1
|
Patel KM, Seed KD. Sporadic phage defense in epidemic Vibrio cholerae mediated by the toxin-antitoxin system DarTG is countered by a phage-encoded antitoxin mimic. mBio 2024; 15:e0011124. [PMID: 39287445 PMCID: PMC11481870 DOI: 10.1128/mbio.00111-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Bacteria and their viral predators (phages) are constantly evolving to subvert one another. Many bacterial immune systems that inhibit phages are encoded on mobile genetic elements that can be horizontally transmitted to diverse bacteria. Despite the pervasive appearance of immune systems in bacteria, it is not often known if these immune systems function against phages that the host encounters in nature. Additionally, there are limited examples demonstrating how these phages counter-adapt to such immune systems. Here, we identify clinical isolates of the global pathogen Vibrio cholerae harboring a novel genetic element encoding the bacterial immune system DarTG and reveal the immune system's impact on the co-circulating lytic phage ICP1. We show that DarTG inhibits ICP1 genome replication, thus preventing ICP1 plaquing. We further characterize the conflict between DarTG-mediated defense and ICP1 by identifying an ICP1-encoded protein that counters DarTG and allows ICP1 progeny production. Finally, we identify this protein, AdfB, as a functional antitoxin that abrogates the toxin DarT likely through direct interactions. Following the detection of the DarTG system in clinical V. cholerae isolates, we observed a rise in ICP1 isolates with the functional antitoxin. These data highlight the use of surveillance of V. cholerae and its lytic phages to understand the co-evolutionary arms race between bacteria and their phages in nature.IMPORTANCEThe global bacterial pathogen Vibrio cholerae causes an estimated 1 to 4 million cases of cholera each year. Thus, studying the factors that influence its persistence as a pathogen is of great importance. One such influence is the lytic phage ICP1, as once infected by ICP1, V. cholerae is destroyed. To date, we have observed that the phage ICP1 shapes V. cholerae evolution through the flux of anti-phage bacterial immune systems. Here, we probe clinical V. cholerae isolates for novel anti-phage immune systems that can inhibit ICP1 and discover the toxin-antitoxin system DarTG as a potent inhibitor. Our results underscore the importance of V. cholerae and ICP1 surveillance to elaborate novel means by which V. cholerae can persist in both the human host and aquatic reservoir in the face of ICP1.
Collapse
Affiliation(s)
- Kishen M. Patel
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Woldetsadik YA, Lazinski DW, Camilli A. A Vibrio cholerae anti-phage system depletes nicotinamide adenine dinucleotide to restrict virulent bacteriophages. mBio 2024:e0245724. [PMID: 39377576 DOI: 10.1128/mbio.02457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
Bacteria and their predatory viruses (bacteriophages or phages) are in a perpetual molecular arms race. This has led to the evolution of numerous phage defensive systems in bacteria that are still being discovered, as well as numerous ways of interference or circumvention on the part of phages. Here, we identify a unique molecular battle between the classical biotype of Vibrio cholerae and virulent phages ICP1, ICP2, and ICP3. We show that classical biotype strains resist almost all isolates of these phages due to a 25-kb genomic island harboring several putative anti-phage systems. We observed that one of these systems, Nezha, encoding SIR2-like and helicase proteins, inhibited the replication of all three phages. Bacterial SIR2-like enzymes degrade the essential metabolic coenzyme nicotinamide adenine dinucleotide (NAD+), thereby preventing replication of the invading phage. In support of this mechanism, we identified one phage isolate, ICP1_2001, which circumvents Nezha by encoding two putative NAD+ regeneration enzymes. By restoring the NAD+ pool, we hypothesize that this system antagonizes Nezha without directly interacting with its proteins and should be able to antagonize other anti-phage systems that deplete NAD+.IMPORTANCEBacteria and phages are in a perpetual molecular arms race, with bacteria evolving an extensive arsenal of anti-phage systems and phages evolving mechanisms to overcome these systems. This study identifies a previously uncharacterized facet of the arms race between Vibrio cholerae and its phages. We identify an NAD+-depleting anti-phage defensive system called Nezha, potent against three virulent phages. Remarkably, one phage encodes proteins that regenerate NAD+ to counter the effects of Nezha. Without Nezha, the NAD+ regeneration genes are detrimental to the phage. Our study provides new insight into the co-evolutionary dynamics between bacteria and phages and informs the microbial ecology and phage therapy fields.
