1
|
Ge H, Di G, Song P, Han W, Chen P, Wang Y. Role of vitamin A on the ocular surface. Exp Eye Res 2025; 250:110179. [PMID: 39581361 DOI: 10.1016/j.exer.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Vitamin A is an essential fat-soluble vitamin that cannot be endogenously synthesized by the human body. Retinoic acid (RA) is the biologically active form of vitamin A. Utilizing both nuclear and non-nuclear receptor-mediated pathways, RA plays a crucial role in regulating various biological processes, including apoptosis, differentiation, and anti-inflammatory properties within the cornea and conjunctiva. In addition, RA has been demonstrated to exert a significant influence on anti-tumor mechanisms. Disruption of RA signaling can result in corneal defects, anophthalmia, and microphthalmia. However, the beneficial effects of RA are only observed when it is administered at appropriate dosages, and higher doses have an adverse impact. Ocular abnormalities are often early indicators of a vitamin A deficiency. The lacrimal gland secretes vitamin A onto the ocular surface, where it is metabolized into RA via two sequential steps. This article provides a comprehensive overview of how vitamin A is transformed and transported from the intestine to the ocular surface, ultimately contributing to the maintenance of the normal physiological function of the ocular surface.
Collapse
Affiliation(s)
- Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China.
| |
Collapse
|
2
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Coulleray J, Kindler A, Rima M, Cahuzac H, Rochel N, Chaubet G, Krezel W, Wagner A. Retinoids Molecular Probes by Late-stage Azide Insertion - Functional Tools to Decrypt Retinoid Metabolism. Chembiochem 2024; 25:e202300689. [PMID: 39092796 DOI: 10.1002/cbic.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Indexed: 08/04/2024]
Abstract
Studying the complex and intricate retinoids metabolic pathways by chemical biology approaches requires design and synthesis of biologically functional molecular probes. Only few of such molecular retinoid probes could be found in literature, most of them bearing a molecular structure quite different from natural retinoids. To provide close-to-native retinoid probes, we have developed a versatile late-stage method for the insertion of azide function at the C4 position of several retinoids. This one-step process opens straightforward access to different retinoid and carotenoid probes from commercially available precursors. We have further demonstrated that the different molecular probes retain ability of the original compound to activate genes' transcription, despite azide insertion, highlighting biological activities that were further validated in zebrafish in vivo model. The present work paves the way to future studies on vitamin A's metabolism.
Collapse
Affiliation(s)
- Jessica Coulleray
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Alexia Kindler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
- Department of Natural Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Héloïse Cahuzac
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Guilhem Chaubet
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Alain Wagner
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| |
Collapse
|
4
|
Samara I, Moula AI, Moulas AN, Katsouras CS. The Effect of Retinoids in Vascular Smooth Muscle Cells: From Phenotyping Switching to Proliferation and Migration. Int J Mol Sci 2024; 25:10303. [PMID: 39408632 PMCID: PMC11477379 DOI: 10.3390/ijms251910303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Atherosclerosis, a term derived from the Greek "athero" (atheroma) and "sclerosis" (hardening), is a long-standing process that leads to the formation of atheromatous plaques in the arterial wall, contributing to the development of atherosclerotic cardiovascular disease. The proliferation and migration of vascular smooth muscle cells (VSMCs) and the switching of their phenotype play a crucial role in the whole process. Retinoic acid (RA), a natural derivative of vitamin A, has been used in the treatment of various inflammatory diseases and cell proliferation disorders. Numerous studies have demonstrated that RA has an important inhibitory effect on the proliferation, migration, and dedifferentiation of vascular smooth muscle cells, leading to a significant reduction in atherosclerotic lesions. In this review article, we explore the effects of RA on the pathogenesis of atherosclerosis, focusing on its regulatory action in VSMCs and its role in the phenotypic switching, proliferation, and migration of VSMCs. Despite the potential impact that RA may have on the process of atherosclerosis, further studies are required to examine its safety and efficacy in clinical practice.
