1
|
Lorenzo ER, Karki B, White KE, Burns KH, Elles CG. Tunable FSRS measurements with reduced background signals: Using an etalon filter to generate picosecond pump pulses in the 460-650 nm range. J Chem Phys 2024; 161:224201. [PMID: 39651813 DOI: 10.1063/5.0237444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Generating wavelength-tunable picosecond laser pulses from an ultrafast laser source is essential for femtosecond stimulated Raman scattering (FSRS) measurements. Etalon filters produce narrowband (picosecond) pulses with an asymmetric temporal profile that is ideal for stimulated resonance Raman excitation. However, direct spectral filtering of femtosecond laser pulses is typically limited to the laser's fundamental and harmonic frequencies due to very low transmission of broad bandwidth pulses through an etalon. Here, we show that a single etalon filter (15 cm-1 bandwidth; 172 cm-1 free spectral range) provides an efficient and tunable option for generating Raman pump pulses over a wide range of wavelengths when used in combination with an optical parametric amplifier and a second harmonic generation (SHG) crystal that has an appropriate phase-matching bandwidth for partial spectral compression before the etalon. Tuning the SHG wavelength to match individual transmission lines of the etalon filter gives asymmetric picosecond pump pulses over a range of 460-650 nm. Importantly, the SHG crystal length determines the temporal rise time of the filtered pulse, which is an important property for reducing background and increasing Raman signals compared with symmetric pulses having the same total energy. We examine the wavelength-dependent trade-off between spectral narrowing via SHG and the asymmetric pulse shape after transmission through the etalon. This approach provides a relatively simple and efficient method to generate tunable pump pulses with the optimum temporal profile for resonance-enhanced FSRS measurements across the visible region of the spectrum.
Collapse
Affiliation(s)
- Emmaline R Lorenzo
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Birendra Karki
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Katie E White
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Kristen H Burns
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
2
|
Zhao Q, Zhao M, Jiao X, Xia Y, Chen D. Unraveling the Structural Evolution of Aluminum Polyoxocations in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39271658 DOI: 10.1021/acs.langmuir.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The primary objective within the realm of aluminum solution chemistry is to elucidate the structural changes in aluminum polyoxocations under the influence of altered solution conditions. Notably, previous reports are primarily focused on specific types, such as aluminum monomers, species from the Keggin series, and the planar Flat-Al1315+ (F-Al13) cluster. As a result, there is a lack of comprehensive understanding of the remaining aluminum polyoxocations and their respective transformation pathways. In response to this lack, we adopt a combined experimental and theoretical approach to explore the spectral properties of aluminum polyoxocations. Specifically, we analyze infrared spectra, Raman spectra, and aluminum-27 nuclear magnetic resonance (27Al NMR) spectra. Notably, the changes in the spectral features originate from varying solution basicity levels. Through our findings, we can categorize the Al-O clusters into three primary groups: Al(H2O)63+ (Al1), ε-Keggin-[AlO4Al12(OH)24(H2O)12]7+ (ε-Al13), and 6-coordinated aluminum species. Notably, the Raman spectra exhibit prominent peak shifts at 559 and 595 cm-1, indicating the existence of Al3(1) intermediates during the transition from the Al monomer to the ε-Al13 cluster. Overall, this paper presents a comprehensive summary of the possible mechanisms that govern the formation of ε-Al13 from Al3(1), offering a clearer picture of the aluminum polyoxocation landscape and its dynamics under various solution conditions.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Minjuan Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuguo Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Fang C, Rega N, Biczysko M. Editorial: Hot topic: excited state processes in biomolecules. Front Chem 2024; 12:1467074. [PMID: 39144700 PMCID: PMC11322346 DOI: 10.3389/fchem.2024.1467074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | | |
Collapse
|
4
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Qiang Y, Sun K, Palacino-González E, Shen K, Rao BJ, Gelin MF, Zhao Y. Probing avoided crossings and conical intersections by two-pulse femtosecond stimulated Raman spectroscopy: Theoretical study. J Chem Phys 2024; 160:054107. [PMID: 38341700 DOI: 10.1063/5.0186583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
This study leverages two-pulse femtosecond stimulated Raman spectroscopy (2FSRS) to characterize molecular systems with avoided crossings (ACs) and conical intersections (CIs) in their low-lying excited electronic states. By simulating 2FSRS spectra of microscopically inspired ACs and CIs models, we demonstrate that 2FSRS not only delivers valuable information on the molecular parameters characterizing ACs and CIs but also helps distinguish between these two systems.