Collapse
Affiliation(s)
- Yishak A Woldetsadik
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Boyd C, Seed K. A phage satellite manipulates the viral DNA packaging motor to inhibit phage and promote satellite spread. Nucleic Acids Res 2024; 52:10431-10446. [PMID: 39149900 PMCID: PMC11417361 DOI: 10.1093/nar/gkae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
ICP1, a lytic bacteriophage of Vibrio cholerae, is parasitized by phage satellites, PLEs, which hijack ICP1 proteins for their own horizontal spread. PLEs' dependence on ICP1's DNA replication machinery and virion components results in inhibition of ICP1's lifecycle. PLEs are expected to depend on ICP1 factors for genome packaging, but the mechanism(s) PLEs use to inhibit ICP1 genome packaging is currently unknown. Here, we identify and characterize Gpi, PLE's indiscriminate genome packaging inhibitor. Gpi binds to ICP1's large terminase (TerL), the packaging motor, and blocks genome packaging. To overcome Gpi's negative effect on TerL, a component PLE also requires, PLE uses two genome packaging specifiers, GpsA and GpsB, that specifically allow packaging of PLE genomes. Surprisingly, PLE also uses mimicry of ICP1's pac site as a backup strategy to ensure genome packaging. PLE's pac site mimicry, however, is only sufficient if PLE can inhibit ICP1 at other stages of its lifecycle, suggesting an advantage to maintaining Gpi, GpsA and GpsB. Collectively, these results provide mechanistic insights into another stage of ICP1's lifecycle that is inhibited by PLE, which is currently the most inhibitory of the documented phage satellites. More broadly, Gpi represents the first satellite-encoded inhibitor of a phage TerL.
Collapse
Affiliation(s)
- Caroline M Boyd
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Vizzarro G, Lemopoulos A, Adams DW, Blokesch M. Vibrio cholerae pathogenicity island 2 encodes two distinct types of restriction systems. J Bacteriol 2024; 206:e0014524. [PMID: 39133004 PMCID: PMC11411939 DOI: 10.1128/jb.00145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
In response to predation by bacteriophages and invasion by other mobile genetic elements such as plasmids, bacteria have evolved specialized defense systems that are often clustered together on genomic islands. The O1 El Tor strains of Vibrio cholerae responsible for the ongoing seventh cholera pandemic (7PET) contain a characteristic set of genomic islands involved in host colonization and disease, many of which contain defense systems. Notably, Vibrio pathogenicity island 2 contains several characterized defense systems as well as a putative type I restriction-modification (T1RM) system, which, interestingly, is interrupted by two genes of unknown function. Here, we demonstrate that the T1RM system is active, methylates the host genomes of a representative set of 7PET strains, and identify a specific recognition sequence that targets non-methylated plasmids for restriction. We go on to show that the two genes embedded within the T1RM system encode a novel two-protein modification-dependent restriction system related to the GmrSD family of type IV restriction enzymes. Indeed, we show that this system has potent anti-phage activity against diverse members of the Tevenvirinae, a subfamily of bacteriophages with hypermodified genomes. Taken together, these results expand our understanding of how this highly conserved genomic island contributes to the defense of pandemic V. cholerae against foreign DNA. IMPORTANCE Defense systems are immunity systems that allow bacteria to counter the threat posed by bacteriophages and other mobile genetic elements. Although these systems are numerous and highly diverse, the most common types are restriction enzymes that can specifically recognize and degrade non-self DNA. Here, we show that the Vibrio pathogenicity island 2, present in the pathogen Vibrio cholerae, encodes two types of restriction systems that use distinct mechanisms to sense non-self DNA. The first system is a classical Type I restriction-modification system, and the second is a novel modification-dependent type IV restriction system that recognizes hypermodified cytosines. Interestingly, these systems are embedded within each other, suggesting that they are complementary to each other by targeting both modified and non-modified phages.
Collapse
Affiliation(s)
- Grazia Vizzarro
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David William Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Ares-Arroyo M, Coluzzi C, Moura de Sousa JA, Rocha EPC. Hijackers, hitchhikers, or co-drivers? The mysteries of mobilizable genetic elements. PLoS Biol 2024; 22:e3002796. [PMID: 39208359 PMCID: PMC11389934 DOI: 10.1371/journal.pbio.3002796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/11/2024] [Indexed: 09/04/2024] Open
Abstract
Mobile genetic elements shape microbial gene repertoires and populations. Recent results reveal that many, possibly most, microbial mobile genetic elements require helpers to transfer between genomes, which we refer to as Hitcher Genetic Elements (hitchers or HGEs). They may be a large fraction of pathogenicity and resistance genomic islands, whose mechanisms of transfer have remained enigmatic for decades. Together with their helper elements and their bacterial hosts, hitchers form tripartite networks of interactions that evolve rapidly within a parasitism-mutualism continuum. In this emerging view of microbial genomes as communities of mobile genetic elements many questions arise. Which elements are being moved, by whom, and how? How often are hitchers costly hyper-parasites or beneficial mutualists? What is the evolutionary origin of hitchers? Are there key advantages associated with hitchers' lifestyle that justify their unexpected abundance? And why are hitchers systematically smaller than their helpers? In this essay, we start answering these questions and point ways ahead for understanding the principles, origin, mechanisms, and impact of hitchers in bacterial ecology and evolution.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Jorge A Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
6
|
Rakibova Y, Dunham DT, Seed KD, Freddolino L. Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae. mSphere 2024; 9:e0001124. [PMID: 38920383 PMCID: PMC11288032 DOI: 10.1128/msphere.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches they occupy. H-NS, the histone-like nucleoid structuring protein, is the best-studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. IMPORTANCE New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. A proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.
