1
|
Seliya P, Bonn M, Grechko M. On selection rules in two-dimensional terahertz-infrared-visible spectroscopy. J Chem Phys 2024; 160:034201. [PMID: 38230809 DOI: 10.1063/5.0179041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Two-dimensional terahertz-infrared-visible (2D TIRV) spectroscopy directly measures the coupling between quantum high-frequency vibrations and classical low-frequency modes of molecular motion. In addition to coupling strength, the signal intensity in 2D TIRV spectroscopy can also depend on the selection rules of the excited transitions. Here, we explore the selection rules in 2D TIRV spectroscopy by studying the coupling between the high-frequency CH3 stretching and low-frequency vibrations of liquid dimethyl sulfoxide (DMSO). Different excitation pathways are addressed using variations in laser pulse timing and different polarizations of exciting pulses and detected signals. The DMSO signals generated via different excitation pathways can be readily distinguished in the spectrum. The intensities of different excitation pathways vary unequally with changes in polarization. We explain how this difference stems from the intensities of polarized and depolarized Raman and hyper-Raman spectra of high-frequency modes. These results apply to various systems and will help design and interpret new 2D TIRV spectroscopy experiments.
Collapse
Affiliation(s)
- Pankaj Seliya
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Maksim Grechko
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
2
|
Hong L, Liu L, Liu Y, Qian J, Feng R, Li W, Li Y, Peng Y, Leng Y, Li R, Li ZY. Intense ultraviolet-visible-infrared full-spectrum laser. LIGHT, SCIENCE & APPLICATIONS 2023; 12:199. [PMID: 37607910 PMCID: PMC10444876 DOI: 10.1038/s41377-023-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
A high-brightness ultrabroadband supercontinuum white laser is desirable for various fields of modern science. Here, we present an intense ultraviolet-visible-infrared full-spectrum femtosecond laser source (with 300-5000 nm 25 dB bandwidth) with 0.54 mJ per pulse. The laser is obtained by sending a 3.9 μm, 3.3 mJ mid-infrared pump pulse into a cascaded architecture of gas-filled hollow-core fiber, a bare lithium niobate crystal plate, and a specially designed chirped periodically poled lithium niobate crystal, under the synergic action of second and third order nonlinearities such as high harmonic generation and self-phase modulation. This full-spectrum femtosecond laser source can provide a revolutionary tool for optical spectroscopy and find potential applications in physics, chemistry, biology, material science, industrial processing, and environment monitoring.
Collapse
Affiliation(s)
- Lihong Hong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Liqiang Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Yuanyuan Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Junyu Qian
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai, 201800, China
| | - Renyu Feng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai, 201800, China
| | - Wenkai Li
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yanyan Li
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yujie Peng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Zhi-Yuan Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
3
|
Wright JC, Kohler DD, Bergmann U. X-ray/Extreme Ultraviolet Floquet State Multidimensional Spectroscopy, an Analogue of Multiple Quantum Nuclear Magnetic Resonance. J Phys Chem Lett 2023:4908-4913. [PMID: 37201210 DOI: 10.1021/acs.jpclett.3c00778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is great interest in developing fully coherent multidimensional X-ray/extreme ultraviolet (XUV) spectroscopic techniques because of their capability for achieving atomic spectral selectivity. Current proposals rest on using sequentially and coherently driven core excitations with multiple X-ray/XUV excitation pulses and measuring the output using time domain Fourier transform methods. In this paper, we propose an alternative method that creates an entanglement of core and optical transitions to form a Floquet state that creates directional and coherent output beams. Multidimensional spectra are obtained by measuring the intensity of output beams while tuning the optical frequencies across resonances. This approach expands on previous optical pump-XUV probe spectroscopy of MoTe2 by theoretically demonstrating its multidimensional capabilities. Both parametric and non-parametric pathways are proposed to optimize the resolution of inhomogeneous broadening and k-selective features.
Collapse
Affiliation(s)
- John C Wright
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Daniel D Kohler
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Begušić T, Blake GA. Two-dimensional infrared-Raman spectroscopy as a probe of water's tetrahedrality. Nat Commun 2023; 14:1950. [PMID: 37029146 PMCID: PMC10082090 DOI: 10.1038/s41467-023-37667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Two-dimensional spectroscopic techniques combining terahertz (THz), infrared (IR), and visible pulses offer a wealth of information about coupling among vibrational modes in molecular liquids, thus providing a promising probe of their local structure. However, the capabilities of these spectroscopies are still largely unexplored due to experimental limitations and inherently weak nonlinear signals. Here, through a combination of equilibrium-nonequilibrium molecular dynamics (MD) and a tailored spectrum decomposition scheme, we identify a relationship between the tetrahedral order of liquid water and its two-dimensional IR-IR-Raman (IIR) spectrum. The structure-spectrum relationship can explain the temperature dependence of the spectral features corresponding to the anharmonic coupling between low-frequency intermolecular and high-frequency intramolecular vibrational modes of water. In light of these results, we propose new experiments and discuss the implications for the study of tetrahedrality of liquid water.