Collapse
Affiliation(s)
- Yijia Qiang
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Elisa Palacino-González
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - B Jayachander Rao
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Zhou Y, Tang S, Chen Z, Zhou Z, Huang J, Kang XW, Zou S, Wang B, Zhang T, Ding B, Zhong D. Origin of the multi-phasic quenching dynamics in the BLUF domains across the species. Nat Commun 2024; 15:623. [PMID: 38245518 PMCID: PMC10799861 DOI: 10.1038/s41467-023-44565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.
Collapse
Affiliation(s)
- Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
8
|
Gustin I, Kim CW, McCamant DW, Franco I. Mapping electronic decoherence pathways in molecules. Proc Natl Acad Sci U S A 2023; 120:e2309987120. [PMID: 38015846 PMCID: PMC10710033 DOI: 10.1073/pnas.2309987120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Establishing the fundamental chemical principles that govern molecular electronic quantum decoherence has remained an outstanding challenge. Fundamental questions such as how solvent and intramolecular vibrations or chemical functionalization contribute to the decoherence remain unanswered and are beyond the reach of state-of-the-art theoretical and experimental approaches. Here we address this challenge by developing a strategy to isolate electronic decoherence pathways for molecular chromophores immersed in condensed phase environments that enables elucidating how electronic quantum coherence is lost. For this, we first identify resonance Raman spectroscopy as a general experimental method to reconstruct molecular spectral densities with full chemical complexity at room temperature, in solvent, and for fluorescent and non-fluorescent molecules. We then show how to quantitatively capture the decoherence dynamics from the spectral density and identify decoherence pathways by decomposing the overall coherence loss into contributions due to individual molecular vibrations and solvent modes. We illustrate the utility of the strategy by analyzing the electronic decoherence pathways of the DNA base thymine in water. Its electronic coherences decay in [Formula: see text]30 fs. The early-time decoherence is determined by intramolecular vibrations while the overall decay by solvent. Chemical substitution of thymine modulates the decoherence with hydrogen-bond interactions of the thymine ring with water leading to the fastest decoherence. Increasing temperature leads to faster decoherence as it enhances the importance of solvent contributions but leaves the early-time decoherence dynamics intact. The developed strategy opens key opportunities to establish the connection between molecular structure and quantum decoherence as needed to develop chemical strategies to rationally modulate it.
Collapse
Affiliation(s)
- Ignacio Gustin
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju61186, South Korea
| | - David W. McCamant
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, NY14627
- Department of Physics, University of Rochester, Rochester, NY14627
| |
Collapse
|
9
|
Zhu H, Xu C, Yakovlev VV, Zhang D. What is cooking in your kitchen: seeing "invisible" with time-resolved coherent anti-Stokes Raman spectroscopy. Anal Bioanal Chem 2023; 415:6471-6480. [PMID: 37656211 DOI: 10.1007/s00216-023-04923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Cooking oil is a critical component of human food and its main component, lipid, is influential to health, but assessing its authenticity and quality can be challenging due to its complex chemical composition. In this study, we introduce a novel application of time-resolved coherent anti-Stokes Raman scattering (T-CARS) spectroscopy for detecting adulteration and understanding the mechanisms of lipid oxidation in various cooking oils. Our research surpasses the limitations of conventional spontaneous Raman spectroscopy, demonstrating that intra-molecular interactions from unsaturated bonds in triglycerides significantly influence vibrational dephasing time. We observed that these dephasing times, although diverse initially, converge to a similar value after heating cycles. Notably, a longer vibrational dephasing of the CH2 symmetric stretching mode was found to correlate with a higher lipid oxidation rate. These findings underscore the potential of T-CARS in identifying and characterizing subtle molecular interactions, offering a transformative approach to understanding molecular dynamics. This research paves the way for broader applications of T-CARS across fields such as chemistry, biomedicine, and material science, marking a significant advancement in the development of innovative analytical techniques.
Collapse
Affiliation(s)
- Hanlin Zhu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, 310028, Zhejiang, China
| | - Chenran Xu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, 310028, Zhejiang, China
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Delong Zhang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, 310028, Zhejiang, China.
