1
|
Manguso N, Kim M, Joshi N, Al Mahmud MR, Aldaco J, Suzuki R, Cortes-Ledesma F, Cui X, Yamada S, Takeda S, Giuliano A, You S, Tanaka H. TDP2 is a regulator of estrogen-responsive oncogene expression. NAR Cancer 2024; 6:zcae016. [PMID: 38596431 PMCID: PMC11000318 DOI: 10.1093/narcan/zcae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.
Collapse
Affiliation(s)
- Nicholas Manguso
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
| | - Minhyung Kim
- Department of Urology and Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
| | - Neeraj Joshi
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Juan Aldaco
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
| | - Ryusuke Suzuki
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
| | - Felipe Cortes-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Armando Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Sungyong You
- Department of Urology and Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048 USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| |
Collapse
|
2
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
3
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Zearalenone Promotes Uterine Development of Weaned Gilts by Interfering with Serum Hormones and Up-Regulating Expression of Estrogen and Progesterone Receptors. Toxins (Basel) 2022; 14:toxins14110732. [PMID: 36355982 PMCID: PMC9695532 DOI: 10.3390/toxins14110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we aimed to assess the effect of diet ZEA on serum hormones, the location and expression of estrogen receptor ERα/β and progesterone receptor (PR) of the uterus in weaned piglets and to reveal the mechanism underneath. A total of 40 healthy weaned gilts were randomly allocated to basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0) and 1.5 (ZEA1.5) mg ZEA/kg and fed individually for 35 days. Meanwhile, the porcine endometrial epithelial cells (PECs) were incubated for 24 h with ZEA at 0 (Control), 5 (ZEA5), 20 (ZEA20) and 80 (ZEA80) μmol/L, respectively. The results showed that nutrient apparent digestibility (CP and GE), nutrient apparent availability (ME/GE, BV and NPU), the uterine immunoreactive integrated optic density (IOD), relative mRNA and protein expression of ER-α, ER-β and PR and the relative mRNA and protein expression of ER-α and ER-β in PECs all increased linearly (p < 0.05) with ZEA. Collectively, ZEA can interfere with the secretion of some reproductive hormones in the serum and promote the expression of estrogen/progesterone receptors in the uterus and PECs. All these indicate that ZEA may promote the development of the uterus in weaned gilts through estrogen receptor pathway.
Collapse
|
5
|
Cox RM, Hale MD, Wittman TN, Robinson CD, Cox CL. Evolution of hormone-phenotype couplings and hormone-genome interactions. Horm Behav 2022; 144:105216. [PMID: 35777215 DOI: 10.1016/j.yhbeh.2022.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/22/2022]
Abstract
When selection favors a new relationship between a cue and a hormonally mediated response, adaptation can proceed by altering the hormonal signal that is produced or by altering the phenotypic response to the hormonal signal. The field of evolutionary endocrinology has made considerable progress toward understanding the evolution of hormonal signals, but we know much less about the evolution of hormone-phenotype couplings, particularly at the hormone-genome interface. We briefly review and classify the mechanisms through which these hormone-phenotype couplings likely evolve, using androgens and their receptors and genomic response elements to illustrate our view. We then present two empirical studies of hormone-phenotype couplings, one rooted in evolutionary quantitative genetics and another in comparative transcriptomics, each focused on the regulation of sexually dimorphic phenotypes by testosterone (T) in the brown anole lizard (Anolis sagrei). First, we illustrate the potential for hormone-phenotype couplings to evolve by showing that coloration of the dewlap (an ornament used in behavioral displays) exhibits significant heritability in its responsiveness to T, implying that anoles harbor genetic variance in the architecture of hormonal pleiotropy. Second, we combine T manipulations with analyses of the liver transcriptome to ask whether and how statistical methods for characterizing modules of co-expressed genes and in silico techniques for identifying androgen response elements (AREs) can improve our understanding of hormone-genome interactions. We conclude by emphasizing important avenues for future work at the hormone-genome interface, particularly those conducted in a comparative evolutionary framework.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Tyler N Wittman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Christian L Cox
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Biological Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Huang A, Kandhi S, Sun D. Roles of Genetic Predisposition in the Sex Bias of Pulmonary Pathophysiology, as a Function of Estrogens : Sex Matters in the Prevalence of Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:107-127. [PMID: 33788190 DOI: 10.1007/978-3-030-63046-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In addition to studies focused on estrogen mediation of sex-different regulation of systemic circulations, there is now increasing clinical relevance and research interests in the pulmonary circulation, in terms of sex differences in the morbidity and mortality of lung diseases such as inherent-, allergic- and inflammatory-based events. Thus, female predisposition to pulmonary artery hypertension (PAH) is an inevitable topic. To better understand the nature of sexual differentiation in the pulmonary circulation, and how heritable factors, in vivo- and/or in vitro-altered estrogen circumstances and changes in the live environment work in concert to discern the sex bias, this chapter reviews pulmonary events characterized by sex-different features, concomitant with exploration of how alterations of genetic expression and estrogen metabolisms trigger the female-predominant pathological signaling. We address the following: PAH (Sect.7.2) is characterized as an estrogenic promotion of its incidence (Sect. 7.2.2), as a function of specific germline mutations, and as an estrogen-elicited protection of its prognosis (Sect.7.2.1). More detail is provided to introduce a less recognized gene of Ephx2 that encodes soluble epoxide hydrolase (sEH) to degrade epoxyeicosatrienic acids (EETs). As a susceptible target of estrogen, Ephx2/sEH expression is downregulated by an estrogen-dependent epigenetic mechanism. Increases in pulmonary EETs then evoke a potentiation of PAH generation, but mitigation of its progression, a phenomenon similar to the estrogen-paradox regulation of PAH. Additionally, the female susceptibility to chronic obstructive pulmonary diseases (Sect. 7.3) and asthma (Sect.7.4), but less preference to COVID-19 (Sect. 7.5), and roles of estrogen in their pathogeneses are briefly discussed.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
7
|
Mukherjee TK, Malik P, Hoidal JR. The emerging role of estrogen related receptorα in complications of non-small cell lung cancers. Oncol Lett 2021; 21:258. [PMID: 33664821 PMCID: PMC7882887 DOI: 10.3892/ol.2021.12519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Approximately 85% of lung cancer cases are recognized as non-small cell lung cancer (NSCLC) with a perilous (13–17%) 5-year survival in Europe and the USA. Although tobacco smoking has consistently emerged as the leading cause of NSCLC complications, its consequences are distinctly manifest with respect to sex bias, due to differential gene and sex hormone expression. Estrogen related receptor α (ERRα), a member of the nuclear orphan receptor superfamily is normally expressed in the lungs, and activates various nuclear genes without binding to the ligands, such as estrogens. In NSCLC ERRα expression is significantly higher compared with healthy individuals. It is well established ERα and ERβ‚ have 93% and 60% identity in the DNA and ligand binding domains, respectively. ERα and ERRα have 69% (70% with ERRα-1) and 34% (35% with ERRα-1) identity, respectively; ERRα and ERRβ‚ have 92 and 61% identity, respectively. However, whether there is distinctive ERRα interaction with mammalian estrogens or concurrent involvement in non-ER signalling pathway activation is not known. Relevant to NSCLC, ERRα promotes proliferation, invasion and migration by silencing the tumor suppressor proteins p53 and pRB, and accelerates G2-M transition during cell division. Epithelial to mesenchymal transition (EMT) and activation of Slug (an EMT associated transcription factor) are the prominent mechanisms by which ERRα activates NSCLC metastasis. Based on these observations, the present article focuses on the feasibility of antiERRα therapy alone and in combination with antiER as a therapeutic strategy for NSCLC complications.