Collapse
Affiliation(s)
- Tomislav Begušić
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Geoffrey A Blake
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
6
|
Solowan HP, Malý P, Brixner T. Direct comparison of molecular-beam versus liquid-phase pump-probe and two-dimensional spectroscopy on the example of azulene. J Chem Phys 2022; 157:044201. [DOI: 10.1063/5.0088365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although azulene's anomalous fluorescence originating from S2 rather than from S1 is the textbook example for the violation of Kasha's rule, the understanding of the underlying processes is still a subject of investigation. Here, we use action-based coherent two-dimensional electronic spectroscopy (2DES) to measure a single Liouville-space response pathway from S0 via S1 to the S2 state of azulene. We directly compare this sequential excitation in liquid phase detecting S2 fluorescence and in a molecular beam detecting photoionized cations, using the S2 anomalous emission to our advantage. We complement the 2DES study by pump-probe measurements of S1 excitation dynamics, including vibrational relaxation and passage through a conical intersection. The direct comparison of liquid and gas phase allows us to assess the effect of the solvent and the interplay of intra- and inter-molecular energy relaxation.
Collapse
Affiliation(s)
| | - Pavel Malý
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Germany
| | - Tobias Brixner
- Institut fuer Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Germany
| |
Collapse
|
7
|
Wells TA, Kwizera MH, Chen SM, Jemal N, Brown MD, Chen PC. Two-dimensional pattern recognition methods for rapidly recording and interpreting high resolution coherent three-dimensional spectra. J Chem Phys 2021; 154:194201. [PMID: 34240898 DOI: 10.1063/5.0047926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High resolution coherent multidimensional spectroscopy has the ability to reduce congestion and automatically sort peaks by species and quantum numbers, even for simple mixtures and molecules that are extensively perturbed. The two-dimensional version is relatively simple to carry out, and the results are easy to interpret, but its ability to deal with severe spectral congestion is limited. Three-dimensional spectroscopy is considerably more complicated and time-consuming than two-dimensional spectroscopy, but it provides the spectral resolution needed for more challenging systems. This paper describes how to design high resolution coherent 3D spectroscopy experiments so that a small number of strategically positioned 2D scans may be used instead of recording all the data required for a 3D plot. This faster and simpler approach uses new pattern recognition methods to interpret the results. Key factors that affect the resulting patterns include the scanning strategy and the four wave mixing process. Optimum four wave mixing (FWM) processes and scanning strategies have been identified, and methods for identifying the FWM process from the observed patterns have been developed. Experiments based on nonparametric FWM processes provide significant pattern recognition and efficiency advantages over those based on parametric processes. Alternative scanning strategies that use synchronous scanning and asynchronous scanning to create new kinds of patterns have also been identified. Rotating the resulting patterns in 3D space leads to an insight into similarities in the patterns produced by different FWM processes.
Collapse
Affiliation(s)
- Thresa A Wells
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Muhire H Kwizera
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Sarah M Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | - Nihal Jemal
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Morgan D Brown
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Peter C Chen
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| |
Collapse
|
8
|
Sardjan AS, Westerman FP, Ogilvie JP, Jansen TLC. Observation of Ultrafast Coherence Transfer and Degenerate States with Polarization-Controlled Two-Dimensional Electronic Spectroscopy. J Phys Chem B 2020; 124:9420-9427. [PMID: 32990439 PMCID: PMC7586392 DOI: 10.1021/acs.jpcb.0c08126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Optical
spectroscopy is a powerful tool to interrogate quantum
states of matter. We present simulation results for the cross-polarized
two-dimensional electronic spectra of the light-harvesting system
LH2 of purple bacteria. We identify a spectral feature on the diagonal,
which we assign to ultrafast coherence transfer between degenerate
states. The implication for the interpretation of previous experiments
on different systems and the potential use of this feature are discussed.
In particular, we foresee that this kind of feature will be useful
for identifying mixed degenerate states and for identifying the origin
of symmetry breaking disorder in systems like LH2. Furthermore, this
may help identify both vibrational and electronic states in biological
systems such as proteins and solid-state materials such as hybrid
perovskites.