| |
Collapse
|
10
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
11
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
12
|
Chen C, Zhang H, Zhang J, Ai HW, Fang C. Structural origin and rational development of bright red noncanonical variants of green fluorescent protein. Phys Chem Chem Phys 2023; 25:15624-15634. [PMID: 37211909 PMCID: PMC10330862 DOI: 10.1039/d3cp01315d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique "double-donor" chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Hao Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Jing Zhang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Hui-Wang Ai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
13
|
Fresch E, Collini E. The Role of H-Bonds in the Excited-State Properties of Multichromophoric Systems: Static and Dynamic Aspects. Molecules 2023; 28:molecules28083553. [PMID: 37110786 PMCID: PMC10141795 DOI: 10.3390/molecules28083553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Given their importance, hydrogen bonds (H-bonds) have been the subject of intense investigation since their discovery. Indeed, H-bonds play a fundamental role in determining the structure, the electronic properties, and the dynamics of complex systems, including biologically relevant materials such as DNA and proteins. While H-bonds have been largely investigated for systems in their electronic ground state, fewer studies have focused on how the presence of H-bonds could affect the static and dynamic properties of electronic excited states. This review presents an overview of the more relevant progress in studying the role of H-bond interactions in modulating excited-state features in multichromophoric biomimetic complex systems. The most promising spectroscopic techniques that can be used for investigating the H-bond effects in excited states and for characterizing the ultrafast processes associated with their dynamics are briefly summarized. Then, experimental insights into the modulation of the electronic properties resulting from the presence of H-bond interactions are provided, and the role of the H-bond in tuning the excited-state dynamics and the related photophysical processes is discussed.
Collapse
Affiliation(s)
- Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Solaris J, Krueger TD, Chen C, Fang C. Photogrammetry of Ultrafast Excited-State Intramolecular Proton Transfer Pathways in the Fungal Pigment Draconin Red. Molecules 2023; 28:3506. [PMID: 37110741 PMCID: PMC10144053 DOI: 10.3390/molecules28083506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of -COH rocking and -C=C, -C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck-Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique "W"-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump-probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics.
Collapse
|
15
|
Karlo J, Dhillon AK, Siddhanta S, Singh SP. Monitoring of microbial proteome dynamics using Raman stable isotope probing. JOURNAL OF BIOPHOTONICS 2023; 16:e202200341. [PMID: 36527375 DOI: 10.1002/jbio.202200341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Abnormal protein kinetics could be a cause of several diseases associated with essential life processes. An accurate understanding of protein dynamics and turnover is essential for developing diagnostic or therapeutic tools to monitor these changes. Raman spectroscopy in combination with stable isotope probes (SIP) such as carbon-13, and deuterium has been a breakthrough in the qualitative and quantitative study of various metabolites. In this work, we are reporting the utility of Raman-SIP for monitoring dynamic changes in the proteome at the community level. We have used 13 C-labeled glucose as the only carbon source in the medium and verified its incorporation in the microbial biomass in a time-dependent manner. A visible redshift in the Raman spectral vibrations of major biomolecules such as nucleic acids, phenylalanine, tyrosine, amide I, and amide III were observed. Temporal changes in the intensity of these bands demonstrating the feasibility of protein turnover monitoring were also verified. Kanamycin, a protein synthesis inhibitor was used to assess the feasibility of identifying effects on protein turnover in the cells. Successful application of this work can provide an alternate/adjunct tool for monitoring proteome-level changes in an objective and nondestructive manner.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| |
Collapse
|
16
|
Krueger TD, Tang L, Fang C. Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing. BIOSENSORS 2023; 13:bios13020218. [PMID: 36831983 PMCID: PMC9954042 DOI: 10.3390/bios13020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/14/2023]
Abstract
Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.
Collapse
|
17
|
Pu R, Wang Z, Zhu R, Jiang J, Weng TC, Huang Y, Liu W. Investigation of Ultrafast Configurational Photoisomerization of Bilirubin Using Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2023; 14:809-816. [PMID: 36655842 DOI: 10.1021/acs.jpclett.2c03535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phototherapy is an efficient and safe way to reduce high levels of free 4Z,15Z-bilirubin (ZZ-BR) in the serum of newborns. The success of BR phototherapy lies in photoinduced configurational and structural isomerization processes that form excretable isomers. However, the physical picture of photoinduced photoisomerization of ZZ-BR is still unclear. Here, we strategically implement tunable femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, assisted by quantum chemical calculations, to dissect the detailed primary configurational isomerization dynamics of free ZZ-BR in organic solvents. The results of this study demonstrate that upon photoexcitation, ultrafast configurational isomerization proceeds by a volume-conserving "hula twist", followed by intramolecular hydrogen-bond distortion and large-scale rotation of the two dipyrrinone halves of the ZZ-BR isomer in a few picoseconds. After that, most of the population recovers back to ZZ-BR, and a very small amount is converted into stable BR isomers via structural isomerization.