Collapse
Affiliation(s)
- Tapan K Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84132, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.,George E. Wahlen Department of Veterans Affairs Medical Centre, Salt Lake City, UT 84132, USA
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84132, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.,George E. Wahlen Department of Veterans Affairs Medical Centre, Salt Lake City, UT 84132, USA
| |
Collapse
|
8
|
Chen D, Parker TM, Bhat-Nakshatri P, Chu X, Liu Y, Wang Y, Nakshatri H. Nonlinear relationship between chromatin accessibility and estradiol-regulated gene expression. Oncogene 2021; 40:1332-1346. [PMID: 33420376 DOI: 10.1038/s41388-020-01607-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Chromatin accessibility is central to basal and inducible gene expression. Through ATAC-seq experiments in estrogen receptor-positive (ER+) breast cancer cell line MCF-7 and integration with multi-omics data, we found estradiol (E2) induced chromatin accessibility changes in a small number of breast cancer-relevant E2-regulated genes. As expected, open chromatin regions associated with E2-inducible gene expression showed enrichment of estrogen response element (ERE) and those associated with E2-repressible gene expression were enriched for ERE, PBX1, and PBX3. While a significant number of open chromatin regions showed pioneer factor FOXA1 occupancy in the absence of E2, E2-treatment further enhanced FOXA1 occupancy suggesting that ER-E2 enhances chromatin occupancy of FOXA1 to a subset of E2-regulated genes. Surprisingly, promoters of 80% and enhancers of 60% of E2-inducible genes displayed closed chromatin configuration both in the absence and presence of E2. Integration of ATAC-seq data with ERα ChIP-seq data revealed that ~40% ERα binding sites in the genome are found in chromatin regions that are not accessible as per ATAC-seq. Such ERα binding regions were enriched for binding sites of multiple nuclear receptors including ER, ESRRB, ERRγ, COUP-TFII (NR2F2), RARα, EAR2 as well as traditional pioneer factors FOXA1 and GATA3. Similar data were also obtained when ERα ChIP-seq data were integrated with MNase-seq and DNase-seq data sets. In summation, our results reveal complex mechanisms of ER-E2 interaction with nucleosomes. Notably, "closed chromatin" configuration as defined by ATAC-seq or by other techniques is not necessarily associated with lack of gene expression and technical limitations may preclude ATAC-seq to demonstrate accessibility of chromatin regions that are bound by ERα.
Collapse
Affiliation(s)
- Duojiao Chen
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Taylor M Parker
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Xiaona Chu
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Harikrishna Nakshatri
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Site-Specific Phosphorylation of Histone H1.4 Is Associated with Transcription Activation. Int J Mol Sci 2020; 21:ijms21228861. [PMID: 33238524 PMCID: PMC7700352 DOI: 10.3390/ijms21228861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023] Open
Abstract
Core histone variants, such as H2A.X and H3.3, serve specialized roles in chromatin processes that depend on the genomic distributions and amino acid sequence differences of the variant proteins. Modifications of these variants alter interactions with other chromatin components and thus the protein’s functions. These inferences add to the growing arsenal of evidence against the older generic view of those linker histones as redundant repressors. Furthermore, certain modifications of specific H1 variants can confer distinct roles. On the one hand, it has been reported that the phosphorylation of H1 results in its release from chromatin and the subsequent transcription of HIV-1 genes. On the other hand, recent evidence indicates that phosphorylated H1 may in fact be associated with active promoters. This conflict suggests that different H1 isoforms and modified versions of these variants are not redundant when together but may play distinct functional roles. Here, we provide the first genome-wide evidence that when phosphorylated, the H1.4 variant remains associated with active promoters and may even play a role in transcription activation. Using novel, highly specific antibodies, we generated the first genome-wide view of the H1.4 isoform phosphorylated at serine 187 (pS187-H1.4) in estradiol-inducible MCF7 cells. We observe that pS187-H1.4 is enriched primarily at the transcription start sites (TSSs) of genes activated by estradiol treatment and depleted from those that are repressed. We also show that pS187-H1.4 associates with ‘early estrogen response’ genes and stably interacts with RNAPII. Based on the observations presented here, we propose that phosphorylation at S187 by CDK9 represents an early event required for gene activation. This event may also be involved in the release of promoter-proximal polymerases to begin elongation by interacting directly with the polymerase or other parts of the transcription machinery. Although we focused on estrogen-responsive genes, taking into account previous evidence of H1.4′s enrichment of promoters of pluripotency genes, and its involvement with rDNA activation, we propose that H1.4 phosphorylation for gene activation may be a more global observation.
Collapse
|
10
|
Cox RM. Sex steroids as mediators of phenotypic integration, genetic correlations, and evolutionary transitions. Mol Cell Endocrinol 2020; 502:110668. [PMID: 31821857 DOI: 10.1016/j.mce.2019.110668] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
In recent decades, endocrinologists have increasingly adopted evolutionary methods and perspectives to characterize the evolution of the vertebrate endocrine system and leverage it as a model for developing and testing evolutionary theories. This review summarizes recent research on sex steroids (androgens and estrogens) to illustrate three ways in which a detailed understanding of the molecular and cellular architecture of hormonally mediated gene expression can enhance our understanding of general evolutionary principles. By virtue of their massively pleiotropic effects on the expression of genes and phenotypes, sex steroids and their receptors can (1) structure the patterns of phenotypic variance and covariance that are available to natural selection, (2) alter the underlying genetic correlations that determine a population's evolutionary response to selection, and (3) facilitate evolutionary transitions in fitness-related phenotypes via subtle regulatory shifts in underlying tissues and genes. These principles are illustrated by the author's research on testosterone and sexual dimorphism in lizards, and by recent examples drawn from other vertebrate systems. Mechanistically, these examples call attention to the importance of evolutionary changes in (1) androgen- and estrogen-mediated gene expression, (2) androgen and estrogen receptor expression, and (3) the distribution of androgen and estrogen response elements in target genes throughout the genome. A central theme to emerge from this review is that the rapidly increasing availability of genomic and transcriptomic data from non-model organisms places evolutionary endocrinologist in an excellent position to address the hormonal regulation of the key evolutionary interface between genes and phenotypes.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
11
|
Zhu D, Zhao Z, Cui G, Chang S, Hu L, See YX, Lim MGL, Guo D, Chen X, Poudel B, Robson P, Luo Y, Cheung E. Single-Cell Transcriptome Analysis Reveals Estrogen Signaling Coordinately Augments One-Carbon, Polyamine, and Purine Synthesis in Breast Cancer. Cell Rep 2019; 25:2285-2298.e4. [PMID: 30463022 DOI: 10.1016/j.celrep.2018.10.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/18/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Estrogen drives breast cancer (BCa) progression by directly activating estrogen receptor α (ERα). However, because of the stochastic nature of gene transcription, it is important to study the estrogen signaling pathway at the single-cell level to fully understand how ERα regulates transcription. Here, we performed single-cell transcriptome analysis on ERα-positive BCa cells following 17β-estradiol stimulation and reconstructed the dynamic estrogen-responsive transcriptional network from discrete time points into a pseudotemporal continuum. Notably, differentially expressed genes show an estrogen-stimulated metabolic switch that favors biosynthesis but reduces estrogen degradation. Moreover, folate-mediated one-carbon metabolism is reprogrammed through the mitochondrial folate pathway and polyamine and purine synthesis are upregulated coordinately. Finally, we show AZIN1 and PPAT are direct ERα targets that are essential for BCa cell survival and growth. In summary, our study highlights the dynamic transcriptional heterogeneity in ERα-positive BCa cells upon estrogen stimulation and uncovers a mechanism of estrogen-mediated metabolic switch.
Collapse
Affiliation(s)
- Detu Zhu
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Zuxianglan Zhao
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Guimei Cui
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Shiehong Chang
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lingling Hu
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Yi Xiang See
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Michelle Gek Liang Lim
- Genome Institute of Singapore, A(∗)STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Dajiang Guo
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Xin Chen
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Barun Poudel
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Paul Robson
- Genome Institute of Singapore, A(∗)STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Yumei Luo
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Edwin Cheung
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Genome Institute of Singapore, A(∗)STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|
12
|
Hancock ML, Meyer RC, Mistry M, Khetani RS, Wagschal A, Shin T, Ho Sui SJ, Näär AM, Flanagan JG. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell 2019; 177:722-736.e22. [PMID: 30955890 PMCID: PMC6478446 DOI: 10.1016/j.cell.2019.02.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
Abstract
Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.