Collapse
Affiliation(s)
- Yulduz Rakibova
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Woldetsadik YA, Lazinski DW, Camilli A. A Vibrio cholerae Anti-Phage System Depletes Nicotinamide Adenine Dinucleotide to Restrict Virulent Bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599363. [PMID: 38948830 PMCID: PMC11212891 DOI: 10.1101/2024.06.17.599363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bacteria and their predatory viruses (bacteriophages or phages) are in a perpetual molecular arms race. This has led to the evolution of numerous phage defensive systems in bacteria that are still being discovered, as well as numerous ways of interference or circumvention on the part of phages. Here, we identify a unique molecular battle between the classical biotype of Vibrio cholerae and virulent phages ICP1, ICP2, and ICP3. We show that classical biotype strains resist almost all isolates of these phages due to a 25-kb genomic island harboring several putative anti-phage systems. We observed that one of these systems, Nezha, encoding SIR2-like and helicase proteins, inhibited the replication of all three phages. Bacterial SIR2-like enzymes degrade the essential metabolic coenzyme nicotinamide adenine dinucleotide (NAD+), thereby preventing replication of the invading phage. In support of this mechanism, we identified one phage isolate, ICP1_2001, which circumvents Nezha by encoding two putative NAD+ regeneration enzymes. By restoring the NAD+ pool, we hypothesize that this system antagonizes Nezha without directly interacting with either protein and should be able to antagonize other anti-phage systems that deplete NAD+.
Collapse
Affiliation(s)
- Yishak A. Woldetsadik
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David W. Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
9
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Rakibova Y, Dunham DT, Seed KD, Freddolino PL. Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573743. [PMID: 38260642 PMCID: PMC10802314 DOI: 10.1101/2023.12.30.573743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches it occupies. H-NS, the histone-like nucleoid structuring protein, is the best studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified a few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. Importance New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. Proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.
Collapse
Affiliation(s)
- Yulduz Rakibova
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - P. Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Madi N, Cato ET, Sayeed MA, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIUL, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity and pathogen genetic diversity in cholera patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544933. [PMID: 37398242 PMCID: PMC10312676 DOI: 10.1101/2023.06.14.544933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of phage-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. Here we report a year-long, nation-wide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative PCR, while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of anti-phage defenses, predation was 'effective,' with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of anti-phage defenses, predation was 'ineffective,' with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T. Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md. Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Imam UL. Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Taufiqur R. Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A. Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B. Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J. Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Al-Adham ISI, Jaber N, Ali Agha ASA, Al-Remawi M, Al-Akayleh F, Al-Muhtaseb N, Collier PJ. Sporadic regional re-emergent cholera: a 19th century problem in the 21st century. J Appl Microbiol 2024; 135:lxae055. [PMID: 38449342 DOI: 10.1093/jambio/lxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Najah Al-Muhtaseb
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| |
Collapse
|
13
|
Dominguez SR, Doan PN, Rivera-Chávez F. The intersection between host-pathogen interactions and metabolism during Vibrio cholerae infection. Curr Opin Microbiol 2024; 77:102421. [PMID: 38215547 DOI: 10.1016/j.mib.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Vibrio cholerae (V. cholerae), the etiological agent of cholera, uses cholera toxin (CT) to cause severe diarrheal disease. Cholera is still a significant cause of mortality worldwide with about half of all cholera cases and deaths occurring in children under five. Owing to the lack of cost-effective vaccination and poor vaccine efficacy in children, there is a need for alternative preventative and therapeutic strategies. Recent advances in our knowledge of the interplay between CT-induced disease and host-pathogen metabolism have opened the door for investigating how modulation of intestinal metabolism by V. cholerae during disease impacts host intestinal immunity, the gut microbiota, and pathogen-phage interactions. In this review article, we examine recent progress in our understanding of host-pathogen interactions during V. cholerae infection and discuss future work deciphering how modulation of gut metabolism during cholera intersects these processes to enable successful fecal-oral transmission of the pathogen.
Collapse
Affiliation(s)
- Sedelia R Dominguez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Phillip N Doan
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fabian Rivera-Chávez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Boyd CM, Subramanian S, Dunham DT, Parent KN, Seed KD. A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodeling hijacked phage coat proteins into small capsids. eLife 2024; 12:RP87611. [PMID: 38206122 PMCID: PMC10945586 DOI: 10.7554/elife.87611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), remodels the capsid it has been predicted to steal from the phage ICP1 (Netter et al., 2021). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (Kizziah et al., 2020). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Drew T Dunham
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
15
|
Patel KM, Seed KD. Sporadic phage defense in epidemic Vibrio cholerae mediated by the toxin-antitoxin system DarTG is countered by a phage-encoded antitoxin mimic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571748. [PMID: 38168179 PMCID: PMC10760071 DOI: 10.1101/2023.12.14.571748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteria and their viral predators (phages) are constantly evolving to subvert one another. Many bacterial immune systems that inhibit phages are encoded on mobile genetic elements that can be horizontally transmitted to diverse bacteria. Despite the pervasive appearance of immune systems in bacteria, it is not often known if these immune systems function against phages that the host encounters in nature. Additionally, there are limited examples demonstrating how these phages counter-adapt to such immune systems. Here, we identify clinical isolates of the global pathogen Vibrio cholerae harboring a novel genetic element encoding the bacterial immune system DarTG and reveal the immune system's impact on the co-circulating lytic phage ICP1. We show that DarTG inhibits ICP1 genome replication, thus preventing ICP1 plaquing. We further characterize the conflict between DarTG-mediated defense and ICP1 by identifying an ICP1-encoded protein that counters DarTG and allows ICP1 progeny production. Finally, we identify this protein as a functional antitoxin that abrogates the toxin DarT likely through direct interactions. Following the detection of the DarTG system in clinical V. cholerae isolates, we observed a rise in ICP1 isolates with the functional antitoxin. These data highlight the use of surveillance of V. cholerae and its lytic phages to understand the co-evolutionary arms race between bacteria and their phages in nature.