Collapse
Affiliation(s)
- Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
18
|
Wang Z, Zhang Y, Chen C, Zhu R, Jiang J, Weng TC, Ji Q, Huang Y, Fang C, Liu W. Mapping the Complete Photocycle that Powers a Large Stokes Shift Red Fluorescent Protein. Angew Chem Int Ed Engl 2023; 62:e202212209. [PMID: 36440527 DOI: 10.1002/anie.202212209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
Large Stokes shift (LSS) red fluorescent proteins (RFPs) are highly desirable for bioimaging advances. The RFP mKeima, with coexisting cis- and trans-isomers, holds significance as an archetypal system for LSS emission due to excited-state proton transfer (ESPT), yet the mechanisms remain elusive. We implemented femtosecond stimulated Raman spectroscopy (FSRS) and various time-resolved electronic spectroscopies, aided by quantum calculations, to dissect the cis- and trans-mKeima photocycle from ESPT, isomerization, to ground-state proton transfer in solution. This work manifests the power of FSRS with global analysis to resolve Raman fingerprints of intermediate states. Importantly, the deprotonated trans-isomer governs LSS emission at 620 nm, while the deprotonated cis-isomer's 520 nm emission is weak due to an ultrafast cis-to-trans isomerization. Complementary spectroscopic techniques as a table-top toolset are thus essential to study photochemistry in physiological environments.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ya Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, 97331, Corvallis, OR, USA
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, 97331, Corvallis, OR, USA
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
19
|
Liu Y, Chaudhari AS, Chatterjee A, Andrikopoulos PC, Picchiotti A, Rebarz M, Kloz M, Lorenz-Fonfria VA, Schneider B, Fuertes G. Sub-Millisecond Photoinduced Dynamics of Free and EL222-Bound FMN by Stimulated Raman and Visible Absorption Spectroscopies. Biomolecules 2023; 13:161. [PMID: 36671546 PMCID: PMC9855911 DOI: 10.3390/biom13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm-1, which covers only part of the spectrum of biologically relevant time scales and Raman shifts. Here we report on a broadband (~200-2200 cm-1) dual transient visible absorption (visTA)/FSRS set-up that can accommodate time delays from a few femtoseconds to several hundreds of microseconds after illumination with an actinic pump. The extended time scale and wavenumber range allowed us to monitor the complete excited-state dynamics of the biological chromophore flavin mononucleotide (FMN), both free in solution and embedded in two variants of the bacterial light-oxygen-voltage (LOV) photoreceptor EL222. The observed lifetimes and intermediate states (singlet, triplet, and adduct) are in agreement with previous time-resolved infrared spectroscopy experiments. Importantly, we found evidence for additional dynamical events, particularly upon analysis of the low-frequency Raman region below 1000 cm-1. We show that fs-to-sub-ms visTA/FSRS with a broad wavenumber range is a useful tool to characterize short-lived conformationally excited states in flavoproteins and potentially other light-responsive proteins.
Collapse
Affiliation(s)
- Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | - Aditya S. Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Aditi Chatterjee
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | | | - Alessandra Picchiotti
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
- The Hamburg Centre for Ultrafast Imaging, Hamburg University, 22761 Hamburg, Germany
| | - Mateusz Rebarz
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | - Miroslav Kloz
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | | | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| | - Gustavo Fuertes
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
20
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
21
|
Tang L, Bednar RM, Rozanov ND, Hemshorn ML, Mehl RA, Fang C. Rational Design for High Bioorthogonal Fluorogenicity of Tetrazine-Encoded Green Fluorescent Proteins. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220028. [PMID: 36440454 PMCID: PMC9699285 DOI: 10.1002/ntls.20220028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of bioorthogonal fluorogenic probes constitutes a vital force to advance life sciences. Tetrazine-encoded green fluorescent proteins (GFPs) show high bioorthogonal reaction rate and genetic encodability, but suffer from low fluorogenicity. Here, we unveil the real-time fluorescence mechanisms by investigating two site-specific tetrazine-modified superfolder GFPs via ultrafast spectroscopy and theoretical calculations. Förster resonance energy transfer (FRET) is quantitatively modeled and revealed to govern the fluorescence quenching; for GFP150-Tet with a fluorescence turn-on ratio of ~9, it contains trimodal subpopulations with good (P1), random (P2), and poor (P3) alignments between the transition dipole moments of protein chromophore (donor) and tetrazine tag (Tet-v2.0, acceptor). By rationally designing a more free/tight environment, we created new mutants Y200A/S202Y to introduce more P2/P1 populations and improve the turn-on ratios to ~14/31, making the fluorogenicity of GFP150-Tet-S202Y the highest among all up-to-date tetrazine-encoded GFPs. In live eukaryotic cells, the GFP150-Tet-v3.0-S202Y mutant demonstrates notably increased fluorogenicity, substantiating our generalizable design strategy.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Nikita D. Rozanov
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Marcus L. Hemshorn
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| |
Collapse
|
22
|
Tang L, Fang C. Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. Int J Mol Sci 2022; 23:6459. [PMID: 35742900 PMCID: PMC9223536 DOI: 10.3390/ijms23126459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| |
Collapse
|
23
|
Lee S, Jen M, Lee G, Jang T, Pang Y. Intramolecular charge transfer of a push-pull chromophore with restricted internal rotation of an electron donor. Phys Chem Chem Phys 2022; 24:5794-5802. [PMID: 35195633 DOI: 10.1039/d1cp05541k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intramolecular charge transfer (ICT) of 4-(dicyanomethylene)-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran (LD688) in DMSO solution was investigated by femtosecond stimulated Raman spectroscopy (FSRS) with 403 nm excitation. The molecular structure of LD688 is similar to that of a well-known push-pull chromophore, 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), except that the internal rotation of the electron-donating dimethylamino group is restricted with the introduction of the julolidine moiety. Upon photo-excitation, LD688 shows an ultrafast (1.0 ps) ICT followed by the vibrational relaxation (3-8 ps) in the charge-transfer (CT) state. Two distinct Raman spectra of LD688 in the locally excited (LE) and CT state of the S1 state were retrieved from FSRS measurements. Based on the time-dependent density functional theory (TDDFT) simulations, a "twisted" julolidine geometry of LD688 was proposed for the ICT state, which was further confirmed in comparison to the spectral changes of several push-pull chromophores with the π-conjugated backbone of stilbene, biphenyl, styrylpyran, styrylpyridinium, and styrene in terms of the skeletal vibrational modes of ν19b,py, νCC,ph, and νCN.