Collapse
Affiliation(s)
- Andy S Sardjan
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Floris P Westerman
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Ouyang Z, Zhou N, Hu J, Williams OF, Yan L, You W, Moran AM. Nonlinear fluorescence spectroscopy of layered perovskite quantum wells. J Chem Phys 2020; 153:134202. [DOI: 10.1063/5.0021759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ninghao Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jun Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Olivia F. Williams
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
10
|
Morrow DJ, Hautzinger MP, Lafayette DP, Scheeler JM, Dang L, Leng M, Kohler DD, Wheaton AM, Fu Y, Guzei IA, Tang J, Jin S, Wright JC. Disentangling Second Harmonic Generation from Multiphoton Photoluminescence in Halide Perovskites using Multidimensional Harmonic Generation. J Phys Chem Lett 2020; 11:6551-6559. [PMID: 32700916 DOI: 10.1021/acs.jpclett.0c01720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Layered two-dimensional Ruddlesden-Popper (RP) halide perovskites are an intriguing class of semiconductors being explored for their linear and nonlinear optical and ferroelectric properties. Second harmonic generation (SHG) is commonly used to screen for noncentrosymmetric and ferroelectric materials. However, SHG measurements of perovskites can be obscured by their intense multiphoton photoluminescence (mPL). Here, we apply multidimensional harmonic generation as a method to eliminate the complications from mPL. By scanning and correlating both excitation and emission frequencies, we unambiguously assess whether a material supports SHG by examining if an emission feature scales as twice the excitation frequency. Measurements of a series of n = 2, 3 RP perovskites reveal that, contrary to previous belief, n-butylammonium (BA) RP perovskites are not SHG-active and thus centrosymmetric, but RP perovskites with phenylethylammonium (PEA) and 2-thiophenemethylammonium (TPMA) spacer cations display SHG. This work establishes multidimensional harmonic generation as a definitive method to measure SHG in halide perovskites.
Collapse
Affiliation(s)
- Darien J Morrow
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Matthew P Hautzinger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David P Lafayette
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jason M Scheeler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lianna Dang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Meiying Leng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei, P.R. China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei, P.R. China
| | - Daniel D Kohler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Amelia M Wheaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yongping Fu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jiang Tang
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei, P.R. China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei, P.R. China
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Fidler AP, Warrick ER, Marroux HJB, Bloch E, Neumark DM, Leone SR. Self-heterodyned detection of dressed state coherences in helium by noncollinear extreme ultraviolet wave mixing with attosecond pulses. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab869c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Noncollinear wave-mixing spectroscopies with attosecond extreme ultraviolet (XUV) pulses provide unprecedented insight into electronic dynamics. In infrared and visible regimes, heterodyne detection techniques utilize a reference field to amplify wave-mixing signals while simultaneously allowing for phase-sensitive measurements. Here, we implement a self-heterodyned detection scheme in noncollinear wave-mixing measurements with a short attosecond XUV pulse train and two few-cycle near infrared (NIR) pulses. The initial spatiotemporally overlapped XUV and NIR pulses generate a coherence of both odd (1snp) and even (1sns and 1snd) parity states within gaseous helium. A variably delayed noncollinear NIR pulse generates angularly-dependent four-wave mixing signals that report on the evolution of this coherence. The diffuse angular structure of the XUV harmonics underlying these emission signals is used as a reference field for heterodyne detection, leading to cycle oscillations in the transient wave-mixing spectra. With this detection scheme, wave-mixing signals emitting from at least eight distinct light-induced, or dressed, states can be observed, in contrast to only one light induced state identified in a similar homodyne wave-mixing measurement. In conjunction with the self-heterodyned detection scheme, the noncollinear geometry permits the conclusive identification and angular separation of distinct wave-mixing pathways, reducing the complexity of transient spectra. These results demonstrate that the application of heterodyne detection schemes can provide signal amplification and phase-sensitivity, while maintaining the versatility and selectivity of noncollinear attosecond XUV wave-mixing spectroscopies. These techniques will be important tools in the study of ultrafast dynamics within complex chemical systems in the XUV regime.
Collapse
|
12
|
Lim J, Bösen CM, Somoza AD, Koch CP, Plenio MB, Huelga SF. Multicolor Quantum Control for Suppressing Ground State Coherences in Two-Dimensional Electronic Spectroscopy. PHYSICAL REVIEW LETTERS 2019; 123:233201. [PMID: 31868446 DOI: 10.1103/physrevlett.123.233201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 06/10/2023]
Abstract
The measured multidimensional spectral response of different light harvesting complexes exhibits oscillatory features which suggest an underlying coherent energy transfer. However, making this inference rigorous is challenging due to the difficulty of isolating excited state coherences in highly congested spectra. In this work, we provide a coherent control scheme that suppresses ground state coherences, thus making rephasing spectra dominated by excited state coherences. We provide a benchmark for the scheme using a model dimeric system and numerically exact methods to analyze the spectral response. We argue that combining temporal and spectral control methods can facilitate a second generation of experiments that are tailored to extract desired information and thus significantly advance our understanding of complex open many-body structure and dynamics.
