1
|
Lee H, Moon T, Lee Y, Kim J. Structural Mechanisms of Quasi-2D Perovskites for Next-Generation Photovoltaics. NANO-MICRO LETTERS 2025; 17:139. [PMID: 39920413 PMCID: PMC11806192 DOI: 10.1007/s40820-024-01609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/27/2024] [Indexed: 02/09/2025]
Abstract
Quasi-two-dimensional (2D) perovskite embodies characteristics of both three-dimensional (3D) and 2D perovskites, achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites. This effect is realized through critical structural modifications in device fabrication. Typically, perovskites have an octahedral structure, generally ABX3, where an organic ammonium cation (A') participates in forming the perovskite structure, with A'(n) (n = 1 or 2) sandwiched between A(n-1)B(n)X(3n+1) perovskite layers. Depending on whether A' is a monovalent or divalent cation, 2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite, each generating different structures. Although each structure achieves similar effects, they incorporate distinct mechanisms in their formation. And according to these different structures, various properties appear, and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites. In this review, scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated, and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.
Collapse
Affiliation(s)
- Hyeonseok Lee
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Taeho Moon
- Department of Materials Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Younghyun Lee
- Center for Semiconductor Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jinhyun Kim
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
2
|
Gu J, Fu Y. Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites? ACS MATERIALS AU 2025; 5:24-34. [PMID: 39802148 PMCID: PMC11718535 DOI: 10.1021/acsmaterialsau.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions. Minimizing structural distortions, such as dynamic out-of-plane octahedral tilting and lone pair distortion, appears to be essential for achieving narrow photoluminescence (PL) emission peaks, high PL quantum yields, and rapid exciton diffusion by suppressing exciton-phonon coupling, as demonstrated in 2D perovskites based on phenylethylammonium cation or its derivatives. We propose that designing spacer cations with enhanced intermolecular interactions and denser packing, combined with the close packing of inorganic ions to minimize the motions of both organic and inorganic lattices, would be the ideal scenario for yielding the most favorable optoelectronic properties in these materials.
Collapse
Affiliation(s)
- Jiazhen Gu
- Beijing
National Laboratory for Molecular Science, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing
National Laboratory for Molecular Science, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Krahne R, Schleusener A, Faraji M, Li LH, Lin ML, Tan PH. Phonon Directionality Impacts Electron-Phonon Coupling and Polarization of the Band-Edge Emission in Two-Dimensional Metal Halide Perovskites. NANO LETTERS 2024; 24:11124-11131. [PMID: 39171793 PMCID: PMC11378763 DOI: 10.1021/acs.nanolett.4c03543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two-dimensional metal halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for the tunability of mechanical and optoelectronic properties. The band-edge emission is defined by the structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombination dynamics. However, the nature of the electron-phonon coupling and what kind of phonons are involved are still under debate. Here we investigate the emission, reflectance, and phonon response from single two-dimensional lead iodide microcrystals with angle-resolved polarized spectroscopy. We find an intricate dependence of the emission polarization with the vibrational directionality in the materials, which reveals that several bands of low-frequency phonons with nonorthogonal directionality contribute to the band-edge emission. Such complex electron-phonon coupling requires adequate models to predict the thermal broadening of the emission and provides opportunities to design polarization properties.