Collapse
Affiliation(s)
- Sebok Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Myungsam Jen
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Gisang Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
24
|
Uriarte LM, Vitale R, Niziński S, Hadjidemetriou K, Zala N, Lukacs A, Greetham GM, Sazanovich IV, Weik M, Ruckebusch C, Meech SR, Sliwa M. Structural Information about the trans-to- cis Isomerization Mechanism of the Photoswitchable Fluorescent Protein rsEGFP2 Revealed by Multiscale Infrared Transient Absorption. J Phys Chem Lett 2022; 13:1194-1202. [PMID: 35085441 DOI: 10.1021/acs.jpclett.1c02920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolved optical microscopies, which can be toggled between a fluorescent On state and a nonfluorescent Off state. Previous time-resolved ultraviolet-visible spectroscopic studies have shown that the Off-to-On photoactivation extends over the femto- to millisecond time scale and involves two picosecond lifetime excited states and four ground state intermediates, reflecting a trans-to-cis excited state isomerization, a millisecond deprotonation, and protein structural reorganizations. Femto- to millisecond time-resolved multiple-probe infrared spectroscopy (TRMPS-IR) can reveal structural aspects of intermediate species. Here we apply TRMPS-IR to rsEGFP2 and implement a Savitzky-Golay derivative analysis to correct for baseline drift. The results reveal that a subpicosecond twisted excited state precursor controls the trans-to-cis isomerization and the chromophore reaches its final position in the protein pocket within 100 ps. A new step with a time constant of 42 ns is reported and assigned to structural relaxation of the protein that occurs prior to the deprotonation of the chromophore on the millisecond time scale.
Collapse
Affiliation(s)
- Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stanisław Niziński
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | | | - Ninon Zala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| |
Collapse
|
25
|
Tang L, Fang C. Fluorescence Modulation by Ultrafast Chromophore Twisting Events: Developing a Powerful Toolset for Fluorescent-Protein-Based Imaging. J Phys Chem B 2021; 125:13610-13623. [PMID: 34883016 DOI: 10.1021/acs.jpcb.1c08570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advancement of modern life sciences has benefited tremendously from the discovery and development of fluorescent proteins (FPs), widely expressed in live cells to track a myriad of cellular events. The chromophores of various FPs can undergo many ultrafast photophysical and/or photochemical processes in the electronic excited state and emit fluorescence with different colors. However, the chromophore becomes essentially nonfluorescent in solution environment due to its intrinsic twisting capability upon photoexcitation. To study "microscopic" torsional events and their effects on "macroscopic" fluorescence, we have developed an integrated ultrafast characterization platform involving femtosecond transient absorption (fs-TA) and wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS). A wide range of naturally occurring, circularly permuted, non-canonical amino-acid-decorated FPs and FP-based optical highlighters with photochromicity, photoconversion, and/or photoswitching capabilities have been recently investigated in great detail. Twisting conformational motions were elucidated to exist in all of these systems but to various extents. The associated different ultrafast pathways can be monitored via frequency changes of characteristic Raman bands during primary events and functional processes. The mapped electronic and structural dynamics information is crucial and has shown great potential and initial success for the rational design of proteins and other photoreceptors with novel functions and fluorescence properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
26
|
Krueger TD, Fang C. Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy. Chemistry 2021; 27:17736-17750. [PMID: 34545971 DOI: 10.1002/chem.202102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 01/18/2023]
Abstract
Recent advances in sustainable optoelectronics including photovoltaics, light-emitting diodes, transistors, and semiconductors have been enabled by π-conjugated organic molecules. A fundamental understanding of light-matter interactions involving these materials can be realized by time-resolved electronic and vibrational spectroscopies. In this Minireview, the photoinduced mechanisms including charge/energy transfer, electronic (de)localization, and excited-state proton transfer are correlated with functional properties encompassing optical absorption, fluorescence quantum yield, conductivity, and photostability. Four naturally derived molecules (xylindein, dimethylxylindein, alizarin, indigo) with ultrafast spectral insights showcase efficient energy dissipation involving H-bonding networks and proton motions, which yield high photostability. Rational design principles derived from such investigations could increase the efficiency for light harvesting, triplet formation, and photosensitivity for improved and versatile optoelectronic performance.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
27
|