Collapse
Affiliation(s)
- Melissa L. Hancock
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA, USA
| | - Rebecca C. Meyer
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,These authors contributed equally
| | - Meeta Mistry
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,These authors contributed equally
| | - Radhika S. Khetani
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,These authors contributed equally
| | - Alexandre Wagschal
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Present address: Exonics Therapeutics, Cambridge, MA, USA
| | - Taehwan Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannan J. Ho Sui
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anders M. Näär
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Present address: Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA
94720, USA
| | - John G. Flanagan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA,Lead Contact,Correspondence:
| |
Collapse
|
13
|
Hewitt SC, Korach KS. Estrogen Receptors: New Directions in the New Millennium. Endocr Rev 2018; 39:664-675. [PMID: 29901737 PMCID: PMC6173474 DOI: 10.1210/er.2018-00087] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
Nineteen years have passed since our previous review in this journal in 1999 regarding estrogen receptors. At that time, we described the current assessments of the physiological activities of estrogen and estrogen receptors. Since that time there has been an explosion of progress in our understanding of details of estrogen receptor-mediated processes from the molecular and cellular level to the whole organism. In this review we discuss the basic understanding of estrogen signaling and then elaborate on the progress and current understanding of estrogen receptor actions that have developed using new models and continuing clinical studies.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Endocrinology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Endocrinology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
14
|
Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution. Sci Rep 2017; 7:43597. [PMID: 28240320 PMCID: PMC5327392 DOI: 10.1038/srep43597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/25/2017] [Indexed: 01/16/2023] Open
Abstract
Transcription factors (TFs) binding to specific DNA sequences or motifs, are elementary to the regulation of transcription. The gene is regulated by a combination of TFs in close proximity. Analysis of co-TFs is an important problem in understanding the mechanism of transcriptional regulation. Recently, ChIP-seq in mapping TF provides a large amount of experimental data to analyze co-TFs. Several studies show that if two TFs are co-associated, the relative distance between TFs exhibits a peak-like distribution. In order to analyze co-TFs, we develop a novel method to evaluate the associated situation between TFs. We design an adjacency score based on ordered differences, which can illustrate co-TF binding affinities for motif analysis. For all candidate motifs, we calculate corresponding adjacency scores, and then list descending-order motifs. From these lists, we can find co-TFs for candidate motifs. On ChIP-seq datasets, our method obtains best AUC results on five datasets, 0.9432 for NMYC, 0.9109 for KLF4, 0.9006 for ZFX, 0.8892 for ESRRB, 0.8920 for E2F1. Our method has great stability on large sample datasets. AUC results of our method on all datasets are above 0.8.
Collapse
|
15
|
Johnston RA, Paxton KL, Moore FR, Wayne RK, Smith TB. Seasonal gene expression in a migratory songbird. Mol Ecol 2016; 25:5680-5691. [DOI: 10.1111/mec.13879] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Rachel A. Johnston
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
| | - Kristina L. Paxton
- Department of Biological Sciences University of Southern Mississippi Hattiesburg MS 39406 USA
- Department of Biology University of Hawaii Hilo Hilo HI 96720 USA
| | - Frank R. Moore
- Department of Biological Sciences University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
| | - Thomas B. Smith
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
- Center for Tropical Research Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
16
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
17
|
Stork CT, Bocek M, Crossley MP, Sollier J, Sanz LA, Chédin F, Swigut T, Cimprich KA. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. eLife 2016; 5. [PMID: 27552054 PMCID: PMC5030092 DOI: 10.7554/elife.17548] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
The hormone estrogen (E2) binds the estrogen receptor to promote transcription of E2-responsive genes in the breast and other tissues. E2 also has links to genomic instability, and elevated E2 levels are tied to breast cancer. Here, we show that E2 stimulation causes a rapid, global increase in the formation of R-loops, co-transcriptional RNA-DNA products, which in some instances have been linked to DNA damage. We show that E2-dependent R-loop formation and breast cancer rearrangements are highly enriched at E2-responsive genomic loci and that E2 induces DNA replication-dependent double-strand breaks (DSBs). Strikingly, many DSBs that accumulate in response to E2 are R-loop dependent. Thus, R-loops resulting from the E2 transcriptional response are a significant source of DNA damage. This work reveals a novel mechanism by which E2 stimulation leads to genomic instability and highlights how transcriptional programs play an important role in shaping the genomic landscape of DNA damage susceptibility. DOI:http://dx.doi.org/10.7554/eLife.17548.001 The hormone estrogen controls the development of breast tissue. However too much estrogen can damage the DNA in human cells and may be linked to an increased risk of breast cancer. In breast cells, estrogen activates many genes via a process called transcription. The transcription process results in the production of an RNA molecule that contains a copy of the instructions encoded within the gene. Previous studies have found that, in certain cases, a new RNA molecule can stick to the matching DNA from which it was made. This creates a structure known as an R-loop, which can lead the DNA to break. DNA breaks are particularly harmful because they can dramatically alter the cell’s genome in ways that allow it to become cancerous. However, it was not clear if the large increase in transcription triggered by estrogen causes an increase in R-loops, which could help to explain the DNA damage that has been reported to occur when cells are treated with estrogen. Now, Stork et al. show that treating human breast cancer cells with estrogen causes an increase in R-loops and DNA breaks. The R-loops occurred particularly in regions of the genome that contain estrogen-activated genes. Stork et al. also found that regions of estrogen-activated transcription were more frequently mutated in breast cancers, and further experiments confirmed that the R-loops were responsible for many of the DNA breaks that occurred following estrogen treatment. Taken together, these findings demonstrate that the changes in transcription due to estrogen lead to increased R-loops and DNA breaks, which may make the cells vulnerable to becoming cancerous. The next challenge is to determine precisely where these DNA breaks that result from estrogen occur on the DNA. Knowing the location of the DNA breaks will be useful in determining what additional factors or genomic features make an R-loop more prone to being broken. This in turn might help explain how the R-loops lead to DNA damage. In addition, further studies are also needed to determine if tumor samples from breast cancer patients also contain increased levels of R-loops. DOI:http://dx.doi.org/10.7554/eLife.17548.002
Collapse
Affiliation(s)
- Caroline Townsend Stork
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Michael Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Madzia P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
18
|
Chen H, Yuan R, Zhang Y, Zhang X, Chen L, Zhou X, Yuan Z, Nie Y, Li M, Mo D, Chen Y. ATF4 regulates SREBP1c expression to control fatty acids synthesis in 3T3-L1 adipocytes differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1459-1469. [PMID: 27452504 DOI: 10.1016/j.bbagrm.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022]
Abstract
Activating transcription factor 4 (ATF4), which is highly expressed in 3T3-L1 adipocytes after adipogenic induction, is essential for adipocytes differentiation. ATF4 also plays a vital role in regulating fatty acids biosynthesis, whereas the detailed mechanism of this process is still unclear. Here we demonstrated that siRNA-based ATF4 depletion in 3T3-L1 adipocytes significantly reduced the accumulation of fatty acids and triglycerides. Moreover, SREBP1c protein, which is an important transcription factor of lipogenesis, appreciably decreased while Srebp1c mRNA increased. Then we identified that ATF4 could maintain SREBP1c protein stability by directly activating the expression of USP7 which deubiquitinates SREBP1c and increases its protein content in cell. Besides, USP7 could restore the synthesis of fatty acids and triglycerides in the absence of ATF4. On the other hand, we found that ATF4 might inhibit the transcription of Srebp1c through TRB3, which is repressed by IBMX and DEX during early adipogenesis. Thus, our data indicate that ATF4 regulates SREBP1c expression to control fatty acids synthesis.
Collapse
Affiliation(s)
- Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xingyu Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuning Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Abstract
Estrogen receptor alpha (ERα) is a critical player in development and function of the female reproductive system. Perturbations in ERα response can affect wide-ranging aspects of health in humans as well as in livestock and wildlife. Because of its long-known and broad impact, ERα mechanisms of action continue to be the focus on cutting-edge research efforts. Consequently, novel insights have greatly advanced understanding of every aspect of estrogen signaling. In this review, we attempt to briefly outline the current understanding of ERα mediated mechanisms in the context of the female reproductive system.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Wipawee Winuthayanon
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Kenneth S Korach
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
20
|
Li L, Bonneton F, Chen XY, Laudet V. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine. Mol Cell Endocrinol 2015; 401:221-37. [PMID: 25449417 DOI: 10.1016/j.mce.2014.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network.