Collapse
Affiliation(s)
- Roman Krahne
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Alexander Schleusener
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Mehrdad Faraji
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Lin-Han Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
4
|
Krahne R, Lin ML, Tan PH. Interplay of Phonon Directionality and Emission Polarization in Two-Dimensional Layered Metal Halide Perovskites. Acc Chem Res 2024; 57:2476-2489. [PMID: 39167606 PMCID: PMC11376265 DOI: 10.1021/acs.accounts.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
ConspectusLayered metal halide perovskites represent a natural quantum well system for charge carriers that provides rich physics, and the organic encapsulation of the inorganic metal halide layers not only increases their stability in devices but also provides an immense freedom to design their functionality. Intriguingly, these organic moieties strongly impact the optical, electrical, and mechanical properties, not only through their dielectric, elastic, and chemical properties but also because of induced mechanical distortions in the inorganic lattice. This tunability makes two-dimensional layered perovskites (2DLPs) highly attractive as light emitters. Common consensus is that exciton-phonon coupling plays an important role in radiative recombination. For bulk and some two-dimensional (2D) materials, the band edge emission broadening can be described by the classic models for polar inorganic semiconductors, while for the temperature dependence of the self-trapped exciton emission, an analysis developed for color centers has been successfully applied. For many 2DLPs these approaches do not work because of the complexity of their vibrational spectra. However, their emission is still strongly determined by phonons, and therefore, an adequate understanding of the electron-phonon coupling needs to be developed.With polarized and angle-resolved Raman spectroscopy studies on single 2DLP flakes based on different ammonium molecules as organic cations, in 2020 we revealed very rich phonon spectra in the low-frequency regime. Although the phonon bands at low frequency can generally be attributed to the vibrations of the inorganic lattice, we found very different responses by only changing the type of organic cations. In addition, the intensity of the different phonon modes depended strongly on the angle of the linearly polarized excitation beam with respect to the in-plane axes of the octahedron lattice. In 2022, we mapped this angular dependence of the phonon modes, which allowed identification of the directionality of the different lattice vibrations. By correlating the phonon spectra with the temperature-dependent emission for a set of 2DLPs that featured very different self-trapped exciton (STE) emission, we demonstrated that the exciton relaxation cannot be related to coupling with a single (longitudinal-optical) phonon band and that several phonon bands should be involved in the emission process. To gain insights into the exciton-phonon coupling effects on the band edge emission, we performed both angle-resolved polarized emission and Raman spectroscopy on single 2D lead iodide perovskite microcrystals. These experiments revealed the impact of the organic cations on the linear polarization of the emission and corroborated that multiple phonon bands should be involved in the radiative recombination process. Analysis of the temperature-dependent line width broadening of the band edge emission showed that for many systems, the behavior cannot be described by assuming the involvement of only one phonon mode in the electron-phonon coupling process. Our studies revealed a wealth of highly directional low-frequency phonons in 2DLPs from which several bands are involved in the emission process, which leads to diverse optical and vibrational properties depending on the type of organic cation in the material.
Collapse
Affiliation(s)
- Roman Krahne
- Optoelectronics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering and CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering and CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yadav A, Ahmad S. Single Crystal Ruddlesden-Popper and Dion-Jacobson Metal Halide Perovskites for Visible Light Photodetectors: Present Status and Future Perspectives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43134-43155. [PMID: 39116407 DOI: 10.1021/acsami.4c07170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
2D metal halide perovskites (MHPs), mainly the studied Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phases, have gained enormous popularity as optoelectronic materials owing to their self-assembled multiple quantum well structures, tunable semiconducting properties, and improved structural stability compared to their bulk 3D counterparts. The performance of polycrystalline thin film devices is limited due to the formation of defects and trap states. However, as studied so far, single crystal-based devices can provide a better platform to improve device performance and investigate their fundamental properties more reliably. This Review provides the first comprehensive report on the emerging field of RP and DJ perovskite single crystals and their use in visible light photodetectors of varied device configurations. This Review structurally summarizes the 2D MHP single crystal growth methods and the parameters that control the crystal growth process. In addition, the characterization techniques used to investigate their crystal properties are discussed. The review further provides detailed insights into the working mechanisms as well as the operational performance of 2D MHP single crystal photodetector devices. In the end, to outline the present status and future directions, this Review provides a forward-looking perspective concerning the technical challenges and bottlenecks associated with the developing field of RP and DJ perovskite single crystals. Therefore, this timely review will provide a detailed overview of the fast-growing field of 2D MHP single crystal-based photodetectors as well as ignite new concepts for a wide range of applications including solar cells, photocatalysts, solar H2 production, neuromorphic bioelectronics, memory devices, etc.