Collapse
Affiliation(s)
- Kishen M Patel
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Beckman DA, Waters CM. Vibrio cholerae phage ICP3 requires O1 antigen for infection. Infect Immun 2023; 91:e0002623. [PMID: 37594274 PMCID: PMC10501212 DOI: 10.1128/iai.00026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023] Open
Abstract
In its natural aquatic environment, the bacterial pathogen Vibrio cholerae, the causative agent of the enteric disease cholera, is in constant competition with bacterial viruses known as phages. Following ICP3 infection, V. cholerae cultures that exhibited phage killing always recovered overnight, and clones isolated from these regrowth populations exhibited complete resistance to subsequent infections. Whole-genome sequencing of these resistant mutants revealed seven distinct mutations in genes encoding for enzymes involved in O1 antigen biosynthesis, demonstrating that the O1 antigen is a previously uncharacterized putative receptor of ICP3. To further elucidate the specificity of the resistance conferred by these mutations, they were challenged with the V. cholerae-specific phages ICP1 and ICP2. All seven O1 antigen mutants demonstrated pan-resistance to ICP1 but not ICP2, which utilizes the OmpU outer membrane protein as a receptor. We show that resistant mutations to ICP1 and ICP3 evolve at a significantly higher frequency than ICP2, but these mutations have a significant fitness tradeoff to V. cholerae and are unable to evolve in the presence of an antimicrobial that mimics host cell defensins.
Collapse
Affiliation(s)
- Drew A. Beckman
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Barth ZK, Dunham DT, Seed KD. Nuclease genes occupy boundaries of genetic exchange between bacteriophages. NAR Genom Bioinform 2023; 5:lqad076. [PMID: 37636022 PMCID: PMC10448857 DOI: 10.1093/nargab/lqad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023] Open
Abstract
Homing endonuclease genes (HEGs) are ubiquitous selfish elements that generate targeted double-stranded DNA breaks, facilitating the recombination of the HEG DNA sequence into the break site and contributing to the evolutionary dynamics of HEG-encoding genomes. Bacteriophages (phages) are well-documented to carry HEGs, with the paramount characterization of HEGs being focused on those encoded by coliphage T4. Recently, it has been observed that the highly sampled vibriophage, ICP1, is similarly enriched with HEGs distinct from T4's. Here, we examined the HEGs encoded by ICP1 and diverse phages, proposing HEG-driven mechanisms that contribute to phage evolution. Relative to ICP1 and T4, we found a variable distribution of HEGs across phages, with HEGs frequently encoded proximal to or within essential genes. We identified large regions (> 10kb) of high nucleotide identity flanked by HEGs, deemed HEG islands, which we hypothesize to be mobilized by the activity of flanking HEGs. Finally, we found examples of domain swapping between phage-encoded HEGs and genes encoded by other phages and phage satellites. We anticipate that HEGs have a larger impact on the evolutionary trajectory of phages than previously appreciated and that future work investigating the role of HEGs in phage evolution will continue to highlight these observations.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley. 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Drew T Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley. 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley. 271 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Ghorbani M, Ferreira D, Maioli S. A metagenomic study of gut viral markers in amyloid-positive Alzheimer's disease patients. Alzheimers Res Ther 2023; 15:141. [PMID: 37608325 PMCID: PMC10464408 DOI: 10.1186/s13195-023-01285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Mounting evidence suggests the involvement of viruses in the development and treatment of Alzheimer's disease (AD). However, there remains a significant research gap in metagenomic studies investigating the gut virome of AD patients, leaving gut viral dysbiosis in AD unexplored. This study aimed to fill this gap by conducting a metagenomics analysis of the gut virome in both amyloid-positive AD patients (Aβ + ADs) and healthy controls (HCs), with the objective of identifying viral signatures linked with AD. METHOD Whole-genome sequence (WGS) data from 65 human participants, including 30 Aβ + ADs and 35 HCs, was obtained from the database NCBI SRA (Bio Project: PRJEB47976). The Metaphlan3 pipeline and linear discriminant analysis effect size (LEfSe) analysis were