Collapse
Affiliation(s)
- Ling Li
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France.; School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France
| | - Xiao Yong Chen
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France..
| |
Collapse
|
21
|
Ikeda K, Horie-Inoue K, Inoue S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol Sin 2015; 36:24-31. [PMID: 25500870 DOI: 10.1038/aps.2014.123] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022] Open
Abstract
Estrogens are important endocrine hormones that control physiological functions in reproductive organs, and play a pivotal role in the generation and progression of breast cancer. Therapeutic drugs including anti-estrogen and aromatase inhibitors are used to treat patients with breast cancer. The estrogen receptors, ERα and ERβ, function as hormone-dependent transcription factors that directly regulate the expression of their target genes. Therefore, a better understanding of the function and regulation of estrogen-responsive genes provides insight into the gene regulation network associated with breast cancer. Recent technological developments in high-throughput sequencing have enabled the genome-wide identification of estrogen-responsive genes. Further elucidating the estrogen gene cascade is critical for advancements in the diagnosis and treatment of breast cancer.
Collapse
|
22
|
Ottaviani S, de Giorgio A, Harding V, Stebbing J, Castellano L. Noncoding RNAs and the control of hormonal signaling via nuclear receptor regulation. J Mol Endocrinol 2014; 53:R61-70. [PMID: 25062739 DOI: 10.1530/jme-14-0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite its identification over 100 years ago, new discoveries continue to add to the complexity of the regulation of the endocrine system. Today the nuclear receptors (NRs) that play such a pivotal role in the extensive communication networks of hormones and gene expression remain an area of intense research. By orchestrating core processes, from metabolism to organismal development, the gene expression programs they control are dependent on their cellular context, their own levels, and those of numerous co-regulatory proteins. A previously unknown component of these networks, noncoding RNAs (ncRNAs) are now recognized as potent regulators of NR signaling, influencing receptor and co-factor levels and functions while being reciprocally regulated by the NRs themselves. This review explores the regulation enacted by microRNAs and long ncRNAs on NR function, using representative examples to show the varied roles of ncRNAs, in turn producing significant effects on the NR functional network in health and disease.
Collapse
Affiliation(s)
- Silvia Ottaviani
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Alexander de Giorgio
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Victoria Harding
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Justin Stebbing
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Leandro Castellano
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| |
Collapse
|
23
|
The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 2014; 55:791-802. [PMID: 25155612 DOI: 10.1016/j.molcel.2014.07.012] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/09/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023]
Abstract
Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.
Collapse
|
24
|
Kararigas G, Nguyen BT, Zelarayan LC, Hassenpflug M, Toischer K, Sanchez-Ruderisch H, Hasenfuss G, Bergmann MW, Jarry H, Regitz-Zagrosek V. Genetic background defines the regulation of postnatal cardiac growth by 17β-estradiol through a β-catenin mechanism. Endocrinology 2014; 155:2667-76. [PMID: 24731099 DOI: 10.1210/en.2013-2180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogen regulates several biological processes in health and disease. Specifically, estrogen exerts antihypertrophic effects in the diseased heart. However, its role in the healthy heart remains elusive. Our initial aim was to identify the effects of 17β-estradiol (E2) on cardiac morphology and global gene expression in the healthy mouse heart. Two-month-old C57BL/6J mice were ovariectomized and treated with E2 or vehicle for 3 months. We report that E2 induced physiological hypertrophic growth in the healthy C57BL/6J mouse heart characterized by an increase in nuclear β-catenin. Hypothesizing that β-catenin mediates these effects of E2, we employed a model of cardiac β-catenin deletion. Our surprising finding is that E2 had the opposite effects in wild-type littermates, which were actually on the C57BL/6N background. Notably, E2 exerted no significant effect in hearts of mice with depleted β-catenin. We further demonstrate an E2-dependent increase in glycogen synthase kinase 3β (GSK3β) phosphorylation and endosomal markers in C57BL/6J but not C57BL/6N mice. Together, these findings indicate an E2-driven inhibition of GSK3β and consequent activation of β-catenin in C57BL/6J mice, whereas the opposite occurs in C57BL/6N mice. In conclusion, E2 exerts divergent effects on postnatal cardiac growth in mice with distinct genetic backgrounds modulating members of the GSK3β/β-catenin cascade.
Collapse
Affiliation(s)
- Georgios Kararigas
- Institute of Gender in Medicine and Center for Cardiovascular Research (G.K., H.S.-R., V.R.-Z.), Charite University Hospital, and DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany; Department of Clinical and Experimental Endocrinology (B.T.N., M.H., H.J.), Goettingen University, 37075 Goettingen, Germany; Department of Pharmacology (L.C.Z.), Heart Research Center Goettingen, and Department of Cardiology and Pneumology (K.T., G.H.), Georg-August-University Goettingen, and DZHK (German Center for Cardiovascular Research), Goettingen Partner Site, 37075 Goettingen, Germany; and Department of Cardiology (M.W.B.), Asklepios Klinik St Georg, 20099 Hamburg, Germany; and Faculty of Veterinary Medicine (B.T.N.), Hanoi University of Agriculture, Hanoi, Vietnam
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Inoue T, Kohro T, Tanaka T, Kanki Y, Li G, Poh HM, Mimura I, Kobayashi M, Taguchi A, Maejima T, Suehiro JI, Sugiyama A, Kaneki K, Aruga H, Dong S, Stevens JF, Yamamoto S, Tsutsumi S, Fujita T, Ruan X, Aburatani H, Nangaku M, Ruan Y, Kodama T, Wada Y. Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements. Genome Biol 2014; 15:R63. [PMID: 24721177 PMCID: PMC4053749 DOI: 10.1186/gb-2014-15-4-r63] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Background Synergistic transcriptional activation by different stimuli has been reported along with a diverse array of mechanisms, but the full scope of these mechanisms has yet to be elucidated. Results We present a detailed investigation of hypoxia-inducible factor (HIF) 1 dependent gene expression in endothelial cells which suggests the importance of crosstalk between the peroxisome proliferator-activated receptor (PPAR) β/δ and HIF signaling axes. A migration assay shows a synergistic interaction between these two stimuli, and we identify angiopoietin-like 4 (ANGPTL4) as a common target gene by using a combination of microarray and ChIP-seq analysis. We profile changes of histone marks at enhancers under hypoxia, PPARβ/δ agonist and dual stimulations and these suggest that the spatial proximity of two response elements is the principal cause of the synergistic transcription induction. A newly developed quantitative chromosome conformation capture assay shows the quantitative change of the frequency of proximity of the two response elements. Conclusions To the best of our knowledge, this is the first report that two different transcription factors cooperate in transcriptional regulation in a synergistic fashion through conformational change of their common target genes.
Collapse
|
26
|
Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci 2014; 71:1549. [PMID: 25031550 PMCID: PMC3962223 DOI: 10.1007/s00018-013-1376-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Estrogen and estrogen receptors (ERs) are critical regulators of breast epithelial cell proliferation, differentiation, and apoptosis. Compromised signaling vis-à-vis the estrogen receptor is believed to be a major contributing factor in the malignancy of breast cells. Targeting the ER signaling pathway has been a focal point in the development of breast cancer therapy. Although approximately 75 % of breast cancer patients are classified as luminal type (ER(+)), which predicts for response to endocrine-based therapy; however, innate or acquired resistance to endocrine-based drugs remains a serious challenge. The complexity of regulation for estrogen signaling coupled with the crosstalk of other oncogenic signaling pathways is a reason for endocrine therapy resistance. Alternative strategies that target novel molecular mechanisms are necessary to overcome this current and urgent gap in therapy. A thorough analysis of estrogen-signaling regulation is critical. In this review article, we will summarize current insights into the regulation of estrogen signaling as related to breast carcinogenesis and breast cancer therapy.
