1
|
De la Mora A, Goodwin PH, Emsen B, Kelly PG, Petukhova T, Guzman-Novoa E. Selection of Honey Bee ( Apis mellifera) Genotypes for Three Generations of Low and High Population Growth of the Mite Varroa destructor. Animals (Basel) 2024; 14:3537. [PMID: 39682502 DOI: 10.3390/ani14233537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Honey bee (Apis mellifera) population declines have been associated with the parasitic mite, Varroa destructor, which is currently primarily controlled by the use of acaricides. An alternative is to breed for resistance to Varroa, which was conducted in this study by bidirectional selection for mite fall to obtain colonies with low (resistant) or high (susceptible) Varroa population growth (LVG and HVG, respectively). Selection for three generations resulted in approx. 90% lower Varroa population growth in LVG than in HVG colonies. In addition, late summer Varroa infestation rates of brood and adults were both significantly lower in LVG colonies (p < 0.01), which was also significantly associated with lower Deformed Wing Virus (DWV) infection levels (p < 0.01). Survival of Varroa-parasitized bees was almost 50% higher for LVG bees compared to HVG bees (p < 0.01). Also, colony winter survivorship was significantly higher for LVG colonies than for HVG colonies (p < 0.05). However, the higher colony populations observed for LVG colonies were not significantly different from those of HVG colonies. Overall, individual and colony health was improved by selecting colonies for LVG, demonstrating its effectiveness as a means of breeding for controlling Varroa populations in honey bee colonies.
Collapse
Affiliation(s)
- Alvaro De la Mora
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Berna Emsen
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Paul G Kelly
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Hernández-Pelegrín L, García-Castillo P, Catalá-Oltra M, Dembilio Ó, Ros VID, Herrero S. Exploring the impact of a chemical disinfectant and an antiviral drug for RNA virus management in the Mediterranean fruit fly mass-rearing. INSECT SCIENCE 2024. [PMID: 39614634 DOI: 10.1111/1744-7917.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
The Mediterranean fruit fly is an agricultural pest of a wide variety of fruit crops. An effective method to counteract them in the field is through the application of the sterile insect technique, which requires the mass-production of sterile males. The presence of pathogens, and specifically viruses, threatens the well-being of mass-reared insects generating an interest on the development of strategies for viral elimination or containment. Thirteen RNA viruses have been described in the medfly although so far only one of them, Ceratitis capitata nora virus, has been associated with detrimental effects on medfly development. In this context, medfly larvae were supplied with a chemical compound (formaldehyde) and an antiviral compound (ribavirin) via oral feeding to (1) test the potential of these compounds for viral elimination and (2) analyze their effect on medfly development. Overall, formaldehyde treatment did not reduce the viral titer for any of the tested viruses, while ribavirin effectively reduced the levels of two widespread RNA viruses but not in a dose-response manner. However, the addition of both compounds correlated with detrimental effects on medfly fitness, arguing against their use in mass-rearing facilities.
Collapse
Affiliation(s)
| | | | - Marta Catalá-Oltra
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Óscar Dembilio
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Salvador Herrero
- Department of Genetics, Universitat de València, Valencia, Spain
| |
Collapse
|
3
|
Sadiq A, Alisawi O, Mansor MS. Complete genome sequence of deformed wing virus isolated from honeybees ( Apis mellifera L.) in Iraq. Microbiol Resour Announc 2024; 13:e0077024. [PMID: 39400148 PMCID: PMC11556130 DOI: 10.1128/mra.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Here, we report the complete genome sequence of deformed wing virus (DWV) isolated from honeybees (Apis mellifera L.) in Iraq, named the Tikrit isolate. The phylogeny revealed that the Tikrit isolate has a close relationship to the Iraqi isolate DWV-Iraq-2023 and related to isolates from France, the United Kingdom, and Israel.