utilized for the bioinformatics process and the detection of viral signatures, respectively. In addition, the Benjamini-Hochberg method was applied with a significance cutoff of 0.05 to evaluate the false discovery rate for all biomarkers identified by LEfSe. The CombiROC model was employed to determine the discriminatory power of the viral signatures identified by LEfSe. RESULTS Compared to HCs, the gut virome profiles of Aβ + ADs showed lower alpha diversity, indicating a lower bacteriophage richness. The Siphoviridae family was decreased in Aβ + ADs. Significant decreases of Lactococcus phages were found in Aβ + ADs, including bIL285, Lactococcus phage bIL286, Lactococcus phage bIL309, and Lactococcus phage BK5 T, Lactococcus phage BM13, Lactococcus phage P335 sensu lato, Lactococcus phage phiLC3, Lactococcus phage r1t, Lactococcus phage Tuc2009, Lactococcus phage ul36, and Lactococcus virus bIL67. The predictive combined model of these viral signatures obtained an area under the curve of 0.958 when discriminating Aβ + ADs from HCs. CONCLUSION This is the first study to identify distinct viral signatures in the intestine that can be used to effectively distinguish individuals with AD from HCs.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Beckman DA, Waters CM. Vibrio cholerae phage ICP3 requires O1 antigen for infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526503. [PMID: 36778411 PMCID: PMC9915646 DOI: 10.1101/2023.01.31.526503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In its natural aquatic environment, the bacterial pathogen Vibrio cholerae, the causative agent of the enteric disease cholera, is in constant competition with bacterial viruses known as phages. Following ICP3 infection, V. cholerae cultures that exhibited phage killing always recovered overnight, and clones isolated from these regrowth populations exhibited complete resistance to subsequent infections. Whole genome sequencing of these resistant mutants revealed seven distinct mutations in genes encoding for enzymes involved in O1 antigen biosynthesis, demonstrating that the O1 antigen is a previously uncharacterized putative receptor of ICP3. To further elucidate the specificity of the resistance conferred by these mutations, they were challenged with the V. cholerae-specific phages ICP1 and ICP2. All seven O1 antigen mutants demonstrated pan-resistance to ICP1 but not ICP2, which utilizes the OmpU outer membrane protein as a receptor. We show that resistant mutations to ICP1 and ICP3 evolve at a significantly higher frequency than ICP2, but these mutations have a significant fitness tradeoff to V. cholerae and are unable to evolve in the presence of an antimicrobial that mimics host cell defensins.
Collapse
|
20
|
Zhang M, Peng R, Peng Q, Liu S, Li Z, Zhang Y, Song H, Yang J, Xing X, Wang P, Qi J, Gao GF. Mechanistic insights into DNA binding and cleavage by a compact type I-F CRISPR-Cas system in bacteriophage. Proc Natl Acad Sci U S A 2023; 120:e2215098120. [PMID: 37094126 PMCID: PMC10161043 DOI: 10.1073/pnas.2215098120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/01/2023] [Indexed: 04/26/2023] Open
Abstract
CRISPR-Cas systems are widespread adaptive antiviral systems used in prokaryotes. Some phages, in turn, although have small genomes can economize the use of genetic space to encode compact or incomplete CRISPR-Cas systems to inhibit the host and establish infection. Phage ICP1, infecting Vibrio cholerae, encodes a compact type I-F CRISPR-Cas system to suppress the antiphage mobile genetic element in the host genome. However, the mechanism by which this compact system recognizes the target DNA and executes interference remains elusive. Here, we present the electron cryo-microscopy (cryo-EM) structures of both apo- and DNA-bound ICP1 surveillance complexes (Aka Csy complex). Unlike most other type I surveillance complexes, the ICP1 Csy complex lacks the Cas11 subunit or a structurally homologous domain, which is crucial for dsDNA binding and Cas3 activation in other type I CRISPR-Cas systems. Structural and functional analyses revealed that the compact ICP1 Csy complex alone is inefficient in binding to dsDNA targets, presumably stalled at a partial R-loop conformation. The presence of Cas2/3 facilitates dsDNA binding and allows effective dsDNA target cleavage. Additionally, we found that Pseudomonas aeruginosa Cas2/3 efficiently cleaved the dsDNA target presented by the ICP1 Csy complex, but not vice versa. These findings suggest a unique mechanism for target dsDNA binding and cleavage by the compact phage-derived CRISPR-Cas system.