Collapse
|
27
|
Abstract
Androgen and the androgen receptor (AR) are critical effectors of prostate cancer. Consequently, androgen deprivation therapy is typically employed as a first-line treatment for prostate cancer patients. While initial responses are generally positive, prostate tumors frequently recur and progress to a lethal form known as castration-resistant prostate cancer (CRPC). Recently, considerable effort has been directed toward elucidating the molecular mechanisms of CRPC. Results from both preclinical and clinical studies suggest that AR-mediated signaling persists and remains functionally important in CRPC despite the elimination of androgens. Understanding the role of this pathway in the development of resistance will therefore be critical to identify alternative diagnostic markers as well as more effective therapies for the treatment of CRPC. Using next-generation sequencing and other high-throughput approaches, numerous groups are beginning to identify the key differences in the transcriptional regulatory and gene expression programs between androgen-dependent and CRPC. A number of mechanisms have been proposed for the differences and these mostly involve alterations to components of the AR co-regulatory network. In this review, we summarize current knowledge on co-regulators of the AR and discuss their potential roles in CRPC. It is anticipated that a deeper understanding of these factors will undercover new targets that can assist in the diagnosis and treatment of CRPC.
Collapse
Affiliation(s)
- Ying Ying Sung
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore
| | | |
Collapse
|
28
|
Liu MH, Cheung E. Estrogen receptor-mediated long-range chromatin interactions and transcription in breast cancer. Mol Cell Endocrinol 2014; 382:624-632. [PMID: 24071518 DOI: 10.1016/j.mce.2013.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/15/2022]
Abstract
Estrogen induces the binding of ERα to thousands of locations in the breast cancer genome, preferring intergenic and distal regions rather than near the promoters of estrogen-regulated genes. With recent technological innovations in mapping and characterization of global chromatin organization, evidence now indicates ERα mediates long-range chromatin interactions to control gene transcription. The principles that govern how ERα communicates with their putative target genes via chromosomal interactions are also beginning to unravel. Herein, we summarize our current knowledge on the functional significance of chromatin looping in estrogen-mediated transcription. ERα collaborative factors and other players that contribute to define the genomic interactions in breast cancer cells will also be discussed. Defects in chromatin organization are emerging key players in diseases such as cancer, thus understanding how ERα-mediated chromatin looping affects genome organization will clarify the receptor's role in estrogen responsive pathways sensitive to defects in chromatin organization.
Collapse
Affiliation(s)
- Mei Hui Liu
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; Cancer Biology and Pharmacology, Genome Institute of Singapore, A∗STAR (Agency for Science, Technology and Research), Singapore 138672, Singapore
| | - Edwin Cheung
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A∗STAR (Agency for Science, Technology and Research), Singapore 138672, Singapore.
| |
Collapse
|
29
|
Hah N, Kraus WL. Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol 2014; 382:652-664. [PMID: 23810978 PMCID: PMC3844033 DOI: 10.1016/j.mce.2013.06.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Recent rapid advances in next generation sequencing technologies have expanded our understanding of steroid hormone signaling to a genome-wide level. In this review, we discuss the use of a novel genomic approach, global nuclear run-on coupled with massively parallel sequencing (GRO-seq), to explore new facets of the steroid hormone-regulated transcriptome, especially estrogen responses in breast cancer cells. GRO-seq is a high throughput sequencing method adapted from conventional nuclear run-on methodologies, which is used to obtain a map of the position and orientation of all transcriptionally engaged RNA polymerases across the genome with extremely high spatial resolution. GRO-seq, which is an excellent tool for examining transcriptional responses to extracellular stimuli, has been used to comprehensively assay the effects of estrogen signaling on the transcriptome of ERα-positive MCF-7 human breast cancer cells. These studies have revealed new details about estrogen-dependent transcriptional regulation, including effects on transcription by all three RNA polymerases, complex transcriptional dynamics in response to estrogen signaling, and identification novel, unannotated non-coding RNAs. Collectively, these studies have been useful in discerning the molecular logic of the estrogen-regulated mitogenic response.
Collapse
Affiliation(s)
- Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States.
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
30
|
Ikeda K, Horie-Inoue K, Inoue S. Analysis of TFRNs associated with steroid hormone-related cancers. Methods Mol Biol 2014; 1164:197-209. [PMID: 24927845 DOI: 10.1007/978-1-4939-0805-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Estrogen and androgen are important endocrine hormones that control physiological functions in reproductive organs and play roles in the generation and/or progression of steroid hormone-related cancers. Their cognate receptors function as hormone-dependent transcription factors, which directly regulate the expression of their target genes. Genome-wide analysis of hormone receptor-related networks will provide new insights into the understanding of the molecular mechanism orchestrated by estrogen and androgen receptors, and will enable the development of new methods for the diagnosis and treatment of steroid hormone-related cancers.
Collapse
Affiliation(s)
- Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | | | | |
Collapse
|
31
|
Abstract
The endocrine system plays a major role in human survival. Endocrine glands secrete chemical messengers or hormones that affect every tissue of the body, including the periodontium, during the life of the individual. As the endocrine system influences a broad assortment of biological activities necessary for life, a general understanding of the principal components and functions of this system is essential. A fundamental assessment of hormone structure, mechanism of action and hormone transport, as well as influence on homeostasis is reviewed. A concise evaluation of the functions of the central endocrine glands, the functions of the major peripheral endocrine glands (other than gonadal tissues) and the known relationships of these hormones to the periodontium is examined.
Collapse
|
32
|
Aung KMM, New SY, Hong S, Sutarlie L, Lim MGL, Tan SK, Cheung E, Su X. Studying forkhead box protein A1-DNA interaction and ligand inhibition using gold nanoparticles, electrophoretic mobility shift assay, and fluorescence anisotropy. Anal Biochem 2013; 448:95-104. [PMID: 24291642 DOI: 10.1016/j.ab.2013.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/11/2013] [Accepted: 11/17/2013] [Indexed: 10/26/2022]
Abstract
Forkhead box protein 1 (FoxA1) is a member of the forkhead family of winged helix transcription factors that plays pivotal roles in the development and differentiation of multiple organs and in the regulation of estrogen-stimulated genes. Conventional analytical methods-electrophoretic mobility shift assay (EMSA) and fluorescence anisotropy (FA)-as well as a gold nanoparticles (AuNPs)-based assay were used to study DNA binding properties of FoxA1 and ligand interruption of FoxA1-DNA binding. In the AuNPs assay, the distinct ability of protein-DNA complex to protect AuNPs against salt-induced aggregation was exploited to screen sequence selectivity and determine the binding affinity constant based on AuNPs color change and absorbance spectrum shift. Both conventional EMSA and FA and the AuNPs assay suggested that FoxA1 binds to DNA in a core sequence-dependent manner and the flanking sequence also played a role to influence the affinity. The EMSA and AuNPs were found to be more sensitive than FA in differentiation of sequence-dependent affinity. With the addition of a spin filtration step, AuNPs assay has been extended for studying small molecular ligand inhibition of FoxA1-DNA interactions enabling drug screening. The results correlate very well with those obtained using FA.
Collapse
Affiliation(s)
- Khin Moh Moh Aung
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Siu Yee New
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Shuzhen Hong
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Laura Sutarlie
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Michelle Gek Liang Lim
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Si Kee Tan
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Edwin Cheung
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore.
| |
Collapse
|
33
|
Le TP, Sun M, Luo X, Kraus WL, Greene GL. Mapping ERβ genomic binding sites reveals unique genomic features and identifies EBF1 as an ERβ interactor. PLoS One 2013; 8:e71355. [PMID: 23951143 PMCID: PMC3738513 DOI: 10.1371/journal.pone.0071355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/29/2013] [Indexed: 12/31/2022] Open
Abstract
Considerable effort by numerous laboratories has resulted in an improved understanding of estrogen and SERM action mediated by the two estrogen receptors, ERα and ERβ. However, many of the targets for ERβ in cell physiology remain elusive. Here, the C4-12/Flag.ERβ cell line which stably expressed Flag.ERβ is used to study ERβ genomic functions without ERα interference. Mapping ERβ binding sites in these cells reveals ERβ unique distribution and motif enrichment patterns. Accompanying our mapping results, nascent RNA profiling is performed on cells at the same treatment time. The combined results allow the identification of ERβ target genes. Gene ontology analysis reveals that ERβ targets are enriched in differentiation, development and apoptosis. Concurrently, E2 treatment suppresses proliferation in these cells. Within ERβ binding sites, while the most prevalent binding motif is the canonical ERE, motifs of known ER interactors are also enriched in ERβ binding sites. Moreover, among enriched binding motifs are those of GFI, REST and EBF1, which are unique to ERβ binding sites in these cells. Further characterization confirms the association between EBF1 and the estrogen receptors, which favors the N-terminal region of the receptor. Furthermore, EBF1 negatively regulates ERs at the protein level. In summary, by studying ERβ genomic functions in our cell model, we confirm the anti-proliferative role of ERβ and discover the novel cross talk of ERβ with EBF1 which has various implications in normal physiology.