Collapse
Affiliation(s)
- Ali Sadiq
- Plant Protection Department, Faculty of Agriculture, University of Tikrit, Tikrit, Iraq
| | - Osamah Alisawi
- Plant Protection Department, Faculty of Agriculture, University of Kufa, Najaf, Iraq
| | | |
Collapse
|
4
|
Bosco L, Yañez O, Schauer A, Maurer C, Cushman SA, Arlettaz R, Jacot A, Seuberlich T, Neumann P, Schläppi D. Landscape structure affects temporal dynamics in the bumble bee virome: Landscape heterogeneity supports colony resilience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174280. [PMID: 38942311 DOI: 10.1016/j.scitotenv.2024.174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Virus spillovers from managed honey bees, Apis mellifera, are thought to contribute to the decline of wild pollinators, including bumble bees. However, data on the impact of such viruses on wild pollinators remain scarce, and the influence of landscape structure on virus dynamics is poorly understood. In this study, we deployed bumble bee colonies in an agricultural landscape and studied changes in the bumble bee virome during field placement under varying habitat composition and configuration using a multiscale analytical framework. We estimated prevalence of viruses and viral loads (i.e. number of viral genomic equivalent copies) in bumble bees before and after placing them in the field using next generation sequencing and quantitative PCR. The results show that viral loads and number of different viruses present increased during placement in the field and that the virus composition of the colonies shifted from an initial dominance of honey bee associated viruses to a higher number (in both viral loads and number of viruses present) of bumble bee associated viruses. Especially DWV-B, typical for honey bees, drastically decreased after the time in the field. Viral loads prior to placing colonies in the field showed no effect on colony development, suggesting low impacts of these viruses in field settings. Notably, we further demonstrate that increased habitat diversity results in a lower number of different viruses present in Bombus colonies, while colonies in areas with well-connected farmland patches decreased in their total viral load after field placement. Our results emphasize the importance of landscape heterogeneity and connectivity for wild pollinator health and that these influences predominate at fine spatial scales.
Collapse
Affiliation(s)
- Laura Bosco
- LUOMUS - Finnish Museum of Natural History, PL 17 - P.O. Box 17, 00014, University of Helsinki, Finland; Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Corina Maurer
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| | - Samuel A Cushman
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Raphaël Arlettaz
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Alain Jacot
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Ornithological Institute, Regional Office Valais, 1950 Sion, Switzerland.
| | - Torsten Seuberlich
- Division of Neurological Sciences, University of Bern, Bern, Switzerland.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; School of Biological Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, BS8 1TQ Bristol, United Kingdom.
| |
Collapse
|
5
|
Şevik M, Zerek A, Erdem İ, Yaman M. Evidence of circulating recombinants between deformed wing virus and Varroa destructor virus-1 in honey bee colonies in Türkiye. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:631-641. [PMID: 39465573 DOI: 10.1017/s000748532400052x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Deformed wing virus (DWV), which is an important honey bee virus transmitted by Varroa destructor (V. destructor), causes colony losses in honey bee colonies. This study aimed to investigate the prevalence and genetic diversity of DWV in honey bees in Türkiye and to determine the role of V. destructor in the transmission of the genetic variants of DWV. Honey bee samples were collected from 62 apiaries, by simple random sampling, during March 2022 and April 2023. The presence of V. destructor in collected bee samples was examined using a stereo microscope. Real-time RT-PCR was used for the detection of DWV-A and DWV-B (Varroa destructor virus-1 (VDV-1)) viruses. Genetic characterisation of the positive samples was conducted by sequencing polyprotein genomic region. Considering the V. destructor infestation rate of 3% as relevant, out of the 62 apiaries examined, 17 (27.4%) were positive. However, DWV-A and VDV-1 specific RNA was not detected in V. destructor samples. VDV-1 specific RNA was detected in 6.5% (4/62) of the apiaries, whereas DWV-A was not detected in the sampled apiaries. Phylogenetic analysis showed that isolates detected in this study were located in a separate cluster from previously characterised DWV-A and VDV-1 isolates. According to RDP4 and GARD analyses, DWV-VDV-1 recombination breakpoints were detected in field isolates. To the best our knowledge, this is the first report of the presence of VDV-1-DWV recombinants in Türkiye. Further studies are needed to determine the impact of VDV-1-DWV recombinants and their virological and antigenic properties.