Collapse
Affiliation(s)
- Manling Zhang
- Chinese Academy of Sciences (CAS), Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ruchao Peng
- Chinese Academy of Sciences (CAS), Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Qi Peng
- Chinese Academy of Sciences (CAS), Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Sheng Liu
- Cryo-EM Centre, Department of Biology, Southern University of Science and Technology, Shenzhen518055, China
| | - Zhiteng Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuqin Zhang
- Chinese Academy of Sciences (CAS), Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, China
| | - Hao Song
- Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing100101, China
| | - Jia Yang
- Shanxi Academy of Advanced Research and Innovation, 030032Taiyuan, Shanxi, China
| | - Xiao Xing
- Shanxi Academy of Advanced Research and Innovation, 030032Taiyuan, Shanxi, China
| | - Peiyi Wang
- Cryo-EM Centre, Department of Biology, Southern University of Science and Technology, Shenzhen518055, China
| | - Jianxun Qi
- Chinese Academy of Sciences (CAS), Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, China
| | - George F. Gao
- Chinese Academy of Sciences (CAS), Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, China
- Shanxi Academy of Advanced Research and Innovation, 030032Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Molina-Quiroz RC, Silva-Valenzuela CA. Interactions of Vibrio phages and their hosts in aquatic environments. Curr Opin Microbiol 2023; 74:102308. [PMID: 37062175 DOI: 10.1016/j.mib.2023.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
Bacteriophages (phages) are viruses that specifically infect bacteria. These viruses were discovered a century ago and have been used as a model system in microbial genetics and molecular biology. In order to survive, bacteria have to quickly adapt to phage challenges in their natural settings. In turn, phages continuously develop/evolve mechanisms for battling host defenses. A deeper understanding of the arms race between bacteria and phages is essential for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections. Vibrio species and their phages (vibriophages) are a suitable model to study these interactions. Phages are highly ubiquitous in aquatic environments and Vibrio are waterborne bacteria that must survive the constant attack by phages for successful transmission to their hosts. Here, we review relevant literature from the past two years to delve into the molecular interactions of Vibrio species and their phages in aquatic niches.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | | |
Collapse
|
22
|
de Sousa JM, Fillol-Salom A, Penadés JR, Rocha EC. Identification and characterization of thousands of bacteriophage satellites across bacteria. Nucleic Acids Res 2023; 51:2759-2777. [PMID: 36869669 PMCID: PMC10085698 DOI: 10.1093/nar/gkad123] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Bacteriophage-bacteria interactions are affected by phage satellites, elements that exploit phages for transfer between bacteria. Satellites can encode defense systems, antibiotic resistance genes, and virulence factors, but their number and diversity are unknown. We developed SatelliteFinder to identify satellites in bacterial genomes, detecting the four best described families: P4-like, phage inducible chromosomal islands (PICI), capsid-forming PICI, and PICI-like elements (PLE). We vastly expanded the number of described elements to ∼5000, finding bacterial genomes with up to three different families of satellites. Most satellites were found in Proteobacteria and Firmicutes, but some are in novel taxa such as Actinobacteria. We characterized the gene repertoires of satellites, which are variable in size and composition, and their genomic organization, which is very conserved. Phylogenies of core genes in PICI and cfPICI indicate independent evolution of their hijacking modules. There are few other homologous core genes between other families of satellites, and even fewer homologous to phages. Hence, phage satellites are ancient, diverse, and probably evolved multiple times independently. Given the many bacteria infected by phages that still lack known satellites, and the recent proposals for novel families, we speculate that we are at the beginning of the discovery of massive numbers and types of satellites.
Collapse
Affiliation(s)
- Jorge A Moura de Sousa
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Alfred Fillol-Salom
- Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - José R Penadés
- Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
23
|
Barth ZK, Dunham DT, Seed KD. Nuclease genes occupy boundaries of genetic exchange between bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533998. [PMID: 36993569 PMCID: PMC10055350 DOI: 10.1101/2023.03.23.533998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Homing endonuclease genes (HEGs) are ubiquitous selfish elements that generate targeted double-stranded DNA breaks, facilitating the recombination of the HEG DNA sequence into the break site and contributing to the evolutionary dynamics of HEG-encoding genomes. Bacteriophages (phages) are well-documented to carry HEGs, with the paramount characterization of HEGs being focused on those encoded by coliphage T4. Recently, it has been observed that the highly sampled vibriophage, ICP1, is similarly enriched with HEGs distinct from T4’s. Here, we examined the HEGs encoded by ICP1 and diverse phages, proposing HEG-driven mechanisms that contribute to phage evolution. Relative to ICP1 and T4, we found a variable distribution of HEGs across phages, with HEGs frequently encoded proximal to or within essential genes. We identified large regions (> 10kb) of high nucleotide identity flanked by HEGs, deemed HEG islands, which we hypothesize to be mobilized by the activity of flanking HEGs. Finally, we found examples of domain swapping between phage-encoded HEGs and genes encoded by other phages and phage satellites. We anticipate that HEGs have a larger impact on the evolutionary trajectory of phages than previously appreciated and that future work investigating the role of HEGs in phage evolution will continue to highlight these observations.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley. 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Drew T Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley. 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley. 271 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
25
|
Maina AN, Mwaura FB, Wagacha JM, Jumba M, Aziz RK, Nour El-Din HT. Phenotypic characterization of phage vB_vcM_Kuja. J Basic Microbiol 2023; 63:481-488. [PMID: 36670071 DOI: 10.1002/jobm.202200635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
Bacteriophage therapy targeting the increasingly resistant Vibrio cholerae is highly needed. Hence, studying the phenotypic behavior of potential phages under different conditions is a prerequisite to delivering the phage in an active infective form. The objective of this study was to characterize phage VP4 (vB_vcM_Kuja), an environmental vibriophage isolated from River Kuja in Migori County, Kenya in 2015. The phenotypic characteristics of the phage were determined using a one-step growth curve, restriction digestion profile, pH, and temperature stability tests. The results revealed that the phage is stable through a wide range of temperatures (20-50°C) and maintains its plaque-forming ability at pH ranging from 6 to 12. The one-step growth curve showed a latent period falling between 40 and 60 min, while burst size ranged from 23 to 30 plaque-forming units/10 µl at the same host strain. The restriction digestion pattern using EcoRI, SalI, HindIII, and XhoI enzymes showed that HindIII could cut the phage genome. The phage DNA could not be restricted by the other three enzymes. The findings of this study can be used in future studies to determine phage-host interactions.