Collapse
Affiliation(s)
- Thien P. Le
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Miao Sun
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Xin Luo
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern, Dallas, Texas, United States of America
| | - W. Lee Kraus
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Oestrogen and progesterone action on endometrium: a translational approach to understanding endometrial receptivity. Reprod Biomed Online 2013; 27:497-505. [PMID: 23933037 DOI: 10.1016/j.rbmo.2013.06.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Embryo attachment and implantation is critical to successful reproduction of all eutherian mammals, including humans; a better understanding of these processes could lead to improved infertility treatments and novel contraceptive methods. Experience with assisted reproduction, especially oocyte donation cycles, has established that despite the diverse set of hormones produced by the ovary in a cycle-dependent fashion, the sequential actions of only two of them, oestrogen and progesterone, are sufficient to prepare a highly receptive endometrium in humans. Further investigation on the endometrial actions of these two hormones is currently providing significant insight into the implantation process in women, strongly suggesting that an abnormal response to progesterone underlies infertility in some patients.
Collapse
|
35
|
Systems approaches to genomic and epigenetic inter-regulation of peptide hormones in stress and reproduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:375-86. [PMID: 23500148 DOI: 10.1016/j.pbiomolbio.2013.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 02/08/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
The evolution of the organismal stress response and fertility are two of the most important aspects that drive the fitness of a species. However, the integrated regulation of the hypothalamic pituitary adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes has been traditionally thwarted by the complexity of these systems. Pepidergic signalling systems have emerged as critical integrating systems for stress and reproduction. Current high throughput systems approaches are now providing a detailed understanding of peptide signalling in stress and reproduction. These approaches were dependent upon a long history of discovery aimed at the structural characterization of the associated molecular components. The combination of comparative genomics, microarray and epigenetic studies has led not only to a much greater understanding of the integration of stress and reproduction but also to the discovery of novel physiological systems. Recent epigenomic approaches have similarly yielded a new level of complexity in the interaction of these physiological systems. Together, such studies have provided a greater understanding of the effects of stress and reproduction.
Collapse
|
36
|
Oestrogen-dependent regulation of miRNA biogenesis: many ways to skin the cat. Biochem Soc Trans 2012; 40:752-8. [PMID: 22817728 DOI: 10.1042/bst20110763] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The steroid hormone oestrogen is central to normal female physiology, reproduction and behaviour, through its effects on cellular processes including cell proliferation and cell survival. The effects of oestrogen are mediated by nuclear ERs (oestrogen receptors). ER status is important for the development, progression and treatment of breast cancer. miRNAs (microRNAs) are small non-coding RNAs that bind the 3'-UTR (untranslated region) of target mRNAs to reduce their stability and/or translation. miRNAs participate in oestrogen signalling by regulating oestrogen-responsive genes and pathways. Interestingly expression and maturation of miRNAs can also be regulated by ER signalling at multiple levels. In addition to regulating the expression of miRNAs at the transcriptional level, ER appears to be able to regulate the biogenesis of miRNAs. In the present review, we summarize recent findings on miRNA biogenesis and describe various mechanisms by which oestrogen signalling can modulate the production of miRNAs.
Collapse
|
37
|
Meyer CA, Tang Q, Liu XS. Minireview: applications of next-generation sequencing on studies of nuclear receptor regulation and function. Mol Endocrinol 2012; 26:1651-9. [PMID: 22930692 DOI: 10.1210/me.2012-1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next-generation sequencing technologies have expanded the experimental possibilities for studying the genome-wide regulation of transcription by nuclear receptors, their collaborating transcription factors, and coregulators. These technologies allow investigators to obtain abundance and DNA sequence information in a single experiment. In this review, we highlight proven and potential uses of next-generation sequencing in the study of gene regulation by nuclear receptors. We also provide suggestions on how to effectively leverage this technology in a collaborative environment.
Collapse
Affiliation(s)
- Clifford A Meyer
- Department of Biostatistics and Computational Biology, Harvard School of Public Health, Biostatistics and Computational Biology, 450 Brookline Street, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
38
|
Garcia-Bassets I, Wang D. Cistrome plasticity and mechanisms of cistrome reprogramming. Cell Cycle 2012; 11:3199-210. [PMID: 22895178 DOI: 10.4161/cc.21281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian genomes contain thousands of cis-regulatory elements for each transcription factor (TF), but TFs only occupy a relatively small subset referred to as cistrome. Recent studies demonstrate that a TF cistrome might differ among different organisms, tissue types and individuals. In a cell, a TF cistrome might differ among different physiological states, pathological stages and between physiological and pathological conditions. It is, therefore, remarkable how highly plastic these binding profiles are, and how massively they can be reprogrammed in rapid response to intra/extracellular variations and during cell identity transitions and evolution. Biologically, cistrome reprogramming events tend to be followed by changes in transcriptional outputs, thus serving as transformative mechanisms to synchronically alter the biology of the cell. In this review, we discuss the molecular basis of cistrome plasticity and attempt to integrate the different mechanisms and biological conditions associated with cistrome reprogramming. Emerging data suggest that, when altered, these reprogramming events might be linked to tumor development and/or progression, which is a radical conceptual change in our mechanistic understanding of cancer and, potentially, other diseases.
Collapse
Affiliation(s)
- Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
39
|
Hewitt SC, Li L, Grimm SA, Chen Y, Liu L, Li Y, Bushel PR, Fargo D, Korach KS. Research resource: whole-genome estrogen receptor α binding in mouse uterine tissue revealed by ChIP-seq. Mol Endocrinol 2012; 26:887-98. [PMID: 22446102 DOI: 10.1210/me.2011-1311] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To advance understanding of mechanisms leading to biological and transcriptional endpoints related to estrogen action in the mouse uterus, we have mapped ERα and RNA polymerase II (PolII) binding sites using chromatin immunoprecipitation followed by sequencing of enriched chromatin fragments. In the absence of hormone, 5184 ERα-binding sites were apparent in the vehicle-treated ovariectomized uterine chromatin, whereas 17,240 were seen 1 h after estradiol (E₂) treatment, indicating that some sites are occupied by unliganded ERα, and that ERα binding is increased by E₂. Approximately 15% of the uterine ERα-binding sites were adjacent to (<10 kb) annotated transcription start sites, and many sites are found within genes or are found more than 100 kb distal from mapped genes; however, the density (sites per base pair) of ERα-binding sites is significantly greater adjacent to promoters. An increase in quantity of sites but no significant positional differences were seen between vehicle and E₂-treated samples in the overall locations of ERα-binding sites either distal from, adjacent to, or within genes. Analysis of the PolII data revealed the presence of poised promoter-proximal PolII on some highly up-regulated genes. Additionally, corecruitment of PolII and ERα to some distal enhancer regions was observed. A de novo motif analysis of sequences in the ERα-bound chromatin confirmed that estrogen response elements were significantly enriched. Interestingly, in areas of ERα binding without predicted estrogen response element motifs, homeodomain transcription factor-binding motifs were significantly enriched. The integration of the ERα- and PolII-binding sites from our uterine sequencing of enriched chromatin fragments data with transcriptional responses revealed in our uterine microarrays has the potential to greatly enhance our understanding of mechanisms governing estrogen response in uterine and other estrogen target tissues.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun M, Isaacs GD, Hah N, Heldring N, Fogarty EA, Kraus WL. Estrogen regulates JNK1 genomic localization to control gene expression and cell growth in breast cancer cells. Mol Endocrinol 2012; 26:736-47. [PMID: 22446103 DOI: 10.1210/me.2011-1158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Steroid hormone and MAPK signaling pathways functionally intersect, but the molecular mechanisms of this cross talk are unclear. Here, we demonstrate a functional convergence of the estrogen and c-Jun N-terminal kinase 1 (JNK1) signaling pathways at the genomic level in breast cancer cells. We find that JNK1 binds to many promoters across the genome. Although most of the JNK1-binding sites are constitutive, a subset is estrogen regulated (either induced on inhibited). At the estrogen-induced sites, estrogen receptor (ER)α is required for the binding of JNK1 by promoting its recruitment to estrogen response elements or other classes of DNA elements through a tethering mechanism, which in some cases involves activating protein-1. At estrogen-regulated promoters, JNK1 functions as a transcriptional coregulator of ERα in a manner that is dependent on its kinase activity. The convergence of ERα and JNK1 at target gene promoters regulates estrogen-dependent gene expression outcomes, as well as downstream estrogen-dependent cell growth responses. Analysis of existing gene expression profiles from breast cancer biopsies suggests a role for functional interplay between ERα and JNK1 in the progression and clinical outcome of breast cancers.