Collapse
Affiliation(s)
- Murat Şevik
- Department of Virology, Veterinary Faculty, Necmettin Erbakan University, Ereğli, 42310 Konya, Turkey
| | - Aykut Zerek
- Department of Parasitology, Veterinary Faculty, Hatay Mustafa Kemal University, Antakya, 31060 Hatay, Turkey
| | - İpek Erdem
- Department of Parasitology, Veterinary Faculty, Hatay Mustafa Kemal University, Antakya, 31060 Hatay, Turkey
| | - Mehmet Yaman
- Department of Parasitology, Veterinary Faculty, Hatay Mustafa Kemal University, Antakya, 31060 Hatay, Turkey
| |
Collapse
|
6
|
Miles GP, Liu XF, Scheffler BE, Amiri E, Weaver MA, Grodowitz MJ, Chen J. Solenopsis richteri (Hymenoptera: Formicidae) alates infected with deformed wing virus display wing deformity with altered mobility. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:47. [PMID: 39302452 DOI: 10.1007/s00114-024-01934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Deformed wing virus (DWV) has long been identified as a critical pathogen affecting honeybees, contributing to colony losses through wing deformities, neurological impairments, and reduced lifespan. Since DWV also affects other pollinators, it poses a significant threat to global pollination networks. While honeybees have been the focal point of DWV studies, emerging research indicates that this RNA virus is not host-specific but rather a generalist pathogen capable of infecting a wide range of insect species, including other bee species such as bumblebees and solitary bees, as well as wasps and ants. This expands the potential impact of DWV beyond honeybees to broader ecological communities. The black imported fire ant, Solenopsis richteri, is an economically important invasive ant species. In this study, we describe deformed wing (DW) symptoms in S. richteri. DW alates were found in three of nine (33%) laboratory colonies. The symptoms ranged from severely twisted wings to a single crumpled wing tip. Additionally, numerous symptomatic alates also displayed altered mobility, ranging from an ataxic gait to an inability to walk. Viral replication of DWV was confirmed using a modified strand-specific RT-PCR. Our results suggest that S. richteri can be an alternative host for DWV, expanding our understanding of DWV as a generalist pathogen in insects. However, additional research is required to determine whether DWV is the etiological agent responsible for DW syndrome in S. richteri.
Collapse
Affiliation(s)
- Godfrey P Miles
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Xiaofen F Liu
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Esmaeil Amiri
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, Stoneville, MS, 38776, USA
| | - Mark A Weaver
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Michael J Grodowitz
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Jian Chen
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA.
| |
Collapse
|
7
|
Amšiejūtė-Graziani P, Jurgelevičius V, Pilevičienė S, Janeliūnas Ž, Radzijevskaja J, Paulauskas A, Butrimaitė-Ambrozevičienė Č, Jacevičienė I. Molecular Characterization and Phylogenetic Analysis of Honeybee ( Apis mellifera) Mite-Borne Pathogen DWV-A and DWV-B Isolated from Lithuania. Microorganisms 2024; 12:1884. [PMID: 39338559 PMCID: PMC11434569 DOI: 10.3390/microorganisms12091884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Deformed wing virus (DWV) is known as one of the main viruses that affect honeybees' health all around the world. The virus has two widespread genotypes, DWV-A and DWV-B (VDV-1), transmitted mainly by V. destructor mites. In this study, we collected honeycombs with covered broods from 73 apiaries in eight Lithuanian regions and initially investigated the prevalence of V. destructor mites. Mites were collected from May to the end of July in 2021 from 124 hives. The prevalence of V. destructor infestations in beehives reached 30% and 63% in investigated apiaries. The presence of DWV-A and DWV-B pathogens in mites and broods was examined by RT-qPCR targeting the CRPV-capsid region. The molecular characterization of the virus in mite samples was based on sequence analysis of the RNA-dependent RNA polymerase (RdRp) region. In addition, leader polypeptide (LP), structural protein (Vp3), Helicase, and RdRp genes were used for phylogenetic characterization of dual infection. The prevalences of DWV-B in mites and broods were 56.5% and 31.5%, respectively, while DWV-A was detected in 12.9% of mite samples and 24.7% of brood samples. Some of the examined mite samples harboured dual virus infections. Our findings showed that bee colonies from the same apiary were not always infected by the same viruses. Some bee colonies were virus-free, while others were highly infected. Phylogenetic analysis of 21 sequences demonstrated the presence of highly variable DWV-B and DWV-A genotypes in Lithuania and possible recombinant variants of the virus. This study represents the first molecular characterization of mite-borne pathogens hosted by honeybees (Apis mellifera) in Lithuania.