Shenje L, Qu Y, Popik V, Ullrich S. Femtosecond photodecarbonylation of photo-ODIBO studied by stimulated Raman spectroscopy and density functional theory. Phys Chem Chem Phys 2021; 23:25637-25648. [PMID: 34783336 DOI: 10.1039/d1cp03512f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-oxa-dibenzocyclooctyne (Photo-ODIBO) undergoes photodecarbonylation under UV excitation to its bright S2 state, forming a highly reactive cyclooctyne, ODIBO. Following 321 nm excitation with sub-50 fs actinic pulses, the excited state evolution and cyclopropenone bond cleavage with CO release were characterized using femtosecond stimulated Raman spectroscopy and time-dependent density functional theory Raman calculations. Analysis of the photo-ODIBO S2 CO Raman band revealed multi-exponential intensity, peak splitting and frequency-shift dynamics. This suggests a stepwise cleavage of the two C-C bonds in the cyclopropenone structure that is completed within <300 fs after excitation. Evidence of intramolecular vibrational relaxation on the S2 state, concurrent with photodecarbonylation, with dynamics matching previous electronic transient absorption spectroscopy, was also observed. This confirms an excited state, as opposed to ground state, photodecarbonylation mechanism resulting in a vibronically excited photoproduct, ODIBO.
Collapse
Affiliation(s)
- Learnmore Shenje
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| | - Yingqi Qu
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| | - Vladimir Popik
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Susanne Ullrich
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
28
|
Chen C, Tutol JN, Tang L, Zhu L, Ong WSY, Dodani SC, Fang C. Excitation ratiometric chloride sensing in a standalone yellow fluorescent protein is powered by the interplay between proton transfer and conformational reorganization. Chem Sci 2021; 12:11382-11393. [PMID: 34667546 PMCID: PMC8447875 DOI: 10.1039/d1sc00847a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Natural and laboratory-guided evolution has created a rich diversity of fluorescent protein (FP)-based sensors for chloride (Cl−). To date, such sensors have been limited to the Aequorea victoria green fluorescent protein (avGFP) family, and fusions with other FPs have unlocked ratiometric imaging applications. Recently, we identified the yellow fluorescent protein from jellyfish Phialidium sp. (phiYFP) as a fluorescent turn-on, self-ratiometric Cl− sensor. To elucidate its working mechanism as a rare example of a single FP with this capability, we tracked the excited-state dynamics of phiYFP using femtosecond transient absorption (fs-TA) spectroscopy and target analysis. The photoexcited neutral chromophore undergoes bifurcated pathways with the twisting-motion-induced nonradiative decay and barrierless excited-state proton transfer. The latter pathway yields a weakly fluorescent anionic intermediate , followed by the formation of a red-shifted fluorescent state that enables the ratiometric response on the tens of picoseconds timescale. The redshift results from the optimized π–π stacking between chromophore Y66 and nearby Y203, an ultrafast molecular event. The anion binding leads to an increase of the chromophore pKa and ESPT population, and the hindrance of conversion. The interplay between these two effects determines the turn-on fluorescence response to halides such as Cl− but turn-off response to other anions such as nitrate as governed by different binding affinities. These deep mechanistic insights lay the foundation for guiding the targeted engineering of phiYFP and its derivatives for ratiometric imaging of cellular chloride with high selectivity. We discovered an interplay between proton transfer and conformational reorganization that powers a standalone fluorescent-protein-based excitation-ratiometric biosensor for chloride imaging.![]()
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson TX 75080 USA https://lab.utdallas.edu/dodani/
| | - Longteng Tang
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| | - Whitney S Y Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson TX 75080 USA https://lab.utdallas.edu/dodani/
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson TX 75080 USA https://lab.utdallas.edu/dodani/
| | - Chong Fang
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| |
Collapse
|
29
|
A Novel Dialkylamino GFP Chromophore as an Environment-Polarity Sensor Reveals the Role of Twisted Intramolecular Charge Transfer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discovered a novel fluorophore by incorporating a dimethylamino group (–NMe2) into the conformationally locked green fluorescent protein (GFP) scaffold. It exhibited a marked solvent-polarity-dependent fluorogenic behavior and can potentially find broad applications as an environment-polarity sensor in vitro and in vivo. The ultrafast femtosecond transient absorption (fs-TA) spectroscopy in combination with quantum calculations revealed the presence of a twisted intramolecular charge transfer (TICT) state, which is formed by rotation of the –NMe2 group in the electronic excited state. In contrast to the bright fluorescent state (FS), the TICT state is dark and effectively quenches fluorescence upon formation. We employed a newly developed multivariable analysis approach to the FS lifetime in various solvents and showed that the FS → TICT reaction barrier is mainly modulated by H-bonding capability instead of viscosity of the solvent, accounting for the observed polarity dependence. These deep mechanistic insights are further corroborated by the dramatic loss of fluorogenicity for two similar GFP-derived chromophores in which the rotation of the –NMe2 group is inhibited by structural locking.
