1
|
Pedrazzini T. Powering up piRNAs for heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2025; 4:13-14. [PMID: 39814980 DOI: 10.1038/s44161-024-00590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Affiliation(s)
- Thierry Pedrazzini
- School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, James Black Centre, King's College London, London, UK.
| |
Collapse
|
2
|
Wang K, Wen J, Liang T, Hu H, Li S, Shen L, Ren T, Yao Y, Xie J, Ding J, Chen J, Tang YD, Zhu Y, Gao C. Enhancing miR-19a/b induced cardiomyocyte proliferation in infarcted hearts by alleviating oxidant stress and controlling miR-19 release. Biomaterials 2025; 312:122732. [PMID: 39088913 DOI: 10.1016/j.biomaterials.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Fully restoring the lost population of cardiomyocytes and heart function remains the greatest challenge in cardiac repair post myocardial infarction. In this study, a pioneered highly ROS-eliminating hydrogel was designed to enhance miR-19a/b induced cardiomyocyte proliferation by lowering the oxidative stress and continuously releasing miR-19a/b in infarcted myocardium in situ. In vivo lineage tracing revealed that ∼20.47 % of adult cardiomyocytes at the injected sites underwent cell division in MI mice. In MI pig the infarcted size was significantly reduced from 40 % to 18 %, and thereby marked improvement of cardiac function and increased muscle mass. Most importantly, our treatment solved the challenge of animal death--all the treated pigs managed to live until their hearts were harvested at day 50. Therefore, our strategy provides clinical conversion advantages and safety for healing damaged hearts and restoring heart function post MI, which will be a powerful tool to battle cardiovascular diseases in patients.
Collapse
Affiliation(s)
- Kai Wang
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jun Wen
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Tian Liang
- Department of Cardiology, the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tanchen Ren
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, the Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jinghai Chen
- Department of Cardiology, the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yi-Da Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Yang Zhu
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Changyou Gao
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
3
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Yildirim Y, Degener L, Reuter L, Petersen J, Gabel L, Sommer A, Pahrmann C, Reichenspurner H, Pecha S. Evaluation of cell survival in different 3D-printed geometric shapes of human iPSC-derived engineered heart tissue. Artif Organs 2024; 48:1251-1263. [PMID: 39041632 DOI: 10.1111/aor.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVES Engineered Heart Tissue (EHT) is a promising tool to repair heart muscle defects and can additionally be used for drug testing. Due to the absence of an in vitro vascularization, EHT geometry crucially impacts nutrient and oxygen supply by diffusion capacity. We analyzed cardiomyocyte survival in different EHT geometries. METHODS Different geometries with varying surface-area-to-volume-ratios were calculated (structure A (Ring) AS/V = 58.47 mm2/440 μL3, structure B (Infinity) 25.86 mm2/440 μL3). EHTs were generated from hiPSC-derived cardiomyocytes (4 × 106) and a fibrin/thrombin hydrogel. Cell viability was evaluated by RT-PCR, cytometric studies, and Bioluminescence imaging. RESULTS Using 3D-printed casting molds, spontaneously beating EHTs can be generated in various geometric forms. At day 7, the RT-PCR analyses showed a significantly higher Troponin-T value in ring EHTs, compared to infinity EHTs. In cytometric studies, we evaluated 15% more Troponin-T positive cells in ring (73% ± 12%), compared to infinity EHTs (58% ± 11%, p = 0.04). BLI visualized significantly higher cell survival in ring EHTs (ROI = A: 1.14 × 106 p/s and B: 8.47 × 105 p/s, p < 0.001) compared to infinity EHTs during longitudinal cultivation process. CONCLUSION Use of 3D-printing allows the creation of EHTs in all desired geometric shapes. The geometry with an optimized surface-area-to-volume-ratio (ring EHT) demonstrated a significantly higher cell survival measured by RT-PCR, Bioluminescence imaging, and cytometric studies using FACS analysis.