Collapse
Affiliation(s)
- Alice N Maina
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | | | - John M Wagacha
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Miriam Jumba
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
27
|
Nguyen MHT, Netter Z, Angermeyer A, Seed KD. A phage weaponizes a satellite recombinase to subvert viral restriction. Nucleic Acids Res 2022; 50:11138-11153. [PMID: 36259649 DOI: 10.1093/nar/gkac845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/14/2022] Open
Abstract
Bacteria can acquire mobile genetic elements (MGEs) to combat infection by viruses (phages). Satellite viruses, including the PLEs (phage-inducible chromosomal island-like elements) in epidemic Vibrio cholerae, are MGEs that restrict phage replication to the benefit of their host bacterium. PLEs parasitize the lytic phage ICP1, unleashing multiple mechanisms to restrict phage replication and promote their own spread. In the arms race against PLE, ICP1 uses nucleases, including CRISPR-Cas, to destroy PLE's genome during infection. However, through an unknown CRISPR-independent mechanism, specific ICP1 isolates subvert restriction by PLE. Here, we discover ICP1-encoded Adi that counteracts PLE by exploiting the PLE's large serine recombinase (LSR), which normally mobilizes PLE in response to ICP1 infection. Unlike previously characterized ICP1-encoded anti-PLE mechanisms, Adi is not a nuclease itself but instead appears to modulate the activity of the LSR to promote destructive nuclease activity at the LSR's specific attachment site, attP. The PLE LSR, its catalytic activity, and attP are additionally sufficient to sensitize a PLE encoding a resistant variant of the recombination module to Adi activity. This work highlights a unique type of adaptation arising from inter-genome conflicts, in which the intended activity of a protein can be weaponized to overcome the antagonizing genome.
Collapse
Affiliation(s)
- Maria H T Nguyen
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Zoe Netter
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Zang Z, Park KJ, Gerdt JP. A Metabolite Produced by Gut Microbes Represses Phage Infections in Vibrio cholerae. ACS Chem Biol 2022; 17:2396-2403. [PMID: 35960903 PMCID: PMC10981169 DOI: 10.1021/acschembio.2c00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. Bacteriophages that prey on V. cholerae may be employed as phage therapy against cholera. However, the influence of the chemical environment on the infectivity of vibriophages has been unexplored. Here, we discovered that a common metabolite produced by gut microbes─linear enterobactin (LinEnt), represses vibriophage proliferation. We found that the antiphage effect by LinEnt is due to iron sequestration and that multiple forms of iron sequestration can protect V. cholerae from phage predation. This discovery emphasizes the significance that the chemical environment can have on natural phage infectivity and phage-based interventions.
Collapse
Affiliation(s)
- Zhiyu Zang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kyoung Jin Park
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
29
|
Optimization and Multifunctional Applications of Polypyrrole-Modified Copper Oxide–Zinc Oxide Nanocomposites. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
LeGault KN, Barth ZK, DePaola P, Seed KD. A phage parasite deploys a nicking nuclease effector to inhibit viral host replication. Nucleic Acids Res 2022; 50:8401-8417. [PMID: 35066583 PMCID: PMC9410903 DOI: 10.1093/nar/gkac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
PLEs (phage-inducible chromosomal island-like elements) are phage parasites integrated into the chromosome of epidemic Vibrio cholerae. In response to infection by its viral host ICP1, PLE excises, replicates and hijacks ICP1 structural components for transduction. Through an unknown mechanism, PLE prevents ICP1 from transitioning to rolling circle replication (RCR), a prerequisite for efficient packaging of the viral genome. Here, we characterize a PLE-encoded nuclease, NixI, that blocks phage development likely by nicking ICP1's genome as it transitions to RCR. NixI-dependent cleavage sites appear in ICP1's genome during infection of PLE(+) V. cholerae. Purified NixI demonstrates in vitro nuclease activity specifically for sites in ICP1's genome and we identify a motif that is necessary for NixI-mediated cleavage. Importantly, NixI is sufficient to limit ICP1 genome replication and eliminate progeny production, representing the most inhibitory PLE-encoded mechanism revealed to date. We identify distant NixI homologs in an expanded family of putative phage parasites in vibrios that lack nucleotide homology to PLEs but nonetheless share genomic synteny with PLEs. More generally, our results reveal a previously unknown mechanism deployed by phage parasites to limit packaging of their viral hosts' genome and highlight the prominent role of nuclease effectors as weapons in the arms race between antagonizing genomes.
Collapse
Affiliation(s)
- Kristen N LeGault
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Peter DePaola
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
31
|
Development of a Monoclonal Antibody to a Vibriophage as a Proxy for Vibrio cholerae Detection. Infect Immun 2022; 90:e0016122. [PMID: 35862704 PMCID: PMC9387236 DOI: 10.1128/iai.00161-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cholera is an acute watery, diarrheal disease that causes high rates of morbidity and mortality without treatment. Early detection of the etiologic agent of toxigenic Vibrio cholerae is important to mobilize treatment and mitigate outbreaks. Monoclonal antibody (mAb) based rapid diagnostic tests (RDTs) enable early detection in settings without laboratory capacity. However, the odds of an RDT testing positive are reduced by nearly 90% when the common virulent bacteriophage ICP1 is present. We hypothesize that adding a mAb for the common, and specific, virulent bacteriophage ICP1 as a proxy for V. cholerae to an RDT will increase diagnostic sensitivity when virulent ICP1 phage is present. In this study, we used an in-silico approach to identify immunogenic ICP1 protein targets that were conserved across disparate time periods and locations. Specificity of targets to cholera patients with known ICP1 was determined, and specific targets were used to produce mAbs in a murine model. Candidate mAbs to the head protein demonstrated specificity to ICP1 by Enzyme linked immunosorbent assay (ELISA) and an ICP1 phage neutralization assay. The limit of detection of the final mAb candidate for ICP1 phage particles spiked into cholera stool matrix was 8 × 105 PFU by Western blotting analysis. This mAb will be incorporated into a RDT prototype for evaluation in a future diagnostic study to test the guiding hypothesis behind this study.