Collapse
Affiliation(s)
- J Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - C M Bösen
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - A D Somoza
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - C P Koch
- Theoretische Physik, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - M B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - S F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| |
Collapse
|
13
|
Cheshire TP, Moran AM. Susceptibility of two-dimensional resonance Raman spectroscopies to cascades involving solute and solvent molecules. J Chem Phys 2019; 151:104203. [PMID: 31521086 DOI: 10.1063/1.5115401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional resonance Raman (2DRR) spectroscopies have been used to investigate the structural heterogeneity of ensembles and chemical reaction mechanisms in recent years. Our previous work suggests that the intensities of artifacts may be comparable to the desired 2DRR response for some chemical systems and experimental approaches. In a type of artifact known as a "cascade," the four-wave mixing signal field radiated by one molecule induces a four-wave mixing process in a second molecule. We consider the susceptibility of 2DRR spectroscopy to various types of signal cascades in the present work. Calculations are conducted using empirical parameters obtained for a molecule with an intramolecular charge-transfer transition in acetonitrile. For a fully impulsive pulse sequence, it is shown that "parallel" cascades involving two solute molecules are generally more intense than that of the desired 2DRR response when the solute's mode displacements are 1.0 or less. In addition, we find that the magnitudes of parallel cascades involving both solute and solvent molecules (i.e., a solute-solvent cascade) may exceed that of the 2DRR response when the solute possesses small mode displacements. It is tempting to assume that solute-solvent cascades possess negligible intensities because the off-resonant Raman cross sections of solvents are usually 4-6 orders of magnitude smaller than that of the electronically resonant solute; however, the present calculations show that the difference in solute and solvent concentrations can fully compensate for the difference in Raman cross sections under common experimental conditions. Implications for control experiments and alternate approaches for 2DRR spectroscopy are discussed.
Collapse
Affiliation(s)
- Thomas P Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
14
|
Toa ZSD, deGolian MH, Jumper CC, Hiller RG, Scholes GD. Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-a Protein Using Two-Dimensional Electronic Spectroscopy and Förster Theory. J Phys Chem B 2019; 123:6410-6420. [DOI: 10.1021/acs.jpcb.9b04324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zi S. D. Toa
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Mary H. deGolian
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Chanelle C. Jumper
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Roger G. Hiller
- Department of Biology, Faculty of Science and Engineering, Macquarie University, Sydney NSW 2109, Australia
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
15
|
Wright JC. Fundamental Studies of Relationships between Experimental Nonlinear Coherent Vibrational Spectroscopies. J Phys Chem Lett 2019; 10:2767-2774. [PMID: 31181169 DOI: 10.1021/acs.jpclett.9b01280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- John C Wright
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
16
|
Long F, Chen Z, Han K, Zhang L, Zhuang W. Differentiation between Enamines and Tautomerizable Imines Oxidation Reaction Mechanism using Electron-Vibration-Vibration Two Dimensional Infrared Spectroscopy. Molecules 2019; 24:molecules24050869. [PMID: 30823671 PMCID: PMC6429144 DOI: 10.3390/molecules24050869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 11/16/2022] Open
Abstract
Intermediates lie at the center of chemical reaction mechanisms. However, detecting intermediates in an organic reaction and understanding its role in reaction mechanisms remains a big challenge. In this paper, we used the theoretical calculations to explore the potential of the electron-vibration-vibration two-dimensional infrared (EVV-2DIR) spectroscopy in detecting the intermediates in the oxidation reactions of enamines and tautomerizable imines with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). We show that while it is difficult to identify the intermediates from their infrared and Raman signals, the simulated EVV-2DIR spectra of these intermediates have well resolved spectral features, which are absent in the signals of reactants and products. These characteristic spectral signatures can, therefore, be used to reveal the reaction mechanism as well as monitor the reaction progress. Our work suggests the potential strength of EVV-2DIR technique in studying the molecular mechanism of organic reactions in general.
Collapse
Affiliation(s)
- Fengqin Long
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Zheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
17
|
Zhao W, Pakoulev AV, Wright JC. Conducting Excitation and Emission Spectra in the IR Regime: Frequency-Domain Time-Resolved Vibrational Four Wave Mixing Spectroscopy. J Phys Chem A 2019; 123:625-628. [PMID: 30571111 DOI: 10.1021/acs.jpca.8b12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report new features of recently developed ultrafast coherent multidimensional spectroscopy (CMDS), an optical analogue to multidimensional NMR. By using both frequency- and time-domain nonlinear four wave mixing methods, CMDS is able to directly observe coherence transfer (CT), the coherent quantum mechanical analogue of population relaxation. Using a mixture of acetonitrile and magnesium perchlorate (1.0 M) as a model system, we demonstrated that this one color- and population-involving CT process makes CMDS capable of measuring samples with features that mimic excitation and emission spectral measurements in fluorescence spectroscopy. With the new capabilities, one might develop CMDS into a versatile vibrational tool for revealing the role of coherence as a design element in realizing a function. Furthermore, CT-based vibrational resonance energy transfer (VRET) methods may be developed for label-free biosensing and imaging, such as those demonstrated by fluorescence resonance energy transfer (FRET).
