1
|
Amir A, Headley DB, Herzallah MM, Karki A, Kim IT, Paré D. Studying decision making in rats using a contextual visual discrimination task: Detection and prevention of alternative behavioral strategies. J Neurosci Methods 2024; 415:110346. [PMID: 39667672 DOI: 10.1016/j.jneumeth.2024.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The neural bases of decision-making and contextual sensory discriminations have traditionally been studied in primates, highlighting the role of the prefrontal cortex in cognitive control and flexibility. With the advent of molecular tools to manipulate and monitor neuronal activity, these processes have increasingly been studied in rodents. However, rodent tasks typically consist of two-alternative forced choice paradigms that usually feature coarse sensory discriminations and no contextual dependence, limiting prefrontal involvement in task performance. NEW METHOD To circumvent these limitations, we developed a novel contextual visual discrimination task that lends itself to rigorous psychophysical analyses. In this task, rats learn to detect left-right differences in one dimension (e.g. luminance or speed) depending on context while ignoring another (e.g. speed or luminance, respectively). Depending on trials, speed and luminance can be greater on the same side (congruent trials) or on opposite sides (incongruent trials). RESULTS Rats learned the task in four phases: nose-poking and lever-pressing (∼7 days), discriminating left-right differences in one dimension (∼20 days), discriminating left-right differences in a second dimension (∼10 days), and discriminating left-right differences in one of the two dimensions depending on context (∼2.5 months). A 20:80 ratio of congruent to incongruent trials is used to prevent rats from adopting alternative strategies. COMPARISON WITH EXISTING METHODS This task is comparable to contextual sensory discrimination tasks used in monkeys. Few equivalent tasks exist in rodents. CONCLUSIONS This task will allow investigators to use the full neuroscientific armamentarium to study contextual neural coding in the rat prefrontal cortex.
Collapse
Affiliation(s)
- Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA; Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine
| | - Asriya Karki
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Ian T Kim
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Leow YN, Barlowe A, Luo C, Osako Y, Jazayeri M, Sur M. Sensory History Drives Adaptive Neural Geometry in LP/Pulvinar-Prefrontal Cortex Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623977. [PMID: 39605622 PMCID: PMC11601498 DOI: 10.1101/2024.11.16.623977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Prior expectations guide attention and support perceptual filtering for efficient processing during decision-making. Here we show that during a visual discrimination task, mice adaptively use prior stimulus history to guide ongoing choices by estimating differences in evidence between consecutive trials (| Δ Dir |). The thalamic lateral posterior (LP)/pulvinar nucleus provides robust inputs to the Anterior Cingulate Cortex (ACC), which has been implicated in selective attention and predictive processing, but the function of the LP-ACC projection is unknown. We found that optogenetic manipulations of LP-ACC axons disrupted animals' ability to effectively estimate and use information across stimulus history, leading to | Δ Dir |-dependent ipsilateral biases. Two-photon calcium imaging of LP-ACC axons revealed an engagement-dependent low-dimensional organization of stimuli along a curved manifold. This representation was scaled by | Δ Dir | in a manner that emphasized greater deviations from prior evidence. Thus, our work identifies the LP-ACC pathway as essential for selecting and evaluating stimuli relative to prior evidence to guide decisions.
Collapse
|
3
|
Johnston WJ, Fusi S. Modular representations emerge in neural networks trained to perform context-dependent tasks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615925. [PMID: 39415994 PMCID: PMC11482777 DOI: 10.1101/2024.09.30.615925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The brain has large-scale modular structure in the form of brain regions, which are thought to arise from constraints on connectivity and the physical geometry of the cortical sheet. In contrast, experimental and theoretical work has argued both for and against the existence of specialized sub-populations of neurons (modules) within single brain regions. By studying artificial neural networks, we show that this local modularity emerges to support context-dependent behavior, but only when the input is low-dimensional. No anatomical constraints are required. We also show when modular specialization emerges at the population level (different modules correspond to orthogonal subspaces). Modularity yields abstract representations, allows for rapid learning and generalization on novel tasks, and facilitates the rapid learning of related contexts. Non-modular representations facilitate the rapid learning of unrelated contexts. Our findings reconcile conflicting experimental results and make predictions for future experiments.