Collapse
Affiliation(s)
- Yalin Yildirim
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Louisa Degener
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Lukas Reuter
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lilian Gabel
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Annika Sommer
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Christiane Pahrmann
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simon Pecha
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
5
|
Chen Y, Zhou X, Wang X, Zhang Y, Song J, Cai Y, Zhao Y, Mei L, Zhu S, Chen X. Fibroblast growth factor 20 ameliorates cardiac hypertrophy via activation ErbB2. Heliyon 2024; 10:e37085. [PMID: 39319165 PMCID: PMC11419851 DOI: 10.1016/j.heliyon.2024.e37085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Fibroblast growth factor 20 (FGF20) is a member of the fibroblast growth factor family and involved in embryonic development and cardiac repair. This study aimed to explore the role of FGF20 in cardiac hypertrophy and the underlying molecular mechanisms. FGF20 improved cardiac hypertrophy in vivo and in vitro. Furthermore, FGF20 increased expression of erythroblastic leukemia viral oncogene homolog 2 (ErbB2), which was negatively correlated with expression of the cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). In addition, FGF20 effectively protected cardiomyocytes against apoptosis and oxidative stress. To further investigate whether protective effect of FGF20 is mediated by ErbB2, neonatal rat cardiomyocytes (NRCMs) were treated with lapatinib, an inhibitor of ErbB2. Lapatinib largely abrogated the anti-hypertrophic effect of FGF20, accompanied by increases in cardiomyocyte apoptosis and oxidative stress. In summary, this study reveals that FGF20 prevents cardiac hypertrophy by inhibiting apoptosis and oxidative stress via activating ErbB2 and may be a promising therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yunjie Chen
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Xuan Zhou
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanbin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Jiayi Song
- Reproductive Medicine Center, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yan Cai
- Department of Clinical Pharmacy, Ningbo Ninth Hospital, Ningbo, 315020, Zhejiang, China
| | - Yizhuo Zhao
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Lin Mei
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361000, Fujian, China
| | - Suyan Zhu
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Xueqin Chen
- Department of Traditional Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| |
Collapse
|
6
|
Stüdemann T, Schwarzová B, Schneidewind T, Geertz B, von Bibra C, Nehring M, Rössinger J, Wiegert JS, Eschenhagen T, Weinberger F. Impulse initiation in engrafted pluripotent stem cell-derived cardiomyocytes can stimulate the recipient heart. Stem Cell Reports 2024; 19:1053-1060. [PMID: 39059379 PMCID: PMC11368679 DOI: 10.1016/j.stemcr.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Transplantation of pluripotent stem cell-derived cardiomyocytes is a novel promising cell-based therapeutic approach for patients with heart failure. However, engraftment arrhythmias are a predictable life-threatening complication and represent a major hurdle for clinical translation. Thus, we wanted to experimentally study whether impulse generation by transplanted cardiomyocytes can propagate to the host myocardium and overdrive the recipient rhythm. We transplanted human induced pluripotent stem cell-derived cardiomyocytes expressing the optogenetic actuator Bidirectional Pair of Opsins for Light-induced Excitation and Silencing (BiPOLES) in a guinea pig injury model. Eight weeks after transplantation ex vivo, Langendorff perfusion was used to assess electrical coupling. Pulsed photostimulation was applied to specifically activate the engrafted cardiomyocytes. Photostimulation resulted in ectopic pacemaking that propagated to the host myocardium, caused non-sustained arrhythmia, and stimulated the recipient heart with higher pacing frequency (4/9 hearts). Our study demonstrates that transplanted cardiomyocytes can (1) electrically couple to the host myocardium and (2) stimulate the recipient heart. Thus, our results provide experimental evidence for an important aspect of engraftment-induced arrhythmia induction and thereby support the current hypothesis that cardiomyocyte automaticity can serve as a trigger for ventricular arrhythmias.