Collapse
|
32
|
Rouard C, Njamkepo E, Quilici ML, Weill FX. Contribution of microbial genomics to cholera epidemiology. C R Biol 2022; 345:37-56. [DOI: 10.5802/crbiol.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
|
33
|
Węgrzyn G. Should Bacteriophages Be Classified as Parasites or Predators? Pol J Microbiol 2022; 71:3-9. [PMID: 35635166 PMCID: PMC9152906 DOI: 10.33073/pjm-2022-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Bacteriophages are viruses infecting bacteria and propagating in bacterial cells. They were discovered over 100 years ago, and for decades they played crucial roles as models in genetics and molecular biology and as tools in genetic engineering and biotechnology. Now we also recognize their huge role in natural environment and their importance in human health and disease. Despite our understanding of bacteriophage mechanisms of development, these viruses are described as parasites or predators in the literature. From the biological point of view, there are fundamental differences between parasites and predators. Therefore, in this article, I asked whether bacteriophages should be classified as former or latter biological entities. Analysis of the literature and biological definitions led me to conclude that bacteriophages are parasites rather than predators and should be classified and described as such. If even more precise ecological classification is needed, bacteriophages can perhaps be included in the group of parasitoids. It might be the most appropriate formal classification of these viruses, especially if strictly virulent phages are considered, contrary to phages which lysogenize host cells and those which develop according to the permanent infection mode (or chronic cycle, like filamentous phages) revealing features of classical parasites.
Collapse
Affiliation(s)
- Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology , University of Gdańsk , Gdańsk , Poland
| |
Collapse
|
34
|
Abstract
The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and “normal” cellular functions. The CRISPR systems show remarkable functional versatility beyond their principal function as an adaptive immune mechanism. This Essay discusses how derived CRISPR systems have been recruited by transposons on multiple occasions and mediate RNA-guided transposition; derived CRISPR RNAs are frequently recruited for regulatory functions.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
35
|
Evolutionary Sweeps of Subviral Parasites and Their Phage Host Bring Unique Parasite Variants and Disappearance of a Phage CRISPR-Cas System. mBio 2021; 13:e0308821. [PMID: 35164562 PMCID: PMC8844924 DOI: 10.1128/mbio.03088-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a significant threat to global public health in part due to its propensity for large-scale evolutionary sweeps where lineages emerge and are replaced. These sweeps may originate from the Bay of Bengal, where bacteriophage predation and the evolution of antiphage counterdefenses is a recurring theme. The bacteriophage ICP1 is a key predator of epidemic V. cholerae and is notable for acquiring a CRISPR-Cas system to combat PLE, a defensive subviral parasite encoded by its V. cholerae host. Here, we describe the discovery of four previously unknown PLE variants through a retrospective analysis of >3,000 publicly available sequences as well as one additional variant (PLE10) from recent surveillance of cholera patients in Bangladesh. In recent sampling we also observed a lineage sweep of PLE-negative V. cholerae occurring within the patient population in under a year. This shift coincided with a loss of ICP1's CRISPR-Cas system in favor of a previously prevalent PLE-targeting endonuclease called Odn. Interestingly, PLE10 was resistant to ICP1-encoded Odn, yet it was not found in any recent V. cholerae strains. We also identified isolates from within individual patient samples that revealed both mixed PLE(+)/PLE(-) V. cholerae populations and ICP1 strains possessing CRISPR-Cas or Odn with evidence of in situ recombination. These findings reinforce our understanding of the successive nature of V. cholerae evolution and suggest that ongoing surveillance of V. cholerae, ICP1, and PLE in Bangladesh is important for tracking genetic developments relevant to pandemic cholera that can occur over relatively short timescales. IMPORTANCE With 1 to 4 million estimated cases annually, cholera is a disease of serious global concern in regions where access to safe drinking water is limited by inadequate infrastructure, inequity, or natural disaster. The Global Task Force on Cholera Control (GTFCC.org) considers outbreak surveillance to be a primary pillar in the strategy to reduce mortality from cholera worldwide. Therefore, developing a better understanding of temporal evolutionary changes in the causative agent of cholera, Vibrio cholerae, could help in those efforts. The significance of our research is in tracking the genomic shifts that distinguish V. cholerae outbreaks, with specific attention paid to current and historical trends in the arms race between V. cholerae and a cooccurring viral (bacteriophage) predator. Here, we discover additional diversity of a specific phage defense system in epidemic V. cholerae and document the loss of a phage-encoded CRISPR-Cas system, underscoring the dynamic nature of microbial populations across cholera outbreaks.
Collapse
|