Collapse
|
30
|
Boulanger SA, Chen C, Tang L, Zhu L, Baleeva NS, Myasnyanko IN, Baranov MS, Fang C. Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state. Phys Chem Chem Phys 2021; 23:14636-14648. [PMID: 34212170 DOI: 10.1039/d1cp02140k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore (i.e., HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated "floppy" chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck-Condon energy (EFC) or Stokes shift, and knrvs. EFC, as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.
Collapse
Affiliation(s)
- Sean A Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| |
Collapse
|
31
|
Fang C, Drobizhev M, Ng HL, Pantazis P. Editorial: Mechanisms of Fluorescent Proteins. Front Mol Biosci 2021; 8:701523. [PMID: 34124168 PMCID: PMC8187757 DOI: 10.3389/fmolb.2021.701523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Periklis Pantazis
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Int J Mol Sci 2021; 22:ijms22105252. [PMID: 34065754 PMCID: PMC8156171 DOI: 10.3390/ijms22105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.
Collapse
|
33
|
Zhang W, Xu W, Zhang G, Kong J, Niu X, Chan JMW, Liu W, Xia A. Direct Tracking Excited-State Intramolecular Charge Redistribution of Acceptor-Donor-Acceptor Molecule by Means of Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:4456-4464. [PMID: 33902280 DOI: 10.1021/acs.jpcb.1c01742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Symmetric quadrupolar molecules generally exhibit apolar ground states and dipolar excited states in a polar environment, which is explained by the excited state evolution from initial charge delocalization over all molecules to localization on one branch of the molecules after a femtosecond pulse excitation. However, direct observation of excited-state charge redistribution (delocalization/localization) is hardly accessible. Here, the intramolecular charge delocalization/localization character of a newly synthesized acceptor-donor-acceptor molecule (ADA) has been intensively investigated by femtosecond stimulated Raman scattering (FSRS) together with femtosecond transient absorption (fs-TA) spectroscopy. By tracking the excited state Raman spectra of the specific alkynyl (-C≡C-) bonds at each branch of ADA, we found that the nature of the relaxed S1 state is strongly governed by solvent polarity: symmetric delocalized intramolecular charge transfer (ICT) characters occurred in apolar solvent, whereas the asymmetric localized ICT characters appeared in polar solvent because of solvation. The solvation dynamics of ADA extracted from fs-TA is consistent with the time constants obtained by FSRS, but the FSRS clearly tracks the excited state intramolecular charge transfer delocalization/localization.
Collapse
Affiliation(s)
- Wei Zhang
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Wenqi Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Guoxian Zhang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Julian M W Chan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Andong Xia
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China
| |
Collapse
|
34
|
Tachibana SR, Tang L, Chen C, Zhu L, Takeda Y, Fushimi K, Seevers TK, Narikawa R, Sato M, Fang C. Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119379. [PMID: 33401182 DOI: 10.1016/j.saa.2020.119379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteriochromes (CBCRs) are an emerging class of photoreceptors that are distant relatives of the phytochromes family. Unlike phytochromes, CBCRs have gained popularity in optogenetics due to their highly diverse spectral properties spanning the UV to near-IR region and only needing a single compact binding domain. AnPixJg2 is a CBCR that can reversibly photoswitch between its red-absorbing (15ZPr) and green-absorbing (15EPg) forms of the phycocyanobilin (PCB) cofactor. To reveal primary events of photoconversion, we implemented femtosecond transient absorption spectroscopy with a homemade LED box and a miniature peristaltic pump flow cell to track transient electronic responses of the photoexcited AnPixJg2 on molecular time scales. The 525 nm laser-induced Pg-to-Pr reverse conversion exhibits a ~3 ps excited-state lifetime before reaching the conical intersection (CI) and undergoing further relaxation on the 30 ps time scale to generate a long-lived Lumi-G ground state intermediate en route to Pr. The 650 nm laser-induced Pr-to-Pg forward conversion is less efficient than reverse conversion, showing a longer-lived excited state which requires two steps with ~13 and 217 ps time constants to enter the CI region. Furthermore, using a tunable ps Raman pump with broadband Raman probe on both the Stokes and anti-Stokes sides, we collected the pre-resonance ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) data with mode assignments aided by quantum calculations. Key vibrational marker bands at ~850, 1050, 1615, and 1649 cm-1 of the Pr conformer exhibit a notable blueshift to those of the Pg conformer inside AnPixJg2, reflecting the PCB chromophore terminal D (major) and A (minor) ring twist along the primary photoswitching reaction coordinate. This integrated ultrafast spectroscopy and computational platform has the potential to elucidate photochemistry and photophysics of more CBCRs and photoactive proteins in general, providing the highly desirable mechanistic insights to facilitate the rational design of functional molecular sensors and devices.