Collapse
Affiliation(s)
- Ioanna Samara
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Amalia I. Moula
- Department of Surgery, “Achillopouleion” General Hospital, 38222 Volos, Greece;
| | | | - Christos S. Katsouras
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
5
|
Shan X, Zhao Z, Lai P, Liu Y, Li B, Ke Y, Jiang H, Zhou Y, Li W, Wang Q, Qin P, Xue Y, Zhang Z, Wei C, Ma B, Liu W, Luo C, Lu X, Lin J, Shu L, Jie Y, Xian X, Delcassian D, Ge Y, Miao L. RNA nanotherapeutics with fibrosis overexpression and retention for MASH treatment. Nat Commun 2024; 15:7263. [PMID: 39191801 DOI: 10.1038/s41467-024-51571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) poses challenges for targeted delivery and retention of therapeutic proteins due to excess extracellular matrix (ECM). Here we present a new approach to treat MASH, termed "Fibrosis overexpression and retention (FORT)". In this strategy, we design (1) retinoid-derivative lipid nanoparticle (LNP) to enable enhanced mRNA overexpression in fibrotic regions, and (2) mRNA modifications which facilitate anchoring of therapeutic proteins in ECM. LNPs containing carboxyl-retinoids, rather than alcohol- or ester-retinoids, effectively deliver mRNA with over 10-fold enhancement of protein expression in fibrotic livers. The carboxyl-retinoid rearrangement on the LNP surface improves protein binding and membrane fusion. Therapeutic proteins are then engineered with an endogenous collagen-binding domain. These fusion proteins exhibit increased retention in fibrotic lesions and reduced systemic toxicity. In vivo, fibrosis-targeting LNPs encoding fusion proteins demonstrate superior therapeutic efficacy in three clinically relevant male-animal MASH models. This approach holds promise in fibrotic diseases unsuited for protein injection.
Collapse
Affiliation(s)
- Xinzhu Shan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiqiang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuxiu Liu
- Chinese Institute for Brain Research, Beijing, China
| | - Buyao Li
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Hanqiu Jiang
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Yilong Zhou
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengxia Qin
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yizhe Xue
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zihan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chenlong Wei
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bin Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Liu
- Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueguang Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Li Shu
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yin Jie
- Chinese Institute for Brain Research, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | - Yifan Ge
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China.
| |
Collapse
|
6
|
Kawczak P, Feszak I, Brzeziński P, Bączek T. Structure-Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process. Biomedicines 2024; 12:1059. [PMID: 38791021 PMCID: PMC11117600 DOI: 10.3390/biomedicines12051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Vitamin A, an essential micronutrient, is integral to various biological processes crucial for organismal development and maintenance. Dietary sources of vitamin A encompass preformed retinol, retinyl esters, and provitamin A carotenoids. Retinoic acid (RA), a key component, plays pivotal roles in vision, cell proliferation, apoptosis, immune function, and gene regulation. Drug repurposing, an effective strategy for identifying new therapeutic applications for existing drugs, has gained prominence in recent years. This review seeks to provide a comprehensive overview of the current research landscape surrounding retinoids and drug repurposing. The scope of this review encompasses a comprehensive examination of retinoids and their potential for repurposing in various therapeutic contexts. Despite their efficacy in treating dermatological conditions, concerns about toxicity persist, driving the search for safer and more potent retinoids. The molecular mechanisms underlying retinoid activity involve binding to retinoic acid receptors (RARs) and retinoid X receptors (RXRs), leading to transcriptional regulation of target genes. This review seeks to shed light on the possibilities for repurposing retinoids to cover a wider spectrum of therapeutic uses by exploring recent scientific progress. It also aims to offer a more comprehensive understanding of the therapeutic prospects of retinoids and the broader impact of drug repositioning in contemporary medicine.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Department of Nursing, Faculty of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Piotr Brzeziński
- Department of Physiotherapy and Medical Emergency, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
- Department of Dermatology, Voivodeship Specialist Hospital, 76-200 Słupsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing, Faculty of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| |
Collapse
|
7
|