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry , University of Arkansas at Little Rock , Little Rock , Arkansas 72204 , United States
| | - Andrei V Pakoulev
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - John C Wright
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| |
Collapse
|
18
|
Wells TA, Barber VJ, Kwizera MH, Mukashyaka P, Chen PC. Nonparametric High-Resolution Coherent 3D Spectroscopy as a Simple and Rapid Method for Obtaining Excited-State Rotational Constants. J Phys Chem A 2018; 122:8794-8801. [DOI: 10.1021/acs.jpca.8b08640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thresa A. Wells
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Victoria J. Barber
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Muhire H. Kwizera
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Patience Mukashyaka
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Peter C. Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| |
Collapse
|
19
|
Morrow DJ, Kohler DD, Czech KJ, Wright JC. Communication: Multidimensional triple sum-frequency spectroscopy of MoS 2 and comparisons with absorption and second harmonic generation spectroscopies. J Chem Phys 2018; 149:091101. [PMID: 30195308 DOI: 10.1063/1.5047802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Triple sum-frequency (TSF) spectroscopy is a recently developed methodology that enables collection of multidimensional spectra by resonantly exciting multiple quantum coherences of vibrational and electronic states. This work reports the first application of TSF to the electronic states of semiconductors. Two independently tunable ultrafast pulses excite the A, B, and C features of a MoS2 thin film. The measured TSF spectrum differs markedly from absorption and second harmonic generation spectra. The differences arise because of the relative importance of transition moments and the joint density of states (JDOS). We develop a simple model and globally fit the absorption and harmonic generation spectra to extract the JDOS and the transition moments from these spectra. Our results validate previous assignments of the C feature to a large JDOS created by band nesting.
Collapse
Affiliation(s)
- Darien J Morrow
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Daniel D Kohler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Kyle J Czech
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| |
Collapse
|
20
|
Williams OF, Guo Z, Hu J, Yan L, You W, Moran AM. Energy transfer mechanisms in layered 2D perovskites. J Chem Phys 2018; 148:134706. [PMID: 29626878 DOI: 10.1063/1.5009663] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.
Collapse
Affiliation(s)
- Olivia F Williams
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jun Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
21
|
Kern-Michler D, Neumann C, Mielke N, van Wilderen LJGW, Reinfelds M, von Cosel J, Santoro F, Heckel A, Burghardt I, Bredenbeck J. Controlling Photochemistry via Isotopomers and IR Pre-excitation. J Am Chem Soc 2018; 140:926-931. [PMID: 29182322 DOI: 10.1021/jacs.7b08723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is a photochemist's dream to be able to photoinduce a reaction of a specific molecular species in an ensemble of similar but not identical ones. The problem is that similar molecules often exhibit nearly identical UV-Vis absorption spectra, making them difficult or impossible to distinguish or to select spectroscopically. The ultrafast VIPER (VIbrationally Promoted Electronic Resonance) pulse sequence allows to pick a single species for electronic excitation based on its infrared spectrum. The latter usually shows more features, allowing the discrimination between species than the UV-Vis spectrum. Here, we show that it is possible to induce and monitor species-selective photochemistry even for molecules with virtually identical UV-Vis spectra, which is the case for isotopomers. Next to isotope-selective photochemistry in solution, applications to orthogonal photo-uncaging and species-selective spectroscopy and photochemistry in mixtures are within reach.
Collapse
Affiliation(s)
- Daniela Kern-Michler
- Institute of Biophysics, Goethe University Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Carsten Neumann
- Institute of Biophysics, Goethe University Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Nicole Mielke
- Institute of Biophysics, Goethe University Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Luuk J G W van Wilderen
- Institute of Biophysics, Goethe University Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Matiss Reinfelds
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt , Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Jan von Cosel
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt , Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR) , UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt , Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt , Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Chen L, Palacino-González E, Gelin MF, Domcke W. Nonperturbative response functions: A tool for the interpretation of four-wave-mixing signals beyond third order. J Chem Phys 2017; 147:234104. [DOI: 10.1063/1.5004763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | | | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
23
|
Wright JC. Applications of the New Family of Coherent Multidimensional Spectroscopies for Analytical Chemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:45-70. [PMID: 28375700 DOI: 10.1146/annurev-anchem-061516-045349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new family of vibrational and electronic spectroscopies has emerged, comprising the coherent analogs of traditional analytical methods. These methods are also analogs of coherent multidimensional nuclear magnetic resonance (NMR) spectroscopy. This new family is based on creating the same quantum mechanical superposition states called multiple quantum coherences (MQCs). NMR MQCs are mixtures of nuclear spin states that retain their quantum mechanical phase information for milliseconds. The MQCs in this new family are mixtures of vibrational and electronic states that retain their phases for picoseconds or shorter times. Ultrafast, high-intensity coherent beams rapidly excite multiple states. The excited MQCs then emit bright beams while they retain their phases. Time-domain methods measure the frequencies of the MQCs by resolving their phase oscillations, whereas frequency-domain methods measure the resonance enhancements of the output beam while scanning the excitation frequencies. The resulting spectra provide multidimensional spectral signatures that increase the spectroscopic selectivity required for analyzing complex samples.
Collapse
Affiliation(s)
- John C Wright
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706;
| |
Collapse
|
24
|
Chen PC. An Introduction to Coherent Multidimensional Spectroscopy. APPLIED SPECTROSCOPY 2016; 70:1937-1951. [PMID: 27940533 DOI: 10.1177/0003702816669730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Coherent multidimensional spectroscopy is a field that has drawn much attention as an optical analogue to multidimensional nuclear magnetic resonance imaging. Coherent multidimensional spectroscopic techniques produce spectra that show the magnitude of an optical signal as a function of two or more pulsed laser frequencies. Spectra can be collected in either the frequency or the time domain. In addition to improving resolution and overcoming spectral congestion, coherent multidimensional spectroscopy provides the ability to investigate and conduct studies based upon the relationship between different peaks. The purpose of this paper is to provide a general introduction to the area of coherent multidimensional spectroscopy, to provide a brief overview of current experimental approaches, and to discuss some emerging developments in this relatively young field.