Collapse
Affiliation(s)
- Abhishek Yadav
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Shahab Ahmad
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
6
|
Duan J, Li J, Divitini G, Cortecchia D, Yuan F, You J, Liu SF, Petrozza A, Wu Z, Xi J. 2D Hybrid Perovskites: From Static and Dynamic Structures to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403455. [PMID: 38723249 DOI: 10.1002/adma.202403455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices. Herein, this study examines how structural changes, from constant lattice distortion and variable structural evolution, modeled with both static and dynamic structural descriptors, affect macroscopic properties and ultimately device performance. The effect of chemical composition, crystallographic inhomogeneity, and mechanical-stress-induced static structural changes and corresponding electronic band variations is reported. In addition, the structure dynamics are described from the viewpoint of anharmonic vibrations, which impact electron-phonon coupling and the carriers' dynamic processes. Correlated carrier-matter interactions, known as polarons and acting on fine electronic structures, are then discussed. Finally, reliable guidelines to facilitate design to exploit structural features and rationally achieve breakthroughs in 2D perovskite applications are proposed. This review provides a global structural landscape of 2D perovskites, expected to promote the prosperity of these materials in emerging device applications.
Collapse
Affiliation(s)
- Jianing Duan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering & International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Daniele Cortecchia
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna, 40129, Italy
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxue You
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Annamaria Petrozza
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Li Z, Lin Y, Gu H, Zhang N, Wang B, Cai H, Liao J, Yu D, Chen Y, Fang G, Liang C, Yang S, Xing G. Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Sci Bull (Beijing) 2024; 69:382-418. [PMID: 38105163 DOI: 10.1016/j.scib.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.
Collapse
Affiliation(s)
- Zijia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Nan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
| |
Collapse
|
8
|
Kim J, Xu Y, Bain D, Li M, Cotlet M, Yu Q, Musser AJ. Small to Large Polaron Behavior Induced by Controlled Interactions in Perovskite Quantum Dot Solids. ACS NANO 2023; 17:23079-23093. [PMID: 37934023 DOI: 10.1021/acsnano.3c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The polaron is an essential photoexcitation that governs the unique optoelectronic properties of organic-inorganic hybrid halide perovskites, and it has been subject to extensive spectroscopic and theoretical investigation over the past decade. A crucial but underexplored question is how the nature of the photogenerated polarons is impacted by the microscopic perovskite structure and what functional properties this affects. To tackle this question, we chemically tuned the interactions between perovskite quantum dots (QDs) to rationally manipulate the polaron properties. Through a suite of time-resolved spectroscopies, we find that inter-QD interactions open an excited-state channel to form large polaron species, which exhibit enhanced spatial diffusion, slower hot polaron cooling, and a longer intrinsic lifetime. At the same time, polaronic excitons are formed in competition via localized band-edge states, exhibiting strong photoluminescence but are limited by shorter intrinsic lifetimes. This control of polaron type and function through tunable inter-QD interactions not only provides design principles for QD-based materials but also experimentally disentangles polaronic species in hybrid perovskite materials.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuanze Xu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Bain
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Rojas-Gatjens E, Li H, Vega-Flick A, Cortecchia D, Petrozza A, Bittner ER, Srimath Kandada AR, Silva-Acuña C. Many-Exciton Quantum Dynamics in a Ruddlesden-Popper Tin Iodide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21194-21203. [PMID: 37937156 PMCID: PMC10626601 DOI: 10.1021/acs.jpcc.3c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/01/2023] [Indexed: 11/09/2023]
Abstract
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys.2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (<10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden-Popper metal halides (RPMHs) and links them to the exciton-exciton interaction strength and the static disorder aspect of the crystalline structure.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
| | - Hao Li
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Alejandro Vega-Flick
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
| | - Daniele Cortecchia
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Eric R. Bittner