Collapse
Affiliation(s)
- Tim Stüdemann
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Barbora Schwarzová
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Till Schneidewind
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin von Bibra
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Marie Nehring
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany; Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
7
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
8
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
9
|
Yang Y, Yang H, Kiskin FN, Zhang JZ. The new era of cardiovascular research: revolutionizing cardiovascular research with 3D models in a dish. MEDICAL REVIEW (2021) 2024; 4:68-85. [PMID: 38515776 PMCID: PMC10954298 DOI: 10.1515/mr-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Cardiovascular research has heavily relied on studies using patient samples and animal models. However, patient studies often miss the data from the crucial early stage of cardiovascular diseases, as obtaining primary tissues at this stage is impracticable. Transgenic animal models can offer some insights into disease mechanisms, although they usually do not fully recapitulate the phenotype of cardiovascular diseases and their progression. In recent years, a promising breakthrough has emerged in the form of in vitro three-dimensional (3D) cardiovascular models utilizing human pluripotent stem cells. These innovative models recreate the intricate 3D structure of the human heart and vessels within a controlled environment. This advancement is pivotal as it addresses the existing gaps in cardiovascular research, allowing scientists to study different stages of cardiovascular diseases and specific drug responses using human-origin models. In this review, we first outline various approaches employed to generate these models. We then comprehensively discuss their applications in studying cardiovascular diseases by providing insights into molecular and cellular changes associated with cardiovascular conditions. Moreover, we highlight the potential of these 3D models serving as a platform for drug testing to assess drug efficacy and safety. Despite their immense potential, challenges persist, particularly in maintaining the complex structure of 3D heart and vessel models and ensuring their function is comparable to real organs. However, overcoming these challenges could revolutionize cardiovascular research. It has the potential to offer comprehensive mechanistic insights into human-specific disease processes, ultimately expediting the development of personalized therapies.
Collapse
Affiliation(s)
- Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Fedir N. Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Joe Z. Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
10
|
Sundin A, Ionescu SI, Balkan W, Hare JM. Mesenchymal STRO-1/STRO-3 + precursor cells for the treatment of chronic heart failure with reduced ejection fraction. Future Cardiol 2023; 19:567-581. [PMID: 37933628 PMCID: PMC10652293 DOI: 10.2217/fca-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
The heart is susceptible to proinflammatory and profibrotic responses after myocardial injury, leading to further worsening of cardiac dysfunction. Important developments in the management of heart failure with reduced ejection fraction have reduced morbidity and mortality; however, these therapies focus on optimizing cardiac function through hemodynamic and neurohormonal pathways and not by repairing the underlying cardiac injury. The potential of cell-based therapy to reverse cardiac injury has received substantial attention. Herein are examined the phase II and III studies of bone marrow-derived mesenchymal STRO-1+ or STRO-1/STRO-3+ precursor cells in patients with ischemic and nonischemic heart failure with reduced ejection fraction, addressing the safety and efficacy of cell-based therapy throughout multiple clinical trials, the optimal dose and the steps toward revolutionizing the treatment of heart failure.
Collapse
Affiliation(s)
- Andrew Sundin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Simona I Ionescu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
11
|
Ceja L, Escopete SS, Hughes L, Lopez LV, Camberos V, Vallejos P, Wall NR, Kearns-Jonker M. Neonatal Cardiovascular-Progenitor-Cell-Derived Extracellular Vesicles Activate YAP1 in Adult Cardiac Progenitor Cells. Int J Mol Sci 2023; 24:ijms24098088. [PMID: 37175796 PMCID: PMC10179407 DOI: 10.3390/ijms24098088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
New stem cell and extracellular-vesicle-based therapies have the potential to improve outcomes for the increasing number of patients with heart failure. Since neonates have a significantly enhanced regenerative ability, we hypothesized that extracellular vesicles isolated from Islet-1+ expressing neonatal human cardiovascular progenitors (CPCs) will induce transcriptomic changes associated with improved regenerative capability when co-cultured with CPCs derived from adult humans. In order to test this hypothesis, we isolated extracellular vesicles from human neonatal Islet-1+ CPCs, analyzed the extracellular vesicle content using RNAseq, and treated adult CPCs with extracellular vesicles derived from neonatal CPCs to assess their functional effect. AKT, ERBB, and YAP1 transcripts were elevated in adult CPCs treated with neonatal CPC-derived extracellular vesicles. YAP1 is lost after the neonatal period but can stimulate cardiac regeneration. Our results demonstrate that YAP1 and additional transcripts associated with improved cardiovascular regeneration, as well as the activation of the cell cycle, can be achieved by the treatment of adult CPCs with neonatal CPC-derived extracellular vesicles. Progenitor cells derived from neonates secrete extracellular vesicles with the potential to stimulate and potentially improve functional effects in adult CPCs used for cardiovascular repair.