Collapse
|
25
|
Hutson WO, Spencer AP, Harel E. Isolated Ground-State Vibrational Coherence Measured by Fifth-Order Single-Shot Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2016; 7:3636-3640. [PMID: 27574915 DOI: 10.1021/acs.jpclett.6b01733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vibrations play a critical role in many photochemical and photophysical processes in which excitations reside on the electronically excited state. However, difficulty in assigning signals from spectroscopic measurements uniquely to a specific electronic state, ground or otherwise, has exposed limitations to their physical interpretation. Here, we demonstrate the selective excitation of vibrational coherences on the ground electronic state through impulsive Raman scattering, whose weak fifth-order signal is resonantly enhanced by coupling to strong electronic transitions. The six-wave mixing signals measured using this technique are free of lower-order cascades and represent correlations between zero-quantum vibrational coherences in the ground state and single-quantum coherences between the ground and electronic states. We believe that this technique has the potential to shed much-needed insight onto some of the mysteries regarding the origin of long-lived coherences observed in photosynthetic and other coupled chromophore systems.
Collapse
Affiliation(s)
- William O Hutson
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Austin P Spencer
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Elad Harel
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Guo Z, Giokas PG, Cheshire TP, Williams OF, Dirkes DJ, You W, Moran AM. Communication: Uncovering correlated vibrational cooling and electron transfer dynamics with multidimensional spectroscopy. J Chem Phys 2016; 145:101101. [DOI: 10.1063/1.4962670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul G. Giokas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas P. Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Olivia F. Williams
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - David J. Dirkes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
27
|
Molesky BP, Guo Z, Cheshire TP, Moran AM. Two-dimensional resonance Raman spectroscopy of oxygen- and water-ligated myoglobins. J Chem Phys 2016; 145:034203. [DOI: 10.1063/1.4958625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas P. Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
28
|
van Wilderen LJGW, Bredenbeck J. Von ultraschnellen Strukturbestimmungen bis zum Steuern von Reaktionen: mehrdimensionale gemischte IR/nicht-IR-Schwingungsspektroskopie. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
van Wilderen LJGW, Bredenbeck J. From Ultrafast Structure Determination to Steering Reactions: Mixed IR/Non-IR Multidimensional Vibrational Spectroscopies. Angew Chem Int Ed Engl 2015; 54:11624-40. [PMID: 26394274 DOI: 10.1002/anie.201503155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 12/27/2022]
Abstract
Ultrafast multidimensional infrared spectroscopy is a powerful method for resolving features of molecular structure and dynamics that are difficult or impossible to address with linear spectroscopy. Augmenting the IR pulse sequences by resonant or nonresonant UV, Vis, or NIR pulses considerably extends the range of application and creates techniques with possibilities far beyond a pure multidimensional IR experiment. These include surface-specific 2D-IR spectroscopy with sub-monolayer sensitivity, ultrafast structure determination in non-equilibrium systems, triggered exchange spectroscopy to correlate reactant and product bands, exploring the interplay of electronic and nuclear degrees of freedom, investigation of interactions between Raman- and IR-active modes, imaging with chemical contrast, sub-ensemble-selective photochemistry, and even steering a reaction by selective IR excitation. We give an overview of useful mixed IR/non-IR pulse sequences, discuss their differences, and illustrate their application potential.
Collapse
Affiliation(s)
| | - Jens Bredenbeck
- Institute of Biophysics, Johann Wolfgang Goethe-University, Frankfurt am Main (Germany).
| |
Collapse
|
30
|
Abstract
Two-dimensional infrared (2D IR) spectroscopy has recently emerged as a powerful tool with applications in many areas of scientific research. The inherent high time resolution coupled with bond-specific spatial resolution of IR spectroscopy enable direct characterization of rapidly interconverting species and fast processes, even in complex systems found in chemistry and biology. In this minireview, we briefly outline the fundamental principles and experimental procedures of 2D IR spectroscopy. Using illustrative example studies, we explain the important features of 2D IR spectra and their capability to elucidate molecular structure and dynamics. Primarily, this minireview aims to convey the scope and potential of 2D IR spectroscopy by highlighting select examples of recent applications including the use of innate or introduced vibrational probes for the study of nucleic acids, peptides/proteins, and materials.
Collapse
Affiliation(s)
- Amanda L Le Sueur
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA.
| | | | | |
Collapse
|
31
|
Senlik SS, Policht VR, Ogilvie JP. Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics. J Phys Chem Lett 2015; 6:2413-20. [PMID: 26266711 DOI: 10.1021/acs.jpclett.5b00861] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies.