Reay WR, Kiltschewskij DJ, Di Biase MA, Gerring ZF, Kundu K, Surendran P, Greco LA, Clarke ED, Collins CE, Mondul AM, Albanes D, Cairns MJ. Genetic influences on circulating retinol and its relationship to human health. Nat Commun 2024; 15:1490. [PMID: 38374065 PMCID: PMC10876955 DOI: 10.1038/s41467-024-45779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
Retinol is a fat-soluble vitamin that plays an essential role in many biological processes throughout the human lifespan. Here, we perform the largest genome-wide association study (GWAS) of retinol to date in up to 22,274 participants. We identify eight common variant loci associated with retinol, as well as a rare-variant signal. An integrative gene prioritisation pipeline supports novel retinol-associated genes outside of the main retinol transport complex (RBP4:TTR) related to lipid biology, energy homoeostasis, and endocrine signalling. Genetic proxies of circulating retinol were then used to estimate causal relationships with almost 20,000 clinical phenotypes via a phenome-wide Mendelian randomisation study (MR-pheWAS). The MR-pheWAS suggests that retinol may exert causal effects on inflammation, adiposity, ocular measures, the microbiome, and MRI-derived brain phenotypes, amongst several others. Conversely, circulating retinol may be causally influenced by factors including lipids and serum creatinine. Finally, we demonstrate how a retinol polygenic score could identify individuals more likely to fall outside of the normative range of circulating retinol for a given age. In summary, this study provides a comprehensive evaluation of the genetics of circulating retinol, as well as revealing traits which should be prioritised for further investigation with respect to retinol related therapies or nutritional intervention.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.
| | - Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary F Gerring
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kousik Kundu
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
| | - Laura A Greco
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Erin D Clarke
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
8
|
DiKun KM, Tang XH, Fu L, Choi ME, Lu C, Gudas LJ. Retinoic acid receptor α activity in proximal tubules prevents kidney injury and fibrosis. Proc Natl Acad Sci U S A 2024; 121:e2311803121. [PMID: 38330015 PMCID: PMC10873609 DOI: 10.1073/pnas.2311803121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, β, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor β1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.
Collapse
Affiliation(s)
- Krysta M. DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Leiping Fu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Mary E. Choi
- New York Presbyterian Hospital, New York, NY10065
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | | | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
- Department of Urology, New York, NY10065
| |
Collapse
|
9
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
10
|
Abstract
Vitamin A (retinol) is a critical micronutrient required for the control of stem cell functions, cell differentiation, and cell metabolism in many different cell types, both during embryogenesis and in the adult organism. However, we must obtain vitamin A from food sources. Thus, the uptake and metabolism of vitamin A by intestinal epithelial cells, the storage of vitamin A in the liver, and the metabolism of vitamin A in target cells to more biologically active metabolites, such as retinoic acid (RA) and 4-oxo-RA, must be precisely regulated. Here, I will discuss the enzymes that metabolize vitamin A to RA and the cytochrome P450 Cyp26 family of enzymes that further oxidize RA. Because much progress has been made in understanding the regulation of ALDH1a2 (RALDH2) actions in the intestine, one focus of this review is on the metabolism of vitamin A in intestinal epithelial cells and dendritic cells. Another focus is on recent data that 4-oxo-RA is a ligand required for the maintenance of hematopoietic stem cell dormancy and the important role of RARβ (RARB) in these stem cells. Despite this progress, many questions remain in this research area, which links vitamin A metabolism to nutrition, immune functions, developmental biology, and nuclear receptor pharmacology.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, and Revlon Pharmaceutical Professor of Pharmacology and Toxicology, Pharmacology Department, and the Meyer Cancer Center of Weill Cornell Medicine of Cornell University, 1300 York Ave, New York, NY 10065
| |
Collapse
|
11
|
Napoli JL. Retinoic Acid: The Autacoid for All Seasons. Nutrients 2022; 14:4526. [PMID: 36364786 PMCID: PMC9654713 DOI: 10.3390/nu14214526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
All-trans-retinoic acid (RA), a metabolite of vitamin A (retinol), exerts profuse actions that enable multiple aspects of reproduction, embryonic development and post-natal regulation of energy metabolism, glucoregulatory control, organ function, and of the skeletal, immune, nervous and cardiovascular systems, as well as cell proliferation vs [...].