Collapse
Affiliation(s)
- Lourdes Ceja
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Sean S Escopete
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lorelei Hughes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Victor Camberos
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Paul Vallejos
- Division of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nathan R Wall
- Division of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
12
|
Kankuri E, Finckenberg P, Leinonen J, Tarkia M, Björk S, Purhonen J, Kallijärvi J, Kankainen M, Soliymani R, Lalowski M, Mervaala E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med 2023; 55:806-817. [PMID: 37009793 PMCID: PMC10167339 DOI: 10.1038/s12276-023-00967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Collapse
Affiliation(s)
- E Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - P Finckenberg
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Leinonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Tarkia
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Kankainen
- Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Soliymani
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Chen Y, Zhu S, Lin Z, Zhang Y, Jin C, He S, Chen X, Zhou X. Metformin alleviates ethanol-induced cardiomyocyte injury by activating AKT/Nrf2 signaling in an ErbB2-dependent manner. Mol Biol Rep 2023; 50:3469-3478. [PMID: 36765018 DOI: 10.1007/s11033-023-08310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Metformin, a first-line oral anti-diabetic drug, has recently been reported to exert protective effect on various cardiovascular diseases. However, the potential role of metformin in ethanol-induced cardiomyocyte injury is still unknown. Therefore, this study was aimed to investigate the effect of metformin on ethanol-induced cardiomyocyte injury and its underlying mechanism. METHODS AND RESULTS H9c2 cardiomyocytes were exposed to ethanol for 24 h to establish an ethanol-induced cardiomyocyte injury model, and followed by treatment with metformin in the presence or absence of Lapatinib (an ErbB2 inhibition). CCK8 and LDH assays demonstrated that metformin improved cell viability in cardiomyocytes exposed to ethanol. Furthermore, metformin suppressed cardiomyocyte apoptosis and reduced the expressions of apoptosis-related proteins (Bax and C-CAS-3). In addition, our results showed that metformin activated the AKT/Nrf2 pathway, and then promoted Nrf2 nuclear translocation and the transcription of its downstream antioxidant genes (HO-1, CAT and SOD2), thereby inhibiting oxidative stress. Interestingly, we found that ErbB2 protein expression was significantly inhibited in ethanol-treated cardiomyocytes, which was markedly reversed by metformin. In contrast, Lapatinib largely abrogated the activation of AKT/Nrf2 signaling by metformin, accompanied by the increases in oxidative stress and cardiomyocyte apoptosis, indicating that metformin prevented ethanol-induced cardiomyocyte injury in an ErbB2-dependent manner. CONCLUSION In summary, our study provides the first evidence that metformin protects cardiomyocyte against ethanol-induced oxidative stress and apoptosis by activating ErbB2-mediated AKT/Nrf2 signaling. Thus, metformin may be a potential novel treatment approach for alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Yunjie Chen
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.,Central Laboratory of the Medical Research Center, Ningbo First Hospital, 315010, Ningbo, People's Republic of China
| | - Suyan Zhu
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China
| | - Zhu Lin
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China
| | - Yuanbin Zhang
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.,Central Laboratory of the Medical Research Center, Ningbo First Hospital, 315010, Ningbo, People's Republic of China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, Ningbo First Hospital, 315010, Ningbo, People's Republic of China.
| | - Xuan Zhou
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.