Collapse
Affiliation(s)
- Paulina Amšiejūtė-Graziani
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District, LT-44248 Kaunas, Lithuania; (V.J.); (J.R.)
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, LT-08409 Vilnius, Lithuania; (S.P.); (Ž.J.); (Č.B.-A.); (I.J.)
| | - Vaclovas Jurgelevičius
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District, LT-44248 Kaunas, Lithuania; (V.J.); (J.R.)
| | - Simona Pilevičienė
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, LT-08409 Vilnius, Lithuania; (S.P.); (Ž.J.); (Č.B.-A.); (I.J.)
| | - Žygimantas Janeliūnas
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, LT-08409 Vilnius, Lithuania; (S.P.); (Ž.J.); (Č.B.-A.); (I.J.)
| | - Jana Radzijevskaja
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District, LT-44248 Kaunas, Lithuania; (V.J.); (J.R.)
| | - Algimantas Paulauskas
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District, LT-44248 Kaunas, Lithuania; (V.J.); (J.R.)
| | - Česlova Butrimaitė-Ambrozevičienė
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, LT-08409 Vilnius, Lithuania; (S.P.); (Ž.J.); (Č.B.-A.); (I.J.)
| | - Ingrida Jacevičienė
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, LT-08409 Vilnius, Lithuania; (S.P.); (Ž.J.); (Č.B.-A.); (I.J.)
| |
Collapse
|
8
|
İnak E, De Rouck S, Koç-İnak N, Erdem E, Rüstemoğlu M, Dermauw W, Van Leeuwen T. Identification and CRISPR-Cas9 validation of a novel β-adrenergic-like octopamine receptor mutation associated with amitraz resistance in Varroa destructor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106080. [PMID: 39277393 DOI: 10.1016/j.pestbp.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024]
Abstract
Varroa destructor is widely recognized as a significant contributor to colony collapse disorder. Chemical acaricides, such as amitraz, have been extensively used for Varroa control due to their selectivity within beehives. However, the increasing number of cases of amitraz resistance across global V. destructor populations poses a significant challenge. In this study, we conducted a comprehensive molecular screening of the β-adrenergic-like octopamine receptor (Octβ2R), the target-site of amitraz, across 66 Turkish and 63 Belgian V. destructor populations. Although previously reported amitraz resistance mutations were not detected, the screening revealed a novel Y337F mutation located within transmembrane 7 (TM7) of Octβ2R in Turkish Varroa populations. Notably, this mutation was identified in the last residue of the highly conserved NPxxY motif associated with the activation of G-protein coupled receptors (GPCR). Among the 66 Varroa samples from Türkiye, twenty harbored the Y337F mutation, with eight samples exhibiting fixation of the mutation. Subsequent bioassays revealed over 8-fold resistance to amitraz in populations that contain the Y337F mutation. Genotyping of mites after exposure to 10 mg a.i./l amitraz demonstrated that all surviving mites were homozygous for the Y337F mutation, whereas dead mites carried susceptible alleles, providing genetic linkage between mutation and phenotype. Further, we used CRISPR-Cas9 editing to introduce the Y337F mutation in the orthologous Octβ2R of the model organism Tetranychus urticae. Crispants exhibited over threefold resistance to amitraz. In conclusion, this study identified and validated a novel amitraz resistance mutation. Additional research is required to further evaluate the phenotypic strength of Y337F in the context of operational resistance with current treatment strategies.
Collapse
Affiliation(s)
- Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi, 06110, Ankara, Türkiye.
| | - Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Nafiye Koç-İnak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Altindag, 06070, Ankara, Türkiye.
| | - Esengül Erdem
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şırnak, Türkiye.
