song Z. Acute toxicology on Danio rerio embryo and adult from Chinese traditional medicine preparation Danggui Shaoyao san. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117528. [PMID: 38043754 DOI: 10.1016/j.jep.2023.117528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.
Collapse
Affiliation(s)
- Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shaowu Cheng
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
10
|
Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570431. [PMID: 38106184 PMCID: PMC10723407 DOI: 10.1101/2023.12.06.570431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting the hypothesis that the Chr4R transcriptome might be different from the rest of the genome. We conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes and identified four regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brain and liver validated few transcripts from Region-2 in somatic cells, but without sex-specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. In Region-2, protein-coding genes lack human orthologs; it has zinc finger genes expressed early in zygotic genome activation; it has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and an distinct set of repetitive elements. The colocalization of 1) genes silenced in ovaries but not in testes that are 2) expressed in embryos briefly at the onset of zygotic genome activation; 3) maternal-specific genes for translation machinery; 4) maternal-specific spliceosome components; and 4) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a Maternal-to-Zygotic-Transition Gene Regulatory Block.
Collapse
|
11
|
Wang X, Ma T, Wei C, Liu J, Yu T, Zou Y, Liu S, Yang Z, Xi J. Toxic effects of exogenous retinoic acid on the neurodevelopment of zebrafish (Danio rerio) embryos. Neurotoxicol Teratol 2023; 100:107291. [PMID: 37689270 DOI: 10.1016/j.ntt.2023.107291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Endogenous retinoic acid (RA) is essential for embryonic development and maintaining adult physiological processes. Human-caused RA residues in the environment threaten the survival of organisms in the environment. We employed zebrafish as a model to explore the developmental impacts of excess RA. We used exogenous RA to raise the amount of RA signal in the embryos and looked at the effects of excess RA on embryonic morphological development. Upregulation of the RA signal significantly reduced embryo hatching and increased embryo malformation. To further understand the neurotoxic impact of RA signaling on early neurodevelopment, we measured the expression of neurodevelopmental marker genes and cell death and proliferation markers in zebrafish embryos. Exogenous RA disrupted stem cell (SC) and neuron marker gene expression and exacerbated apoptosis in the embryos. Furthermore, we looked into the links between the transcriptional coactivator RBM14 and RA signaling to better understand the mechanism of RA neurotoxicity. There was a negative interaction between RA signaling and the transcription coactivator RBM14, and the morpholino-induced RBM14 down-regulation can partially block the effects of RAR antagonist BMS493-induced RA signaling inhibition on embryonic malformation and cell apoptosis. In conclusion, exogenous RA causes neurodevelopmental toxicity, and RBM14 may be involved in this neurotoxic process.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ting Ma
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Cizhao Wei
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, China
| | - Juan Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ting Yu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Zou
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Song Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zheqiong Yang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, China.
| | - Jinlei Xi
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Hu Y, Jia K, Zhou Y, Chen L, Wang F, Yi X, Huang Y, Ge Y, Chen X, Liao D, Peng Y, Meng Y, Liu Y, Luo Q, Cheng B, Zhao Y, Lu H, Yuan W. Rutin hydrate relieves neuroinflammation in zebrafish models: Involvement of NF-κB pathway as a central network. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109062. [PMID: 37678480 DOI: 10.1016/j.fsi.2023.109062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Neuroinflammation is prevalent in multiple brain diseases and may also lead to dementia, cognitive impairment, and impaired spatial memory function associated with neurodegenerative diseases. A neuroprotective and antioxidant flavonoid, rutin hydrate (RH), was evaluated for the anti-neuroinflammatory activity mediated by copper sulfate (CuSO4) solution and lipopolysaccharide (LPS) in zebrafish. The results showed that 100 mg/L RH significantly reduced the ratio of neutrophil mobility in caudal hematopoietic tissue (CHT) region caused by CuSO4 and the number of neutrophils co-localized with facial peripheral nerves. In the LPS model, RH co-injection significantly diminished neutrophil and macrophage migration. Therefore, RH exhibited a significant rescue effect on both models. In addition, RH treatment remarkably reduced the effects of neuroinflammation on the locomotor ability, expression levels of genes associated with behavioral disorders, and acetylcholinesterase (AChE) activity. Furthermore, network pharmacology techniques were employed to investigate the potential mechanisms, and the associated genes and enzyme activities were validated in order to elucidate the underlying mechanisms. Network pharmacological analysis and zebrafish model indicated that RH regulated the expressions of NF-κB pathway-related targets (Toll-like receptor 9 (tlr9), nuclear factor kappa B subunit 1 (nfkb1), RELA proto-oncogene (RelA), nitric oxide synthase 2a, inducible (nos2a), tumour necrosis factor alpha-like (tnfα), interleukin 6 (il6), interleukin 1β (il1β), chemokine 8 (cxcl8), and macrophage migration inhibitory factor (mif)) as well as six key factors (arachidonic acid 4 alpha-lipoxygenase (alox4a), arachidonate 5-lipoxygenase a (alox5), prion protein a (prnpa), integrin, beta 2 (itgb2), catalase (CAT), and alkaline phosphatase (ALP) enzymes). Through this study, a thorough understanding of the mechanism underlying the therapeutic effects of RH in neuroinflammation has been achieved, thereby establishing a solid foundation for further research on the potential therapeutic applications of RH in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yatong Zhou