| |
Collapse
|
14
|
Wang T, Chen X, Wang K, Ju J, Yu X, Wang S, Liu C, Wang K. Cre-loxP-mediated genetic lineage tracing: Unraveling cell fate and origin in the developing heart. Front Cardiovasc Med 2023; 10:1085629. [PMID: 36923960 PMCID: PMC10008892 DOI: 10.3389/fcvm.2023.1085629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
The Cre-loxP-mediated genetic lineage tracing system is essential for constructing the fate mapping of single-cell progeny or cell populations. Understanding the structural hierarchy of cardiac progenitor cells facilitates unraveling cell fate and origin issues in cardiac development. Several prospective Cre-loxP-based lineage-tracing systems have been used to analyze precisely the fate determination and developmental characteristics of endocardial cells (ECs), epicardial cells, and cardiomyocytes. Therefore, emerging lineage-tracing techniques advance the study of cardiovascular-related cellular plasticity. In this review, we illustrate the principles and methods of the emerging Cre-loxP-based genetic lineage tracing technology for trajectory monitoring of distinct cell lineages in the heart. The comprehensive demonstration of the differentiation process of single-cell progeny using genetic lineage tracing technology has made outstanding contributions to cardiac development and homeostasis, providing new therapeutic strategies for tissue regeneration in congenital and cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shaocong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Kankuri E, Karjalainen P, Vento A. Atrial Appendage-Derived Cardiac Micrografts: An Emerging Cellular Therapy for Heart Failure. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:155-181. [DOI: 10.1007/978-981-99-0722-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Bon-Mathier AC, Déglise T, Rignault-Clerc S, Bielmann C, Mazzolai L, Rosenblatt-Velin N. Brain Natriuretic Peptide Protects Cardiomyocytes from Apoptosis and Stimulates Their Cell Cycle Re-Entry in Mouse Infarcted Hearts. Cells 2022; 12:cells12010007. [PMID: 36611800 PMCID: PMC9818267 DOI: 10.3390/cells12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Brain Natriuretic Peptide (BNP) supplementation after infarction increases heart function and decreases heart remodeling. BNP receptors, NPR-A and NPR-B are expressed on adult cardiomyocytes (CMs). We investigated whether a part of the BNP cardioprotective effect in infarcted and unmanipulated hearts is due to modulation of the CM fate. For this purpose, infarcted adult male mice were intraperitoneally injected every two days during 2 weeks with BNP or saline. Mice were sacrificed 1 and 14 days after surgery. BNP or saline was also injected intraperitoneally every two days into neonatal pups (3 days after birth) for 10 days and in unmanipulated 8-week-old male mice for 2 weeks. At sacrifice, CMs were isolated, counted, measured, and characterized by qRT-PCR. The proportion of mononucleated CMs was determined. Immunostainings aimed to detect CM re-entry in the cell cycle were performed on the different hearts. Finally, the signaling pathway activated by BNP treatment was identified in in vitro BNP-treated adult CMs and in CMs isolated from BNP-treated hearts. An increased number of CMs was detected in the hypoxic area of infarcted hearts, and in unmanipulated neonatal and adult hearts after BNP treatment. Accordingly, Troponin T plasma concentration was significantly reduced 1 and 3 days after infarction in BNP-treated mice, demonstrating less CM death. Furthermore, higher number of small, dedifferentiated and mononucleated CMs were identified in adult BNP-treated hearts when compared to saline-treated hearts. BNP-treated CMs express higher levels of mRNAs coding for hif1 alpha and for the different cyclins than CMs isolated from saline-treated hearts. Higher percentages of CMs undergoing DNA synthesis, expressing Ki67, phospho histone3 and Aurora B were detected in all BNP-treated hearts, demonstrating that CMs re-enter into the cell cycle. BNP effect on adult CMs in vivo is mediated by NPR-A binding and activation of the ERK MAP kinase pathway. Interestingly, an increased number of CMs was also detected in adult infarcted hearts treated with LCZ696, an inhibitor of the natriuretic peptide degradation. Altogether, our results identified BNP and all therapies aimed to increase BNP's bioavailability as new cardioprotective targets as BNP treatment leads to an increased number of CMs in neonatal, adult unmanipulated and infarcted hearts.