Collapse
Affiliation(s)
- W. Jeffrey Johnston
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Forbes CE. On the neural networks of self and other bias and their role in emergent social interactions. Cortex 2024; 177:113-129. [PMID: 38848651 DOI: 10.1016/j.cortex.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Extensive research has documented the brain networks that play an integral role in bias, or the alteration and filtration of information processing in a manner that fundamentally favors an individual. The roots of bias, whether self- or other-oriented, are a complex constellation of neural and psychological processes that start at the most fundamental levels of sensory processing. From the millisecond information is received in the brain it is filtered at various levels and through various brain networks in relation to extant intrinsic activity to provide individuals with a perception of reality that complements and satisfies the conscious perceptions they have for themselves and the cultures in which they were reared. The products of these interactions, in turn, are dynamically altered by the introduction of others, be they friends or strangers who are similar or different in socially meaningful ways. While much is known about the various ways that basic biases alter specific aspects of neural function to support various forms of bias, the breadth and scope of the phenomenon remains entirely unclear. The purpose of this review is to examine the brain networks that shape (i.e., bias) the self-concept and how interactions with similar (ingroup) compared to dissimilar (outgroup) others alter these network (and subsequent interpersonal) interactions in fundamental ways. Throughout, focus is placed on an emerging understanding of the brain as a complex system, which suggests that many of these network interactions likely occur on a non-linear scale that blurs the lines between network hierarchies.
Collapse
Affiliation(s)
- Chad E Forbes
- Social Neuroscience Laboratory, Department of Psychology, Florida Atlantic University, Boca Raton, FL, USA; Florida Atlantic University Stiles-Nicholson Brain Institute, USA.
| |
Collapse
|
5
|
Gupta D, Kopec CD, Bondy AG, Luo TZ, Elliott VA, Brody CD. A multi-region recurrent circuit for evidence accumulation in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602544. [PMID: 39026895 PMCID: PMC11257434 DOI: 10.1101/2024.07.08.602544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Decision-making based on noisy evidence requires accumulating evidence and categorizing it to form a choice. Here we evaluate a proposed feedforward and modular mapping of this process in rats: evidence accumulated in anterodorsal striatum (ADS) is categorized in prefrontal cortex (frontal orienting fields, FOF). Contrary to this, we show that both regions appear to be indistinguishable in their encoding/decoding of accumulator value and communicate this information bidirectionally. Consistent with a role for FOF in accumulation, silencing FOF to ADS projections impacted behavior throughout the accumulation period, even while nonselective FOF silencing did not. We synthesize these findings into a multi-region recurrent neural network trained with a novel approach. In-silico experiments reveal that multiple scales of recurrence in the cortico-striatal circuit rescue computation upon nonselective FOF perturbations. These results suggest that ADS and FOF accumulate evidence in a recurrent and distributed manner, yielding redundant representations and robustness to certain perturbations.
Collapse
Affiliation(s)
- Diksha Gupta
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
- Present address: Sainsbury Wellcome Centre, University College London, London, UK
| | - Charles D. Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Adrian G. Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Thomas Z. Luo
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Verity A. Elliott
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Carlos D. Brody
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton NJ, USA
| |
Collapse
|
6
|
Charlton JA, Goris RLT. Abstract deliberation by visuomotor neurons in prefrontal cortex. Nat Neurosci 2024; 27:1167-1175. [PMID: 38684894 PMCID: PMC11156582 DOI: 10.1038/s41593-024-01635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
During visually guided behavior, the prefrontal cortex plays a pivotal role in mapping sensory inputs onto appropriate motor plans. When the sensory input is ambiguous, this involves deliberation. It is not known whether the deliberation is implemented as a competition between possible stimulus interpretations or between possible motor plans. Here we study neural population activity in the prefrontal cortex of macaque monkeys trained to flexibly report perceptual judgments of ambiguous visual stimuli. We find that the population activity initially represents the formation of a perceptual choice before transitioning into the representation of the motor plan. Stimulus strength and prior expectations both bear on the formation of the perceptual choice, but not on the formation of the action plan. These results suggest that prefrontal circuits involved in action selection are also used for the deliberation of abstract propositions divorced from a specific motor plan, thus providing a crucial mechanism for abstract reasoning.