Collapse
Affiliation(s)
- Sean R Tachibana
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Yuka Takeda
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Travis K Seevers
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo, 153-8902 Tokyo, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States.
| |
Collapse
|
35
|
Tang L, Zhang S, Zhao Y, Rozanov ND, Zhu L, Wu J, Campbell RE, Fang C. Switching between Ultrafast Pathways Enables a Green-Red Emission Ratiometric Fluorescent-Protein-Based Ca 2+ Biosensor. Int J Mol Sci 2021; 22:E445. [PMID: 33466257 PMCID: PMC7794744 DOI: 10.3390/ijms22010445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023] Open
Abstract
Ratiometric indicators with long emission wavelengths are highly preferred in modern bioimaging and life sciences. Herein, we elucidated the working mechanism of a standalone red fluorescent protein (FP)-based Ca2+ biosensor, REX-GECO1, using a series of spectroscopic and computational methods. Upon 480 nm photoexcitation, the Ca2+-free biosensor chromophore becomes trapped in an excited dark state. Binding with Ca2+ switches the route to ultrafast excited-state proton transfer through a short hydrogen bond to an adjacent Glu80 residue, which is key for the biosensor's functionality. Inspired by the 2D-fluorescence map, REX-GECO1 for Ca2+ imaging in the ionomycin-treated human HeLa cells was achieved for the first time with a red/green emission ratio change (ΔR/R0) of ~300%, outperforming many FRET- and single FP-based indicators. These spectroscopy-driven discoveries enable targeted design for the next-generation biosensors with larger dynamic range and longer emission wavelengths.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Shuce Zhang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Yufeng Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Nikita D. Rozanov
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Jiahui Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| |
Collapse
|
36
|
Coppola F, Perrella F, Petrone A, Donati G, Rega N. A Not Obvious Correlation Between the Structure of Green Fluorescent Protein Chromophore Pocket and Hydrogen Bond Dynamics: A Choreography From ab initio Molecular Dynamics. Front Mol Biosci 2020; 7:569990. [PMID: 33195416 PMCID: PMC7653547 DOI: 10.3389/fmolb.2020.569990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022] Open
Abstract
The Green Fluorescent Protein (GFP) is a widely studied chemical system both for its large amount of applications and the complexity of the excited state proton transfer responsible of the change in the protonation state of the chromophore. A detailed investigation on the structure of the chromophore environment and the influence of chromophore form (either neutral or anionic) on it is of crucial importance to understand how these factors could potentially influence the protein function. In this study, we perform a detailed computational investigation based on the analysis of ab-initio molecular dynamics simulations, to disentangle the main structural quantities determining the fine balance in the chromophore environment. We found that specific hydrogen bonds interactions directly involving the chromophore (or not), are correlated to quantities, such as the volume of the cavity in which the chromophore is embedded and that it is importantly affected by the chromophore protonation state. The cross-correlation analysis performed on some of these hydrogen bonds and the cavity volume, demonstrates a direct correlation among them and we also identified the ones specifically involved in this correlation. We also found that specific interactions among residues far in the space are correlated, demonstrating the complexity of the chromophore environment and that many structural quantities have to be taken into account to properly describe and understand the main factors tuning the active site of the protein. From an overall evaluation of the results obtained in this work, it is shown that the residues which a priori are perceived to be spectators play instead an important role in both influencing the chromophore environment (cavity volume) and its dynamics (cross-correlations among spatially distant residues).
Collapse
Affiliation(s)
- Federico Coppola
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Fulvio Perrella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Petrone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Greta Donati
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Naples, Italy
| |
Collapse
|