| | - Mustafa Rüstemoğlu
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şırnak, Türkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Tiritelli R, Giannetti D, Schifani E, Grasso DA, Cilia G. Neighbors sharing pathogens: the intricate relationship between Apis mellifera and ants (Hymenoptera: Formicidae) nesting in hives. INSECT SCIENCE 2024. [PMID: 39126179 DOI: 10.1111/1744-7917.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Ants are ubiquitous and eusocial insects that exhibit frequent physical contact among colony members, thereby increasing their susceptibility to diseases. Some species are often found in beehives and in their surroundings, where they exploit the food resources of honey bees. This intricate relationship may facilitate the interspecific transmission of honey bee pathogens to ants, although ants themselves may contribute to spillback phenomena. The objective of this study was to assess the presence and abundance of honey bee pathogens in ants sampled from Italian apiaries. A total of 37 colonies within 24 apiaries across 7 regions were monitored. In total, 6 pathogens were detected in adult ants and 3 in the brood. In particular, the study revealed a high prevalence of honey bee pathogens in ants, with DWV, BQCV, and CBPV being the most commonly encountered. The brood also tested positive for the same viruses. Notably, all analyzed viruses were found to be replicative in both adult ants and ant broods. Furthermore, co-infections were prevalent, suggesting complex pathogen interactions within ant populations. Statistical analysis indicated significant differences in pathogen prevalence and abundance among ant species and sample types. The findings highlight active infection in both the ants and the brood, suggesting a potential role of ants as reservoir hosts and vectors of honey bee pathogens emphasizing the need for further research to understand the implications of interspecific pathogen transmission on ant and bee health.
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Giannetti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Schifani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Donato A Grasso
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
| |
Collapse
|
10
|
Norton AM, Buchmann G, Ashe A, Watson OT, Beekman M, Remnant EJ. Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39072811 DOI: 10.1111/imb.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Iflavirus aladeformis (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (Apis mellifera L. [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV-A and DWV-B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT-qPCR) and analysed small RNA after experimental injection with DWV-A and DWV-B. We found no evidence that DWV-A and DWV-B elicit different immune responses in honey bees. RNA interference genes were up-regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, Triatovirus nigereginacellulae (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus-derived Piwi-interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of V. destructor, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.
Collapse
Affiliation(s)
- Amanda M Norton
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Owen T Watson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Madeleine Beekman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emily J Remnant
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Lopes AR, Low M, Martín-Hernández R, Pinto MA, De Miranda JR. Origins, diversity, and adaptive evolution of DWV in the honey bees of the Azores: the impact of the invasive mite Varroa destructor. Virus Evol 2024; 10:veae053. [PMID: 39119136 PMCID: PMC11306321 DOI: 10.1093/ve/veae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Deformed wing virus (DWV) is a honey bee virus, whose emergence from relative obscurity is driven by the recent host-switch, adaptation, and global dispersal of the ectoparasitic mite Varroa destructor (a highly efficient vector of DWV) to reproduction on honey bees (Apis mellifera). Our study examines how varroa affects the continuing evolution of DWV, using the Azores archipelago, where varroa is present on only three out of the eight Islands, as a natural experimental system for comparing different evolutionary conditions and trajectories. We combined qPCR of 494 honey bee colonies sampled across the archipelago with amplicon deep sequencing to reveal how the DWV genetic landscape is altered by varroa. Two of the varroa-free Islands were also free of DWV, while a further two Islands were intriguingly dominated by the rare DWV-C major variant. The other four Islands, including the three varroa-infested Islands, were dominated by the common DWV-A and DWV-B variants. The varroa-infested Islands had, as expected, an elevated DWV prevalence relative to the uninfested Islands, but not elevated DWV loads, due the relatively high prevalence and loads of DWV-C on the varroa-free Islands. This establishes the Azores as a stable refuge for DWV-C and provides the most convincing evidence to date that at least some major strains of DWV may be capable of not just surviving, but actually thriving in honey bees in the absence of varroa-mediated transmission. We did not detect any change in DWV genetic diversity associated with island varroa status but did find a positive association of DWV diversity with virus load, irrespective of island varroa status.