Collapse
Affiliation(s)
- Julie A Charlton
- Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robbe L T Goris
- Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Xie T, Adamek M, Cho H, Adamo MA, Ritaccio AL, Willie JT, Brunner P, Kubanek J. Graded decisions in the human brain. Nat Commun 2024; 15:4308. [PMID: 38773117 PMCID: PMC11109249 DOI: 10.1038/s41467-024-48342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Markus Adamek
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Hohyun Cho
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY, 12208, USA
| | - Anthony L Ritaccio
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jon T Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Peter Brunner
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
8
|
Kumano H, Uka T. Employment of time-varying sensory evidence to test the mechanisms underlying flexible decision-making. Neuroreport 2024; 35:107-114. [PMID: 38064356 PMCID: PMC10766094 DOI: 10.1097/wnr.0000000000001980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 01/06/2024]
Abstract
To make flexible decisions in dynamic environments, the brain must integrate behaviorally relevant information while simultaneously discarding irrelevant information. This study aimed to investigate the mechanisms responsible for discarding irrelevant information during context-dependent decision-making. We trained two macaque monkeys to switch between direction and depth discrimination tasks in successive trials. During decision-making, the strength of the motion or depth signal changes transiently at various times, introducing a brief pulse. We assessed the effects of pulse on behavioral choices. Consistent with previous findings, early relevant pulses, such as motion pulses during direction discrimination, had a significantly larger effect compared to late pulses. Critically, the effects of irrelevant pulses, such as motion pulses during depth discrimination, exhibited an initial minimal effect, followed by an increase and subsequent decrease as a function of pulse timing. Gating mechanisms alone, aimed at discarding irrelevant information, did not account for the observed time course of pulse effects. Instead, the observed increase in the effects of irrelevant pulses with time suggested the involvement of a leaky integration mechanism. The results suggested that the brain controls the amount of disposal in accumulating sensory evidence during flexible decision-making.
Collapse
Affiliation(s)
- Hironori Kumano
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
9
|
Barbosa J, Proville R, Rodgers CC, DeWeese MR, Ostojic S, Boubenec Y. Early selection of task-relevant features through population gating. Nat Commun 2023; 14:6837. [PMID: 37884507 PMCID: PMC10603060 DOI: 10.1038/s41467-023-42519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within primary auditory cortex (A1) but controlled by top-down inputs from prelimbic region of medial prefrontal cortex (mPFC), can support across-area stimulus selection. Examining single-unit activity recorded while rats performed an auditory context-dependent task, we found that A1 encoded relevant and irrelevant stimuli along a common dimension of its neural space. Yet, the relevant stimulus encoding was enhanced along an extra dimension. In turn, mPFC encoded only the stimulus relevant to the ongoing context. To identify candidate mechanisms for stimulus selection within A1, we reverse-engineered low-rank RNNs trained on a similar task. Our analyses predicted that two context-modulated neural populations gated their preferred stimulus in opposite contexts, which we confirmed in further analyses of A1. Finally, we show in a two-region RNN how population gating within A1 could be controlled by top-down inputs from PFC, enabling flexible across-area communication despite fixed inter-areal connectivity.
Collapse
Affiliation(s)
- Joao Barbosa
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France.
| | - Rémi Proville
- Tailored Data Solutions, 192 Cours Gambetta, 84300, Cavaillon, France
| | - Chris C Rodgers
- Department of Neurosurgery, Emory University, Atlanta, GA, 30033, USA
| | - Michael R DeWeese
- Department of Physics, Helen Wills Neuroscience Institute, and Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure PSL Research University, CNRS, Paris, France
| |
Collapse
|
10
|
Ramawat S, Marc IB, Ceccarelli F, Ferrucci L, Bardella G, Ferraina S, Pani P, Brunamonti E. The transitive inference task to study the neuronal correlates of memory-driven decision making: A monkey neurophysiology perspective. Neurosci Biobehav Rev 2023; 152:105258. [PMID: 37268179 DOI: 10.1016/j.neubiorev.2023.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A vast amount of literature agrees that rank-ordered information as A>B>C>D>E>F is mentally represented in spatially organized schemas after learning. This organization significantly influences the process of decision-making, using the acquired premises, i.e. deciding if B is higher than D is equivalent to comparing their position in this space. The implementation of non-verbal versions of the transitive inference task has provided the basis for ascertaining that different animal species explore a mental space when deciding among hierarchically organized memories. In the present work, we reviewed several studies of transitive inference that highlighted this ability in animals and, consequently, the animal models developed to study the underlying cognitive processes and the main neural structures supporting this ability. Further, we present the literature investigating which are the underlying neuronal mechanisms. Then we discuss how non-human primates represent an excellent model for future studies, providing ideal resources for better understanding the neuronal correlates of decision-making through transitive inference tasks.
Collapse
Affiliation(s)
- Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | | | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|