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
12
|
Zenkel M, Hoja U, Gießl A, Berner D, Hohberger B, Weller JM, König L, Hübner L, Ostermann TA, Gusek-Schneider GC, Kruse FE, Pasutto F, Schlötzer-Schrehardt U. Dysregulated Retinoic Acid Signaling in the Pathogenesis of Pseudoexfoliation Syndrome. Int J Mol Sci 2022; 23:ijms23115977. [PMID: 35682657 PMCID: PMC9180992 DOI: 10.3390/ijms23115977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Pseudoexfoliation (PEX) syndrome, a stress-induced fibrotic matrix process, is the most common recognizable cause of open-angle glaucoma worldwide. The recent identification of PEX-associated gene variants uncovered the vitamin A metabolic pathway as a factor influencing the risk of disease. In this study, we analyzed the role of the retinoic acid (RA) signaling pathway in the PEX-associated matrix metabolism and evaluated its targeting as a potential candidate for an anti-fibrotic intervention. We provided evidence that decreased expression levels of RA pathway components and diminished RA signaling activity occur in an antagonistic crosstalk with TGF-β1/Smad signaling in ocular tissues and cells from PEX patients when compared with age-matched controls. Genetic and pharmacologic modes of RA pathway inhibition induced the expression and production of PEX-associated matrix components by disease-relevant cell culture models in vitro. Conversely, RA signaling pathway activation by natural and synthetic retinoids was able to suppress PEX-associated matrix production and formation of microfibrillar networks via antagonization of Smad-dependent TGF-β1 signaling. The findings indicate that deficient RA signaling in conjunction with hyperactivated TGF-β1/Smad signaling is a driver of PEX-associated fibrosis, and that restoration of RA signaling may be a promising strategy for anti-fibrotic intervention in patients with PEX syndrome and glaucoma.
Collapse
Affiliation(s)
- Matthias Zenkel
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Ursula Hoja
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Daniel Berner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Genetikum, 89231 Neu-Ulm, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Julia M. Weller
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Loretta König
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Lisa Hübner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Thomas A. Ostermann
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Gabriele C. Gusek-Schneider
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Friedrich E. Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Correspondence: ; Tel.: +49-9131-8534433; Fax: +49-9131-8534631
| |
Collapse
|
13
|
Melis M, Tang XH, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022; 14:1456. [PMID: 35406069 PMCID: PMC9002467 DOI: 10.3390/nu14071456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids. Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary organ for retinoid storage and metabolism in humans. For reasons that remain incompletely understood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocellular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases. Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| |
Collapse
|
14
|
Insel PA, Blaschke TF, Amara SG, Meyer UA. Introduction to the Theme "New Insights, Strategies, and Therapeutics for Common Diseases". Annu Rev Pharmacol Toxicol 2021; 62:19-24. [PMID: 34606327 DOI: 10.1146/annurev-pharmtox-091421-094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The reviews in Volume 62 of the Annual Review of Pharmacology and Toxicology (ARPT) cover a diverse range of topics. A theme that encompasses many of these reviews is their relevance to common diseases and disorders, including type 2 diabetes, heart failure, cancer, tuberculosis, Alzheimer's disease, neurodegenerative disorders, and Down syndrome. Other reviews highlight important aspects of therapeutics, including placebos and patient-centric approaches to drug formulation. The reviews with this thematic focus, as well as other reviews in this volume, emphasize new mechanistic insights, experimental and therapeutic strategies, and novel insights regarding topics in the disciplines of pharmacology and toxicology. As the editors of ARPT, we believe that these reviews help advance those disciplines and, even more importantly, have the potential to improve the health care of the world's population. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | | | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|