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lixin Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaokun Yi
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yurui Ge
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaomei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Dalong Liao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yuyang Peng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ye Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yan Zhao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
13
|
Silva PF, de Leaniz CG, Freire FAM, Silveira VAM, Luchiari AC. Different housing conditions for zebrafish: what are the effects? Behav Processes 2023; 209:104886. [PMID: 37150333 DOI: 10.1016/j.beproc.2023.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Zebrafish is a popular experimental model in several research areas but little is known about the effects of using different strains or housing conditions. Poor control of genetic background and housing conditions could affect experimental results and data reproducibility. Here we investigated the effects of two possible sources of variation on zebrafish behaviour: fish origin and environmental parameters (light intensity, water temperature and noise). Zebrafish behaviour was then examined using the 'novel tank test', one of the most common paradigms used to assess anxiety-like behaviours in zebrafish. Our results show that an increase in light intensity alters fish behaviour, particularly freezing duration and distance from the bottom of the tank, indicating increased anxiety. Swimming activity increased at the lowest temperature (25°C). However, different levels of background noise did not cause any significant changes in behaviour. Differences were also found between zebrafish strains and populations: while the AB strain from laboratory 1 was minimally influenced by variation in holding conditions, the AB strain from laboratory 2 was highly affected by changes in temperature, light, and background noise. Our study shows that variation in strains and holding conditions can significantly influence the results of behavioural testing and should be carefully considered in the experimental design and properly reported to improve data interpretation and reproducibility.
Collapse
Affiliation(s)
- Priscila F Silva
- Centre for Sustainable Aquatic Research (CSAR), Department of Biosciences, Swansea University, Swansea, U.K
| | - Carlos Garcia de Leaniz
- Centre for Sustainable Aquatic Research (CSAR), Department of Biosciences, Swansea University, Swansea, U.K
| | - Fulvio A M Freire
- Aquatic Fauna Lab, Department of Botany and Zoology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vanessa A M Silveira
- Fish Lab, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana C Luchiari
- Fish Lab, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
14
|
Pagano C, Navarra G, Coppola L, Savarese B, Avilia G, Giarra A, Pagano G, Marano A, Trifuoggi M, Bifulco M, Laezza C. Impacts of Environmental Pollution on Brain Tumorigenesis. Int J Mol Sci 2023; 24:5045. [PMID: 36902485 PMCID: PMC10002587 DOI: 10.3390/ijms24055045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Pollutants consist of several components, known as direct or indirect mutagens, that can be associated with the risk of tumorigenesis. The increased incidence of brain tumors, observed more frequently in industrialized countries, has generated a deeper interest in examining different pollutants that could be found in food, air, or water supply. These compounds, due to their chemical nature, alter the activity of biological molecules naturally found in the body. The bioaccumulation leads to harmful effects for humans, increasing the risk of the onset of several pathologies, including cancer. Environmental components often combine with other risk factors, such as the individual genetic component, which increases the chance of developing cancer. The objective of this review is to discuss the impact of environmental carcinogens on modulating the risk of brain tumorigenesis, focusing our attention on certain categories of pollutants and their sources.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Beatrice Savarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Giovanni Pagano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
15
|
Blaschke TF, Insel PA, Amara SG, Meyer UA. Introduction to the Theme "Development of New Drugs: Moving from the Bench to Bedside and Improved Patient Care". Annu Rev Pharmacol Toxicol 2023; 63:15-18. [PMID: 36270297 DOI: 10.1146/annurev-pharmtox-091222-022612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Investigations in pharmacology and toxicology range from molecular studies to clinical care. Studies in basic and clinical pharmacology and in preclinical and clinical toxicology are all essential in bringing new knowledge and new drugs into clinical use. The 30 reviews in Volume 63 of the Annual Review of Pharmacology and Toxicology explore topics across this spectrum. Examples include "Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology" and "Artificial Intelligence and Machine Learning for Lead-to-Candidate Decision-Making and Beyond." Other reviews discuss components important for drug discovery and development and the use of pharmaceuticals in a variety of diseases. Air pollution continues to increase globally; accordingly, "Air Pollution-Related Neurotoxicity Across the Life Span" is a timely and forward-thinking review. Volume 63 also explores the use of contemporary technologies such as electronic health records, pharmacogenetics, and new drug delivery systems that help enhance and improve the utility of new therapies.
Collapse
Affiliation(s)
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|