Collapse
Affiliation(s)
- S Seckin Senlik
- †Department of Physics, University of Michigan, Ann Arbor, 48109, United States
| | - Veronica R Policht
- ‡Applied Physics Program, University of Michigan, Ann Arbor, 48109, United States
| | - Jennifer P Ogilvie
- †Department of Physics, University of Michigan, Ann Arbor, 48109, United States
| |
Collapse
|
32
|
Wells TA, Muthike AK, Robinson JE, Chen PC. High resolution coherent three dimensional spectroscopy of NO2. J Chem Phys 2015; 142:212426. [PMID: 26049446 DOI: 10.1063/1.4917317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO2 spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.
Collapse
Affiliation(s)
- Thresa A Wells
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| | | | | | - Peter C Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| |
Collapse
|
33
|
Abstract
Optical multdimensional coherent spectroscopy has recently been the subject of significant activity. While two-dimensional spectroscopy is most common, it is possible to extend the method into three dimensions. This perspective reviews the different approaches to three-dimensional spectroscopy and the systems that have been studied with it. The advantages of adding an additional dimension are discussed and compared to the resulting experimental challenges.
Collapse
Affiliation(s)
- Steven T Cundiff
- JILA, National Institute of Standards and Technology & University of Colorado, Boulder, Colorado, 80309-0440 USA.
| |
Collapse
|
34
|
Rezende Valim L, Davies JA, Tveen Jensen K, Guo R, Willison KR, Spickett CM, Pitt AR, Klug DR. Identification and relative quantification of tyrosine nitration in a model peptide using two-dimensional infrared spectroscopy. J Phys Chem B 2014; 118:12855-64. [PMID: 25347525 DOI: 10.1021/jp509053q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy.
Collapse
|
35
|
Strangfeld BR, Wells TA, Chen PC. Rotational and vibrational pattern interpretation for high-resolution coherent 3D spectroscopy. J Phys Chem A 2014; 118:6846-57. [PMID: 24945734 DOI: 10.1021/jp500725j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-resolution coherent multidimensional spectroscopy provides an alternative to conventional methods for generating rotationally resolved electronic spectra of gas phase molecules. In addition to revealing information such as the relationships among peaks, it can provide clearly recognizable patterns for spectra that otherwise appear patternless due to rotational congestion. Despite this improvement, high-resolution coherent 2D spectroscopy can still exhibit congestion problems; expansion to the second dimension is often not sufficient to prevent overlapping of peaks from different patterns. A new 3D version of the technique that provides improved resolution and selectivity to help address cases with severe congestion was recently demonstrated. The experimental design and interpretation of data for the 3D technique are significantly more complicated than that for the 2D version. The purpose of this paper is to provide important information needed to plan, run, and interpret results from high-resolution coherent 3D spectroscopy experiments.
Collapse
|
36
|
Boyle ES, Neff-Mallon NA, Handali JD, Wright JC. Resonance IR: A Coherent Multidimensional Analogue of Resonance Raman. J Phys Chem A 2014; 118:3112-9. [DOI: 10.1021/jp5018554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erin S. Boyle
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nathan A. Neff-Mallon
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jonathan D. Handali
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John C. Wright
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Tollerud JO, Hall CR, Davis JA. Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses. OPTICS EXPRESS 2014; 22:6719-6733. [PMID: 24664021 DOI: 10.1364/oe.22.006719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate how spectral shaping in coherent multidimensional spectroscopy can isolate specific signal pathways and directly access quantitative details. By selectively exciting pathways involving a coherent superposition of exciton states we are able to identify, isolate and analyse weak coherent coupling between spatially separated excitons in an asymmetric double quantum well. Analysis of the isolated signal elucidates details of the coherent interactions between the spatially separated excitons. With a dynamic range exceeding 10(4) in electric field amplitude, this approach facilitates quantitative comparisons of different signal pathways and a comprehensive description of the electronic states and their interactions.
Collapse
|
38
|
Gelin MF, Rao BJ, Nest M, Domcke W. Domain of validity of the perturbative approach to femtosecond optical spectroscopy. J Chem Phys 2013; 139:224107. [DOI: 10.1063/1.4836636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Boyle ES, Neff-Mallon NA, Wright JC. Triply Resonant Sum Frequency Spectroscopy: Combining Advantages of Resonance Raman and 2D-IR. J Phys Chem A 2013; 117:12401-8. [DOI: 10.1021/jp409377a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Erin S. Boyle
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Nathan A. Neff-Mallon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - John C. Wright
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Chuntonov L, Ma J. Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 2013; 117:13631-8. [PMID: 24079417 DOI: 10.1021/jp4075493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantum coherence has been a subject of great interest in many scientific disciplines. However, detailed characterization of the quantum coherence in molecular systems, especially its transfer and relaxation mechanisms, still remains a major challenge. The difficulties arise in part because the spectroscopic signatures of the coherence transfer are typically overwhelmed by other excitation-relaxation processes. We use quantum process tomography (QPT) via two-dimensional infrared spectroscopy to quantify the rate of the elusive coherence transfer between two vibrational exciton states. QPT retrieves the dynamics of the dissipative quantum system directly from the experimental observables. It thus serves as an experimental alternative to theoretical models of the system-bath interaction and can be used to validate these theories. Our results for coupled carbonyl groups of a diketone molecule in chloroform, used as a benchmark system, reveal the nonsecular nature of the interaction between the exciton and the Markovian bath and open the door for the systematic studies of the dissipative quantum systems dynamics in detail.