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ajay Ram Srimath Kandada
- Department
of Physics, Wake Forest University, Winston–Salem, North
Carolina 27587, United States
- Center
for Functional Materials, Wake Forest University, Winston–Salem, North
Carolina 27109, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
10
|
DuBose JT, Christy A, Chakkamalayath J, Kamat PV. Trap or Triplet? Excited-State Interactions in 2D Perovskite Colloids with Chromophoric Cations. ACS NANO 2023; 17:19052-19062. [PMID: 37725791 DOI: 10.1021/acsnano.3c04932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Movement of energy within light-harvesting assemblies is typically carried out with separately synthesized donor and acceptor species, which are then brought together to induce an interaction. Recently, two-dimensional (2D) lead halide perovskites have gained interest for their ability to accommodate and assemble chromophoric molecules within their lattice, creating hybrid organic-inorganic compositions. Using a combination of steady-state and time-resolved absorption and emission spectroscopy, we have now succeeded in establishing the competition between energy transfer and charge trapping in 2D halide perovskite colloids containing naphthalene-derived cations (i.e., NEA2PbX4, where NEA = naphthylethylamine). The presence of room-temperature triplet emission from the naphthalene moiety depends on the ratio of bromide to iodide in the lead halide sublattice (i.e., x in NEA2Pb(Br1-xIx)4), with only bromide-rich compositions showing sensitized emission. Photoluminescence lifetime measurements of the sensitized naphthalene reveal the formation of the naphthalene triplet excimer at room temperature. From transient absorption measurements, we find the rate constant of triplet energy transfer (kEnT) to be on the order of ∼109 s-1. At low temperatures (77 K) a new broad emission feature arising from trap states is observed in all samples ranging from pure bromide to pure iodide composition. These results reveal the interplay between sensitized triplet energy transfer and charge trapping in 2D lead halide perovskites, highlighting the need to carefully parse contributions from competing de-excitation pathways for optoelectronic applications.
Collapse
|
11
|
Kutkan S, Dhanabalan B, Lin ML, Tan PH, Schleusener A, Arciniegas MP, Krahne R. Impact of the organic cation on the band-edge emission of two-dimensional lead-bromide perovskites. NANOSCALE 2023; 15:12880-12888. [PMID: 37477377 DOI: 10.1039/d3nr02172f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organic-inorganic low-dimensional layered metal-halide perovskites are semiconductors in which the optoelectronic properties can be tuned by the material composition and the design of the layered architecture. While the electronic band structure is mainly determined by the inorganic octahedra lattice, the binding and conformation of the organic cations induces related lattice distortions that can break the symmetry and lead to the splitting of the exciton energy levels, and influence the dielectric confinement. Furthermore, organic-induced lattice deformations lead to offsets in k-space (where k is the wavevector) that go along with the exciton energy level splitting. Hence, the electronic transitions between these levels require the momentum contribution of phonons, and contributions of phonons in the exciton recombination dynamics result in thermal broadening of the emission linewidth. In this work, we investigate the band-edge emission of two-dimensional Ruddlesden-Popper lead-bromide perovskites synthesized with different organic cations that vary in their binding head group and their alkyl chain length. We find several peaks in the low-temperature photoluminescence spectra, and the number of peaks in the band-edge emission and their decay dynamics depend strongly on the type of organic cation in the material, which we relate to the difference in the inorganic lattice distortions that the cations induce. For two-dimensional layered perovskites with mainly in-plane distortions, induced by short primary ammonium molecules, we find a two-fold splitting of the band edge emission at low temperatures. If also out-of-plane distortions are present, as for the long-chain primary ammoniums, a three-fold splitting is observed. Interestingly, the low-energy peaks of the split series merge into the highest energy peak with increasing temperature. Thermal broadening analysis of the temperature-dependent photoluminescence linewidth in the structures with out-of-plane distortions yields energies that are larger than those reported for the inorganic lattice phonons. This indicates the involvement of either high-frequency oscillations involving the organic cations, or the broadening might be related to higher order phonon scattering processes in the excitonic recombination process. The strong directionality of the phonon modes in the octahedral lattice could promote the involvement of multiple electron-phonon scattering processes in the exciton relaxation dynamics, for example involving modes with orthogonal directionality.
