1
|
Kim HS, Khan AA, Park JY, Lee S, Ahn YH. Mechanical Control of Polaritonic States in Lead Halide Perovskite Phonons Strongly Coupled in THz Microcavity. J Phys Chem Lett 2023; 14:10318-10327. [PMID: 37943739 DOI: 10.1021/acs.jpclett.3c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We demonstrate the generation and control of polaritonic states in perovskite phonon polaritons, which are strongly coupled in the middle of a flexible Fabry-Perot cavity. We fabricated flexible perovskite films on a microporous substrate coated with graphene oxide, which led to a virtually free-standing film incorporated into the microcavity. Rabi splitting was observed when the cavity resonance was in tune with that of the phonons. The Rabi splitting energy increased as the film thickness increased, reaching 1.9 meV, which is 2.4-fold higher than the criterion for the strong coupling regime. We obtained dispersion curves for various perovskite film thicknesses exhibiting two polariton branches; clear beats between the two polaritonic branches were observed in the time domain. Flexible cavity devices with perovskite phonons enable macroscopic control over the polaritonic energy states through bending processes, which add an additional degree of freedom in the manipulation of polaritonic devices.
Collapse
Affiliation(s)
- H S Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - A A Khan
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - J-Y Park
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - S Lee
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Y H Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| |
Collapse
|
2
|
Plomp V, Onvlee J, Lique F, van de Meerakker SYT. Low-Energy Collisions of Zeeman-Decelerated NH Radicals with He Atoms. J Phys Chem A 2023; 127:2306-2313. [PMID: 36884215 PMCID: PMC10026067 DOI: 10.1021/acs.jpca.2c08712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
We report an experimental study of state-to-state inelastic scattering of NH (X 3Σ-, N = 0, j = 1) radicals with He atoms. Using a crossed molecular beam apparatus that combines a Zeeman decelerator and velocity map imaging, we study both integral and differential cross sections in the N = 0, j = 1 → N = 2, j = 3 inelastic channel. We developed various new REMPI schemes to state-selectively detect NH radicals, and tested their performance in terms of sensitivity and ion recoil velocity. We found a 1 + 2' + 1' REMPI scheme using the A 3Π ← X 3Σ- resonant transition, which yields acceptable recoil velocities and is more than an order of magnitude more sensitive than conventional one-color REMPI schemes to detect NH. We used this REMPI scheme to probe state-to-state integral and differential cross sections around the channel opening at 97.7 cm-1, as well as at higher energies where structure in the scattering images could be resolved. The experimental results are in excellent agreement with the predictions from quantum scattering calculations which are based on an ab initio NH-He potential energy surface.
Collapse
Affiliation(s)
- Vikram Plomp
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jolijn Onvlee
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - François Lique
- Institut de Physique de Rennes, Université de Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes CEDEX, France
| | | |
Collapse
|
3
|
Wu LY, Miossec C, Heazlewood BR. Low-temperature reaction dynamics of paramagnetic species in the gas phase. Chem Commun (Camb) 2022; 58:3240-3254. [PMID: 35188499 PMCID: PMC8902758 DOI: 10.1039/d1cc06394d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Radicals are abundant in a range of important gas-phase environments. They are prevalent in the atmosphere, in interstellar space, and in combustion processes. As such, understanding how radicals react is essential for the development of accurate models of the complex chemistry occurring in these gas-phase environments. By controlling the properties of the colliding reactants, we can also gain insights into how radical reactions occur on a fundamental level. Recent years have seen remarkable advances in the breadth of experimental methods successfully applied to the study of reaction dynamics involving paramagnetic species-from improvements to the well-known crossed molecular beams approach to newer techniques involving magnetically guided and decelerated beams. Coupled with ever-improving theoretical methods, quantum features are being observed and interesting insights into reaction dynamics are being uncovered in an increasingly diverse range of systems. In this highlight article, we explore some of the exciting recent developments in the study of chemical dynamics involving paramagnetic species. We focus on low-energy reactive collisions involving neutral radical species, where the reaction parameters are controlled. We conclude by identifying some of the limitations of current methods and exploring possible new directions for the field.