Collapse
Affiliation(s)
- Miao Sun
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8511, USA
| | | | | | | | | | | |
Collapse
|
41
|
King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:716-26. [PMID: 22425674 DOI: 10.1016/j.bbagrm.2012.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/21/2022]
Abstract
Steroid hormone receptor (SR) signaling leads to widespread changes in gene expression, and aberrant SR signaling can lead to malignancies including breast, prostate, and lung cancers. Chromatin remodeling is an essential component of SR signaling, and defining the process of chromatin and nucleosome remodeling during signaling is critical to the continued development of related therapies. The glucocorticoid receptor (GR) is a key SR that activates numerous promoters including the well defined MMTV promoter. The activation of MMTV by GR provides an excellent model for teasing apart the sequence of events between hormone treatment and changes in gene expression. Comparing hormone-induced transcription from stably integrated promoters with defined nucleosomal structure to that from transiently expressed, unstructured promoters permits key distinctions between interactions that require remodeling and those that do not. The importance of co-activators and histone modifications prior to remodeling and the formation of the preinitiation complex that follows can also be clarified by defining key transition points in the propagation of hormonal signals. Combined with detailed mapping of proteins along the promoter, a temporal and spatial understanding of the signaling and remodeling processes begins to emerge. In this review, we examine SR signaling with a focus on GR activation of the MMTV promoter. We also discuss the ATP-dependent remodeling complex SWI/SNF, which provides the necessary remodeling activity during GR signaling and interacts with several SRs. BRG1, the central ATPase of SWI/SNF, also interacts with a set of BAF proteins that help determine the specialized function and fine-tuned regulation of BRG1 remodeling activity. BRG1 regulation comes from its own subdomains as well as its interactive partners. In particular, the HSA domain region of BRG1 and unique features of its ATPase homology appear to play key roles in regulating remodeling function. Details of the inter-workings of this chromatin remodeling protein continue to be revealed and promise to improve our understanding of the mechanism of chromatin remodeling during steroid hormone signaling. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Heather A King
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
42
|
Rotinen M, Villar J, Encío I. Regulation of 17β-hydroxysteroid dehydrogenases in cancer: regulating steroid receptor at pre-receptor stage. J Physiol Biochem 2012; 68:461-73. [DOI: 10.1007/s13105-012-0155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/07/2012] [Indexed: 11/27/2022]
|
43
|
Fogarty EA, Matulis CK, Kraus WL. Activation of estrogen receptor α by raloxifene through an activating protein-1-dependent tethering mechanism in human cervical epithelial cancer cells: a role for c-Jun N-terminal kinase. Mol Cell Endocrinol 2012; 348:331-8. [PMID: 21964465 PMCID: PMC3217792 DOI: 10.1016/j.mce.2011.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 11/23/2022]
Abstract
Nuclear estrogen receptor α (ERα) regulates target gene expression in response to ligands through two distinct mechanisms: direct binding to DNA and indirect tethering through other DNA-bound transcription factors, such as AP-1. In the studies described herein, we examined the molecular mechanisms underlying the activation of ERα in the AP-1 tethering pathway by the selective estrogen receptor modulator (SERM) raloxifene (Ral). Our results with the MMP1 and PRUNE genes indicate that the c-Fos component of the AP-1 tethering factor and the c-Jun N-terminal kinase 1 (JNK1) are constitutively bound at the promoter regions prior to Ral exposure. Ral then promotes the binding of ERα at the promoter in a c-Fos-dependent manner. Interestingly, we found that JNK1 enzymatic activity is required for Ral-dependent gene activation through ERα. Our results suggest that one role for Ral-dependent recruitment of ERα to the AP-1 binding site is to stimulate JNK1 enzymatic activity. Alternatively, Ral-occupied ERα might recruit protein substrates to promoter-bound JNK1 without any change in JNK1 activity. Collectively, our studies have revealed a new role for JNK1 in determining gene regulatory outcomes by ERα.
Collapse
Affiliation(s)
- Elizabeth A. Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Christina K. Matulis
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
| | - W. Lee Kraus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- Address correspondence to: W. Lee Kraus, Ph.D., Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-8511, Phone: 214-648-2388, Fax: 214-648-0383,
| |
Collapse
|
44
|
Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 2011; 32:399-414. [PMID: 22083957 DOI: 10.1128/mcb.05958-11] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NKX3-1 gene is a homeobox gene required for prostate tumor progression, but how it functions is unclear. Here, using chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) we showed that NKX3-1 colocalizes with the androgen receptor (AR) across the prostate cancer genome. We uncovered two distinct mechanisms by which NKX3-1 controls the AR transcriptional network in prostate cancer. First, NKX3-1 and AR directly regulate each other in a feed-forward regulatory loop. Second, NKX3-1 collaborates with AR and FoxA1 to mediate genes in advanced and recurrent prostate carcinoma. NKX3-1- and AR-coregulated genes include those found in the "protein trafficking" process, which integrates oncogenic signaling pathways. Moreover, we demonstrate that NKX3-1, AR, and FoxA1 promote prostate cancer cell survival by directly upregulating RAB3B, a member of the RAB GTPase family. Finally, we show that RAB3B is overexpressed in prostate cancer patients, suggesting that RAB3B together with AR, FoxA1, and NKX3-1 are important regulators of prostate cancer progression. Collectively, our work highlights a novel hierarchical transcriptional regulatory network between NKX3-1, AR, and the RAB GTPase signaling pathway that is critical for the genetic-molecular-phenotypic paradigm in androgen-dependent prostate cancer.
Collapse
|
45
|
Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, Vesterinen T, Nordling S, Kallioniemi O, Hautaniemi S, Jänne OA. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 2011; 30:3962-76. [PMID: 21915096 DOI: 10.1038/emboj.2011.328] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022] Open
Abstract
High androgen receptor (AR) level in primary tumour predicts increased prostate cancer-specific mortality. However, the mechanisms that regulate AR function in prostate cancer are poorly known. We report here a new paradigm for the forkhead protein FoxA1 action in androgen signalling. Besides pioneering the AR pathway, FoxA1 depletion elicited extensive redistribution of AR-binding sites (ARBs) on LNCaP-1F5 cell chromatin that was commensurate with changes in androgen-dependent gene expression signature. We identified three distinct classes of ARBs and androgen-responsive genes: (i) independent of FoxA1, (ii) pioneered by FoxA1 and (iii) masked by FoxA1 and functional upon FoxA1 depletion. FoxA1 depletion also reprogrammed AR binding in VCaP cells, and glucocorticoid receptor binding and glucocorticoid-dependent signalling in LNCaP-1F5 cells. Importantly, FoxA1 protein level in primary prostate tumour had significant association to disease outcome; high FoxA1 level was associated with poor prognosis, whereas low FoxA1 level, even in the presence of high AR expression, predicted good prognosis. The role of FoxA1 in androgen signalling and prostate cancer is distinctly different from that in oestrogen signalling and breast cancer.