Collapse
|
17
|
Stüdemann T, Rössinger J, Manthey C, Geertz B, Srikantharajah R, von Bibra C, Shibamiya A, Köhne M, Wiehler A, Wiegert JS, Eschenhagen T, Weinberger F. Contractile Force of Transplanted Cardiomyocytes Actively Supports Heart Function After Injury. Circulation 2022; 146:1159-1169. [PMID: 36073365 PMCID: PMC9555755 DOI: 10.1161/circulationaha.122.060124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transplantation of pluripotent stem cell-derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function. METHODS We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model. RESULTS Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation. CONCLUSIONS Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.
Collapse
Affiliation(s)
- Tim Stüdemann
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Christoph Manthey
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Rajiven Srikantharajah
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Constantin von Bibra
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Aya Shibamiya
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Maria Köhne
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,Surgery for Congenital Heart Disease, University Heart & Vascular Center Hamburg, Germany (M.K.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Antonius Wiehler
- Department of Psychiatry, Service Hospitalo-Universitaire, Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Universite de Paris, France (A.W.)
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Centre for Molecular Neurobiology Hamburg, Germany (J.S.W.)
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| |
Collapse
|
18
|
Jiang YL, Niu S, Lin Z, Li L, Yang P, Rao P, Yang L, Jiang L, Sun L. Injectable hydrogel with dual-sensitive behavior for targeted delivery of oncostatin M to improve cardiac restoration after myocardial infarction. J Mater Chem B 2022; 10:6514-6531. [PMID: 35997155 DOI: 10.1039/d2tb00623e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myocardial infarction (MI) is a common cardiovascular disease that seriously endangers human health and complex pathophysiology (e.g., coronary artery obstruction, myocardial apoptosis, necrosis, inflammation, fibrosis, etc.) is involved. Therein, the loss of cardiomyocytes after MI in adults leads to gradual heart failure, which probably brings irreparable damage to the patient. Unfortunately, due to a cluster of limitations, currently used MI repair approaches always exhibit simple functions, low efficiency, and can hardly match the myocardial ischemia environment and clinical needs. In this study, we selected oncostatin M (OSM), a pleiotropic cytokine belonging to the interleukin-6 family that possesses an important role in cardiomyocyte dedifferentiation, cell proliferation, and regulation of inflammatory processes. Moreover, an injectable hydrogel with pH- and temperature-responsive behavior that can react with the acidic microenvironment of the ischemic myocardium was developed to deliver OSM locally. The functional hydrogel (poly (chitosan-co-citric acid-co-N-isopropyl acrylamide), P(CS-CA-NIPAM)) was fabricated by the facile reversible addition-fragmentation chain transfer polymerization and can be injected into the lesion site directly. After the gelation in situ, the OSM-loaded hydrogel exhibited continuous and localized release of OSM in response to specific pH and changes in MI rats, thereby accelerating angiogenesis and proliferation of cardiomyocytes, inhibiting myocardial fibrosis and improving cardiac function effectively. This study may provide a new perspective for the application of dual-sensitive hydrogels clinically, especially in tissue engineering for MI repair and drug delivery.
Collapse
Affiliation(s)
- Yong-Liang Jiang
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P. R. China
| | - Zhi Lin
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P. R. China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, P. R. China
| | - Peng Rao
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Lin Yang
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Lihong Jiang
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650100, P. R. China.
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| |
Collapse
|
19
|
Sun J, Peterson EA, Jiao C, Chen X, Zhao Y, Wang J. Zebrafish heart regeneration after coronary dysfunction-induced cardiac damage. Dev Biol 2022; 487:57-66. [PMID: 35490764 PMCID: PMC11017783 DOI: 10.1016/j.ydbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Over the past 20 years, various zebrafish injury models demonstrated efficient heart regeneration after cardiac tissue loss. However, no established coronary vessel injury methods exist in the zebrafish model, despite coronary endothelial dysfunction occurring in most patients with acute coronary syndrome. This is due to difficulties performing surgery on small coronary vessels and a lack of genetic tools to precisely manipulate coronary cells in zebrafish. We determined that the Notch ligand gene deltaC regulatory sequences drive gene expression in zebrafish coronary endothelial cells, enabling us to overcome these obstacles. We created a deltaC fluorescent reporter line and visualized robust coronary growth during heart development and regeneration. Importantly, this reporter facilitated the visualization of coronary growth without an endocardial background. Moreover, we visualized robust coronary growth on the surface of juvenile hearts and regrowth in the wounded area of adult hearts ex vivo. With this approach, we observed growth inhibition by reported vascular growth antagonists of the VEGF, EGF and Notch signaling pathways. Furthermore, we established a coronary genetic ablation system and observed that severe coronary endothelial cell loss resulted in fish death, whereas fish survived mild coronary cell loss. Coronary cell depletion triggered regenerative responses, which resulted in the restoration of damaged cardiac tissues within several weeks. Overall, our work demonstrated the efficacy of using deltaC regulatory elements for high-resolution visualization of the coronary endothelium; screening small molecules for coronary growth effects; and revealed complete recovery in adult zebrafish after coronary-induced heart damage.