Collapse
Affiliation(s)
- Lev Chuntonov
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania , Philadelphia, PA 19104, United States
| | | |
Collapse
|
41
|
Mukherjee SS, Skoff DR, Middleton CT, Zanni MT. Fully absorptive 3D IR spectroscopy using a dual mid-infrared pulse shaper. J Chem Phys 2013; 139:144205. [PMID: 24116612 PMCID: PMC4108792 DOI: 10.1063/1.4824638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022] Open
Abstract
This paper presents the implementation of 3D IR spectroscopy by adding a second pump beam to a two-beam 2D IR spectrometer. An independent mid-IR pulse shaper is used for each pump beam, which can be programmed to collect its corresponding dimension in either the frequency or time-domains. Due to the phase matching geometry employed here, absorptive 3D IR spectra are automatically obtained, since all four of the rephasing and non-rephasing signals necessary to generate absorptive spectra are collected simultaneously. Phase cycling is used to isolate the fifth-order from the third-order signals. The method is demonstrated on tungsten hexacarbonyl (W(CO)6) and dicarbonylacetylacetonato rhodium (I), for which the eigenstates are extracted up to the third excited state. Pulse shaping affords a high degree of control over 3D IR experiments by making possible mixed time- and frequency-domain experiments, fast data acquisition and straightforward implementation.
Collapse
Affiliation(s)
- Sudipta S Mukherjee
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
42
|
Greve C, Nibbering ETJ, Fidder H. Hydrogen-Bonding-Induced Enhancement of Fermi Resonances: A Linear IR and Nonlinear 2D-IR Study of Aniline-d5. J Phys Chem B 2013; 117:15843-55. [DOI: 10.1021/jp4084103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Greve
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Erik T. J. Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Henk Fidder
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| |
Collapse
|
43
|
West BA, Molesky BP, Giokas PG, Moran AM. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Krčmář J, Gelin MF, Domcke W. Calculation of third-order signals via driven Schrödinger equations: General results and application to electronic 2D photon echo spectroscopy. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Chen PC, Wells TA, Strangfeld BR. High-resolution coherent three-dimensional spectroscopy of Br2. J Phys Chem A 2013; 117:5981-6. [PMID: 23425525 DOI: 10.1021/jp3118049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.
Collapse
Affiliation(s)
- Peter C Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA.
| | | | | |
Collapse
|
46
|
Perakis F, Borek JA, Hamm P. Three-dimensional infrared spectroscopy of isotope-diluted ice Ih. J Chem Phys 2013; 139:014501. [DOI: 10.1063/1.4812216] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
47
|
Boyle ES, Pakoulev AV, Wright JC. Fully Coherent Triple Sum Frequency Spectroscopy of a Benzene Fermi Resonance. J Phys Chem A 2013; 117:5578-88. [DOI: 10.1021/jp404713x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Erin S. Boyle
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| | - Andrei V. Pakoulev
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| | - John C. Wright
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| |
Collapse
|
48
|
Chew K, Nemchick DJ, Vaccaro PH. Isotopic Dependence of Excited-State Proton-Tunneling Dynamics in Tropolone Probed by Polarization-Resolved Degenerate Four-Wave Mixing Spectroscopy. J Phys Chem A 2013; 117:6126-42. [DOI: 10.1021/jp400160z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathryn Chew
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Deacon J. Nemchick
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Patrick H. Vaccaro
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
49
|
Gelin MF, Egorova D, Domcke W. Strong-pump strong-probe spectroscopy: effects of higher excited electronic states. Phys Chem Chem Phys 2013; 15:8119-31. [PMID: 23588665 DOI: 10.1039/c3cp44454f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present paper is devoted to the simulation of (integral and dispersed) pump-probe signals in the nonperturbative regime for a series of material systems with multiple electronic states and excited-state absorption. We show that strong-pump strong-probe spectroscopy permits the probing of vibrational wavepackets in high-lying and/or short-lived excited electronic states with a time resolution which is not limited by the pulse durations. The field strength can be regarded as an additional experimentally controllable parameter, which can be tuned to maximize the spectroscopic information for a given material system.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.
| | | | | |
Collapse
|
50
|
Hoffman KW, Romei MG, Londergan CH. A New Raman Spectroscopic Probe of Both the Protonation State and Noncovalent Interactions of Histidine Residues. J Phys Chem A 2013; 117:5987-96. [DOI: 10.1021/jp311815k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin W. Hoffman
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United
States
| | - Matthew G. Romei
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United
States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United
States
| |
Collapse
|