Collapse
Affiliation(s)
- Seda Kutkan
- Italian Institute of Technology (IIT), Via Morego 30, 16163 Genoa, Italy.
| | - Balaji Dhanabalan
- Italian Institute of Technology (IIT), Via Morego 30, 16163 Genoa, Italy.
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
| | | | | | - Roman Krahne
- Italian Institute of Technology (IIT), Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
12
|
Folpini G, Palummo M, Cortecchia D, Moretti L, Cerullo G, Petrozza A, Giorgi G, Srimath Kandada AR. Plurality of excitons in Ruddlesden-Popper metal halides and the role of the B-site metal cation. MATERIALS ADVANCES 2023; 4:1720-1730. [PMID: 37026040 PMCID: PMC10068426 DOI: 10.1039/d2ma00136e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
We investigate the effect of metal cation substition on the excitonic structure and dynamics in a prototypical Ruddlesden-Popper metal halide. Through an in-depth spectroscopic and theoretical analysis, we identify the presence of multiple resonances in the optical spectra of a phenethyl ammonium tin iodide, a tin-based RPMH. Based on ab initio calculations, we assign these resonances to distinct exciton series that originate from the splitting of the conduction band due to spin-orbit coupling. While the splitting energy in the tin based system is low enough to enable the observation of the higher lying exciton in the visible-range spectrum of the material, the higher splitting energy in the lead counterpart prevents the emergence of such a feature. We elucidate the critical role played by the higher lying excitonic state in the ultrafast carrier thermalization dynamics.
Collapse
Affiliation(s)
- Giulia Folpini
- CNST@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3 Milano Italy
| | - Maurizia Palummo
- Dipartimento di Fisica and INFN, Universitá di Roma "Tor Vergata", Via della Ricerca Scientifica 1 Roma Italy
| | - Daniele Cortecchia
- CNST@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3 Milano Italy
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano Milano Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano Milano Italy
| | - Annamaria Petrozza
- CNST@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3 Milano Italy
| | - Giacomo Giorgi
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Via G. Duranti, 93 06125 Perugia Italy
- CNR-SCITEC I-06123 Perugia Italy
- CIRIAF - Interuniversity Research Centre, University of Perugia, Via G. Duranti 93 06125 Perugia Italy
| | - Ajay Ram Srimath Kandada
- Department of Physics and Center for Functional Materials 1834 Wake Forest Road Winston-Salem NC 27109 USA
| |
Collapse
|
13
|
Hurtado Parra S, Straus DB, Fichera BT, Iotov N, Kagan CR, Kikkawa JM. Large Exciton Polaron Formation in 2D Hybrid Perovskites via Time-Resolved Photoluminescence. ACS NANO 2022; 16:21259-21265. [PMID: 36520667 DOI: 10.1021/acsnano.2c09256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We find evidence for the formation and relaxation of large exciton polarons in 2D organic-inorganic hybrid perovskites. Using ps-scale time-resolved photoluminescence within the phenethylammonium lead iodide family of compounds, we identify a red shifting of emission that we associate with exciton polaron formation time scales of 3-10 ps. Atomic substitutions of the phenethylammonium cation allow local control over the structure of the inorganic lattice, and we show that the structural differences among materials strongly influence the exciton polaron relaxation process, revealing a polaron binding energy that grows larger (up to 15 meV) in more strongly distorted compounds.
Collapse
|
14
|
The chemistry and physics of organic—inorganic hybrid perovskite quantum wells. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|