Collapse
Affiliation(s)
- Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Jiao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yun Zhao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Hu Z, Chen P, Wang L, Zhu Y, Chen G, Chen Y, Hu Z, Mei L, You W, Cong W, Jin L, Wang X, Wang Y, Guan X. FGF6 promotes cardiac repair after myocardial infarction by inhibiting the Hippo pathway. Cell Prolif 2022; 55:e13221. [PMID: 35355356 PMCID: PMC9136516 DOI: 10.1111/cpr.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Myocardial infarction (MI) commonly occurs in patients with coronary artery disease and have high mortality. Current clinical strategies for MI still limited to reducing the death of myocardial cells but failed to replace these cells. This study aimed to investigate the role of fibroblast growth factor 6 (FGF6) in enhancing the proliferative potential of cardiomyocytes (CMs) after ischemic injury via the Hippo pathway. MATERIALS AND METHODS Expression of FGF6 protein was analysed in mice with MI induced by ligation of the left anterior descending coronary artery. Activation of the Hippo pathway and the proliferation potential were examined in ischemic CMs, treated with FGF6 protein or transfected with an adeno-virus carrying FGF6 sh-RNA. Immunofluorescence staining and western blotting were performed to assess the relationship between FGF6 and the Hippo pathway. RESULTS We found that FGF6 expression was significantly increased in the MI mouse model. Knockdown of FGF6 synthesis resulted in poorer heart function after MI. By contrast, treatment with recombinant human FGF6 protein improved heart function, reduced infarct size, and promoted cardiac repair. Additionally, FGF6 restrains the activation of the Hippo pathway and subsequently promotes nuclear accumulation of YAP. This was largely counteracted by treatment with extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126. CONCLUSION FGF6 inhibits the Hippo pathway via ERK1/2, and facilitates nuclear translocation of YAP, and thereby promotes cardiac repair after MI.
Collapse
Affiliation(s)
- Zhicheng Hu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Linlin Wang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yu Zhu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, P.R. China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China.,College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yunjie Chen
- Department of Pharmacy, Ningbo first Hospital, Ningbo, PR China
| | - Zhenyu Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Lin Mei
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Weijing You
- School of Medical Technology, Ningbo College of Health Sciences, Ningbo, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
21
|
Stüdemann T, Weinberger F. The Guinea Pig Model in Cardiac Regeneration Research; Current Tissue Engineering Approaches and Future Directions. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:103-122. [DOI: 10.1007/978-3-030-86140-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Eschenhagen T, Ridders K, Weinberger F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2021; 163:106-117. [PMID: 34687723 DOI: 10.1016/j.yjmcc.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Heart regeneration addresses a central problem in cardiology, the irreversibility of the loss of myocardium that eventually leads to heart failure. True restoration of heart function can only be achieved by remuscularization, i.e. replacement of lost myocardium by new, force-developing heart muscle. With the availability of principally unlimited human cardiomyocytes from pluripotent stem cells, one option to remuscularize the injured heart is to produce large numbers of cardiomyocytes plus/minus other cardiovascular cell types or progenitors ex vivo and apply them to the heart, either by injection or application as a patch. Exciting progress over the past decade has led to the first clinical applications, but important questions remain. Academic and increasingly corporate activity is ongoing to answer them and optimize the approach to finally develop a true regenerative therapy of heart failure.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | | | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
23
|