Collapse
Affiliation(s)
- Biswajyoti Sahu
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jagannathan V, Robinson-Rechavi M. Meta-analysis of estrogen response in MCF-7 distinguishes early target genes involved in signaling and cell proliferation from later target genes involved in cell cycle and DNA repair. BMC SYSTEMS BIOLOGY 2011; 5:138. [PMID: 21878096 PMCID: PMC3225231 DOI: 10.1186/1752-0509-5-138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 08/30/2011] [Indexed: 02/08/2023]
Abstract
Background Many studies have been published outlining the global effects of 17β-estradiol (E2) on gene expression in human epithelial breast cancer derived MCF-7 cells. These studies show large variation in results, reporting between ~100 and ~1500 genes regulated by E2, with poor overlap. Results We performed a meta-analysis of these expression studies, using the Rank product method to obtain a more accurate and stable list of the differentially expressed genes, and of pathways regulated by E2. We analyzed 9 time-series data sets, concentrating on response at 3-4 hrs (early) and at 24 hrs (late). We found >1000 statistically significant probe sets after correction for multiple testing at 3-4 hrs, and >2000 significant probe sets at 24 hrs. Differentially expressed genes were examined by pathway analysis. This revealed 15 early response pathways, mostly related to cell signaling and proliferation, and 20 late response pathways, mostly related to breast cancer, cell division, DNA repair and recombination. Conclusions Our results confirm that meta-analysis identified more differentially expressed genes than the individual studies, and that these genes act together in networks. These results provide new insight into E2 regulated mechanisms, especially in the context of breast cancer.
Collapse
Affiliation(s)
- Vidhya Jagannathan
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | | |
Collapse
|
47
|
Zhang Z, Chang CW, Goh WL, Sung WK, Cheung E. CENTDIST: discovery of co-associated factors by motif distribution. Nucleic Acids Res 2011; 39:W391-9. [PMID: 21602269 PMCID: PMC3125780 DOI: 10.1093/nar/gkr387] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transcription factors (TFs) do not function alone but work together with other TFs (called co-TFs) in a combinatorial fashion to precisely control the transcription of target genes. Mining co-TFs is thus important to understand the mechanism of transcriptional regulation. Although existing methods can identify co-TFs, their accuracy depends heavily on the chosen background model and other parameters such as the enrichment window size and the PWM score cut-off. In this study, we have developed a novel web-based co-motif scanning program called CENTDIST (http://compbio.ddns.comp.nus.edu.sg/~chipseq/centdist/). In comparison to current co-motif scanning programs, CENTDIST does not require the input of any user-specific parameters and background information. Instead, CENTDIST automatically determines the best set of parameters and ranks co-TF motifs based on their distribution around ChIP-seq peaks. We tested CENTDIST on 14 ChIP-seq data sets and found CENTDIST is more accurate than existing methods. In particular, we applied CENTDIST on an Androgen Receptor (AR) ChIP-seq data set from a prostate cancer cell line and correctly predicted all known co-TFs (eight TFs) of AR in the top 20 hits as well as discovering AP4 as a novel co-TF of AR (which was missed by existing methods). Taken together, CENTDIST, which exploits the imbalanced nature of co-TF binding, is a user-friendly, parameter-less and powerful predictive web-based program for understanding the mechanism of transcriptional co-regulation.
Collapse
Affiliation(s)
- Zhizhuo Zhang
- School of Computing, National University of Singapore, Computing 1, 13 Computing Drive, Singapore 117417
| | | | | | | | | |
Collapse
|
48
|
Tan SK, Lin ZH, Chang CW, Varang V, Chng KR, Pan YF, Yong EL, Sung WK, Sung WK, Cheung E. AP-2γ regulates oestrogen receptor-mediated long-range chromatin interaction and gene transcription. EMBO J 2011; 30:2569-81. [PMID: 21572391 DOI: 10.1038/emboj.2011.151] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/15/2011] [Indexed: 11/09/2022] Open
Abstract
Oestrogen receptor α (ERα) is key player in the progression of breast cancer. Recently, the cistrome and interactome of ERα were mapped in breast cancer cells, revealing the importance of spatial organization in oestrogen-mediated transcription. However, the underlying mechanism of this process is unclear. Here, we show that ERα binding sites (ERBS) identified from the Chromatin Interaction Analysis-Paired End DiTag of ERα are enriched for AP-2 motifs. We demonstrate the transcription factor, AP-2γ, which has been implicated in breast cancer oncogenesis, binds to ERBS in a ligand-independent manner. Furthermore, perturbation of AP-2γ expression impaired ERα DNA binding, long-range chromatin interactions, and gene transcription. In genome-wide analyses, we show that a large number of AP-2γ and ERα binding events converge together across the genome. The majority of these shared regions are also occupied by the pioneer factor, FoxA1. Molecular studies indicate there is functional interplay between AP-2γ and FoxA1. Finally, we show that most ERBS associated with long-range chromatin interactions are colocalized with AP-2γ and FoxA1. Together, our results suggest AP-2γ is a novel collaborative factor in ERα-mediated transcription.
Collapse
Affiliation(s)
- Si Kee Tan
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A STAR (Agency for Science, Technology and Research), Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shen C, Huang Y, Liu Y, Wang G, Zhao Y, Wang Z, Teng M, Wang Y, Flockhart DA, Skaar TC, Yan P, Nephew KP, Huang TH, Li L. A modulated empirical Bayes model for identifying topological and temporal estrogen receptor α regulatory networks in breast cancer. BMC SYSTEMS BIOLOGY 2011; 5:67. [PMID: 21554733 PMCID: PMC3117732 DOI: 10.1186/1752-0509-5-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/09/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Estrogens regulate diverse physiological processes in various tissues through genomic and non-genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast cancer. Dynamic gene expression changes have been shown to characterize the breast cancer cell response to estrogens, the every molecular mechanism of which is still not well understood. RESULTS We developed a modulated empirical Bayes model, and constructed a novel topological and temporal transcription factor (TF) regulatory network in MCF7 breast cancer cell line upon stimulation by 17β-estradiol stimulation. In the network, significant TF genomic hubs were identified including ER-alpha and AP-1; significant non-genomic hubs include ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, and PITX2. Although the early and late networks were distinct (<5% overlap of ERα target genes between the 4 and 24 h time points), all nine hubs were significantly represented in both networks. In MCF7 cells with acquired resistance to tamoxifen, the ERα regulatory network was unresponsive to 17β-estradiol stimulation. The significant loss of hormone responsiveness was associated with marked epigenomic changes, including hyper- or hypo-methylation of promoter CpG islands and repressive histone methylations. CONCLUSIONS We identified a number of estrogen regulated target genes and established estrogen-regulated network that distinguishes the genomic and non-genomic actions of estrogen receptor. Many gene targets of this network were not active anymore in anti-estrogen resistant cell lines, possibly because their DNA methylation and histone acetylation patterns have changed.
Collapse
Affiliation(s)
- Changyu Shen
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 2011; 145:622-34. [PMID: 21549415 DOI: 10.1016/j.cell.2011.03.042] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/07/2011] [Accepted: 03/24/2011] [Indexed: 01/13/2023]
Abstract
We report the immediate effects of estrogen signaling on the transcriptome of breast cancer cells using global run-on and sequencing (GRO-seq). The data were analyzed using a new bioinformatic approach that allowed us to identify transcripts directly from the GRO-seq data. We found that estrogen signaling directly regulates a strikingly large fraction of the transcriptome in a rapid, robust, and unexpectedly transient manner. In addition to protein-coding genes, estrogen regulates the distribution and activity of all three RNA polymerases and virtually every class of noncoding RNA that has been described to date. We also identified a large number of previously undetected estrogen-regulated intergenic transcripts, many of which are found proximal to estrogen receptor binding sites. Collectively, our results provide the most comprehensive measurement of the primary and immediate estrogen effects to date and a resource for understanding rapid signal-dependent transcription in other systems.
Collapse
Affiliation(s)
- Nasun Hah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|