Collapse
Affiliation(s)
- Lok Yiu Wu
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Chloé Miossec
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Brianna R Heazlewood
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
| |
Collapse
|
4
|
Miossec C, Hejduk M, Pandey R, Coughlan NJA, Heazlewood BR. Design and characterization of a cryogenic linear Paul ion trap for ion-neutral reaction studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:033201. [PMID: 35364974 DOI: 10.1063/5.0080458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Ultra-high vacuum conditions are ideal for the study of trapped ions. They offer an almost perturbation-free environment, where ions confined in traps can be studied for extended periods of time-facilitating precision measurements and allowing infrequent events to be observed. However, if one wishes to study processes involving molecular ions, it is important to consider the effect of blackbody radiation (BBR). The vast majority of molecular ions interact with BBR. At 300 K, state selection in trapped molecular ions can be rapidly lost (in a matter of seconds). To address this issue, and to maintain state selectivity in trapped molecular ions, a cryogenic ion trap chamber has been constructed and characterized. At the center of the apparatus is a linear Paul ion trap, where Coulomb crystals can be formed for ion-neutral reaction studies. Optical access is provided, for lasers and for imaging of the crystals, alongside ion optics and a flight tube for recording time-of-flight mass spectra. The ion trap region, encased within two nested temperature stages, reaches temperatures below 9 K. To avoid vibrations from the cryocooler impeding laser cooling or imaging of the ions, vibration-damping elements are explicitly included. These components successfully inhibit the coupling of vibrations from the cold head to the ion trap-confirmed by accelerometer measurements and by the resolution of images recorded at the trap center (at 9 and 295 K). These results confirm that the cryogenic ion trap apparatus meets all requirements for studying ion-neutral reactions under cold, controlled conditions.
Collapse
Affiliation(s)
- Chloé Miossec
- Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| | - Michal Hejduk
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Rahul Pandey
- Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| | - Neville J A Coughlan
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Brianna R Heazlewood
- Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| |
Collapse
|
5
|
Plomp V, Wang XD, Lique F, Kłos J, Onvlee J, van de Meerakker SYT. High-Resolution Imaging of C + He Collisions using Zeeman Deceleration and Vacuum-Ultraviolet Detection. J Phys Chem Lett 2021; 12:12210-12217. [PMID: 34928163 PMCID: PMC8724800 DOI: 10.1021/acs.jpclett.1c03643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
High-resolution measurements of angular scattering distributions provide a sensitive test for theoretical descriptions of collision processes. Crossed beam experiments employing a decelerator and velocity map imaging have proven successful to probe collision cross sections with extraordinary resolution. However, a prerequisite to exploit these possibilities is the availability of a near-threshold state-selective ionization scheme to detect the collision products, which for many species is either absent or inefficient. We present the first implementation of recoil-free vacuum ultraviolet (VUV) based detection in scattering experiments involving a decelerator and velocity map imaging. This allowed for high-resolution measurements of state-resolved angular scattering distributions for inelastic collisions between Zeeman-decelerated carbon C(3P1) atoms and helium atoms. We fully resolved diffraction oscillations in the angular distributions, which showed excellent agreement with the distributions predicted by quantum scattering calculations. Our approach offers exciting prospects to investigate a large range of scattering processes with unprecedented precision.
Collapse
Affiliation(s)
- Vikram Plomp
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Xu-Dong Wang
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - François Lique
- Université
de Rennes, Institut de Physique de Rennes, 263 avenue du Général
Leclerc, Rennes 35042 CEDEX, France
| | - Jacek Kłos
- University
of Maryland, Department of Physics, Joint
Quantum Institute, College Park, Maryland 20742, United States of America
| | - Jolijn Onvlee
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
6
|
Mohamed O, Wu LY, Tsikritea A, Heazlewood BR. Optimizing the intensity and purity of a Zeeman-decelerated beam. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:093201. [PMID: 34598488 DOI: 10.1063/5.0061379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A pure, state-selected beam of gas-phase radicals is an important tool for the precise study of radical reactions that are astrochemically and atmospherically relevant. Generating such a beam has proven to be an ongoing challenge for the scientific community. Using evolutionary algorithms to optimize the variable experimental parameters, the passage of state- and velocity-selected hydrogen atoms can be optimized as they travel through a 12-stage Zeeman decelerator and a magnetic guide. Only H atoms traveling at the target velocity are present in the beam that reaches the detection region, from a source containing a mixture of different species. All other species-including seed gases, precursor molecules, other dissociation products, and H atoms traveling outside the target velocity-are removed from the beam. The fully optimized parameters yield a pure H-atom beam containing twice as many target particles and a narrower velocity distribution compared to beams produced when only the Zeeman decelerator is optimized. These significant improvements highlight the importance of considering the passage of all target particles in the beam as they pass through all elements of the experimental apparatus.
Collapse
Affiliation(s)
- Omar Mohamed
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lok Yiu Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Andriana Tsikritea
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Brianna R Heazlewood
- Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| |
Collapse
|