Approaches to Optimize Stem Cell-Derived Cardiomyocyte Maturation and Function. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Chingale M, Zhu D, Cheng K, Huang K. Bioengineering Technologies for Cardiac Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:681705. [PMID: 34150737 PMCID: PMC8209515 DOI: 10.3389/fbioe.2021.681705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac regenerative medicine faces big challenges such as a lack of adult cardiac stem cells, low turnover of mature cardiomyocytes, and difficulty in therapeutic delivery to the injured heart. The interaction of bioengineering and cardiac regenerative medicine offers innovative solutions to this field. For example, cell reprogramming technology has been applied by both direct and indirect routes to generate patient-specific cardiomyocytes. Various viral and non-viral vectors have been utilized for gene editing to intervene gene expression patterns during the cardiac remodeling process. Cell-derived protein factors, exosomes, and miRNAs have been isolated and delivered through engineered particles to overcome many innate limitations of live cell therapy. Protein decoration, antibody modification, and platelet membranes have been used for targeting and precision medicine. Cardiac patches have been used for transferring therapeutics with better retention and integration. Other technologies such as 3D printing and 3D culture have been used to create replaceable cardiac tissue. In this review, we discuss recent advancements in bioengineering and biotechnologies for cardiac regenerative medicine.
Collapse
Affiliation(s)
- Mira Chingale
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
25
|
Querdel E, Reinsch M, Castro L, Köse D, Bähr A, Reich S, Geertz B, Ulmer B, Schulze M, Lemoine MD, Krause T, Lemme M, Sani J, Shibamiya A, Stüdemann T, Köhne M, Bibra CV, Hornaschewitz N, Pecha S, Nejahsie Y, Mannhardt I, Christ T, Reichenspurner H, Hansen A, Klymiuk N, Krane M, Kupatt C, Eschenhagen T, Weinberger F. Human Engineered Heart Tissue Patches Remuscularize the Injured Heart in a Dose-Dependent Manner. Circulation 2021; 143:1991-2006. [PMID: 33648345 PMCID: PMC8126500 DOI: 10.1161/circulationaha.120.047904] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Human engineered heart tissue (EHT) transplantation represents a potential regenerative strategy for patients with heart failure and has been successful in preclinical models. Clinical application requires upscaling, adaptation to good manufacturing practices, and determination of the effective dose.
Collapse
Affiliation(s)
- Eva Querdel
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Marina Reinsch
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Liesa Castro
- Department of Cardiovascular Surgery, University Heart Center (L.C., S.P., H.R.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.).,Now with Department of Cardiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Germany (L.C.)
| | - Deniz Köse
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Andrea Bähr
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.).,Center for Innovative Medical Models, LMU Munich, Oberschleissheim, Germany (A.B., N.K.)
| | - Svenja Reich
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany
| | - Bärbel Ulmer
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Mirja Schulze
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Marc D Lemoine
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.).,Department of Cardiology-Electrophysiology (M.D.L.), University Heart Center, Hamburg, Germany
| | - Tobias Krause
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Marta Lemme
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Jascha Sani
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Aya Shibamiya
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Tim Stüdemann
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Maria Köhne
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.).,Department of Pediatric Cardiac Surgery (M. Köhne), University Heart Center, Hamburg, Germany
| | - Constantin von Bibra
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Nadja Hornaschewitz
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.)
| | - Simon Pecha
- Department of Cardiovascular Surgery, University Heart Center (L.C., S.P., H.R.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Yusuf Nejahsie
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart Center (L.C., S.P., H.R.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Nikolai Klymiuk
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.).,Center for Innovative Medical Models, LMU Munich, Oberschleissheim, Germany (A.B., N.K.)
| | - M Krane
- Department of Cardiovascular Surgery, German Heart Centre Munich (M. Krane), Technical University Munich, Germany.,INSURE (Institute for Translational Cardiac Surgery), Cardiovascular Surgery, Munich, Germany (M. Krane)
| | - C Kupatt
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.)
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| |
Collapse
|