Collapse
Affiliation(s)
- Ana R Lopes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 756-51, Sweden
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Marchamalo 19180, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, Albacete 02006, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
| | - Joachim R De Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 756-51, Sweden
| |
Collapse
|
12
|
Lopes AR, Low M, Martín-Hernández R, de Miranda JR, Pinto MA. Varroa destructor shapes the unique viral landscapes of the honey bee populations of the Azores archipelago. PLoS Pathog 2024; 20:e1012337. [PMID: 38959190 PMCID: PMC11221739 DOI: 10.1371/journal.ppat.1012337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
The worldwide dispersal of the ectoparasitic mite Varroa destructor from its Asian origins has fundamentally transformed the relationship of the honey bee (Apis mellifera) with several of its viruses, via changes in transmission and/or host immunosuppression. The extent to which honey bee-virus relationships change after Varroa invasion is poorly understood for most viruses, in part because there are few places in the world with several geographically close but completely isolated honey bee populations that either have, or have not, been exposed long-term to Varroa, allowing for separate ecological, epidemiological, and adaptive relationships to develop between honey bees and their viruses, in relation to the mite's presence or absence. The Azores is one such place, as it contains islands with and without the mite. Here, we combined qPCR with meta-amplicon deep sequencing to uncover the relationship between Varroa presence, and the prevalence, load, diversity, and phylogeographic structure of eight honey bee viruses screened across the archipelago. Four viruses were not detected on any island (ABPV-Acute bee paralysis virus, KBV-Kashmir bee virus, IAPV-Israeli acute bee paralysis virus, BeeMLV-Bee macula-like virus); one (SBV-Sacbrood virus) was detected only on mite-infested islands; one (CBPV-Chronic bee paralysis virus) occurred on some islands, and two (BQCV-Black queen cell virus, LSV-Lake Sinai virus,) were present on every single island. This multi-virus screening builds upon a parallel survey of Deformed wing virus (DWV) strains that uncovered a remarkably heterogeneous viral landscape featuring Varroa-infested islands dominated by DWV-A and -B, Varroa-free islands naïve to DWV, and a refuge of the rare DWV-C dominating the easternmost Varroa-free islands. While all four detected viruses investigated here were affected by Varroa for one or two parameters (usually prevalence and/or the Richness component of ASV diversity), the strongest effect was observed for the multi-strain LSV. Varroa unambiguously led to elevated prevalence, load, and diversity (Richness and Shannon Index) of LSV, with these results largely shaped by LSV-2, a major LSV strain. Unprecedented insights into the mite-virus relationship were further gained from implementing a phylogeographic approach. In addition to enabling the identification of a novel LSV strain that dominated the unique viral landscape of the easternmost islands, this approach, in combination with the recovered diversity patterns, strongly suggests that Varroa is driving the evolutionary change of LSV in the Azores. This study greatly advances the current understanding of the effect of Varroa on the epidemiology and adaptive evolution of these less-studied viruses, whose relationship with Varroa has thus far been poorly defined.
Collapse
Affiliation(s)
- Ana R. Lopes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Marchamalo, Spain
| | | | - M. Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
13
|
Szymański S, Baracchi D, Dingle L, Bowman AS, Manfredini F. Learning performance and GABAergic pathway link to deformed wing virus in the mushroom bodies of naturally infected honey bees. J Exp Biol 2024; 227:jeb246766. [PMID: 38894668 PMCID: PMC11418184 DOI: 10.1242/jeb.246766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Viral infections can be detrimental to the foraging ability of the western honey bee, Apis mellifera. The deformed wing virus (DWV) is the most common honey bee virus and has been proposed as a possible cause of learning and memory impairment. However, evidence for this phenomenon so far has come from artificially infected bees, while less is known about the implications of natural infections with the virus. Using the proboscis extension reflex (PER), we uncovered no significant association between a simple associative learning task and natural DWV load. However, when assessed through a reversal associative learning assay, bees with higher DWV load performed better in the reversal learning phase. DWV is able to replicate in the honey bee mushroom bodies, where the GABAergic signalling pathway has an antagonistic effect on associative learning but is crucial for reversal learning. Hence, we assessed the pattern of expression of several GABA-related genes in bees with different learning responses. Intriguingly, mushroom body expression of selected genes was positively correlated with DWV load, but only for bees with good reversal learning performance. We hypothesise that DWV might improve olfactory learning performance by enhancing the GABAergic inhibition of responses to unrewarded stimuli, which is consistent with the behavioural patterns that we observed. However, at higher disease burdens, which might be induced by an artificial infection or by a severe, natural Varroa infestation, this DWV-associated increase in GABA signalling could impair associative learning as previously reported by other studies.
Collapse
Affiliation(s)
- Szymon Szymański
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Lauren Dingle
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Alan S. Bowman
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Fabio Manfredini
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
14
|
Hernández-Pelegrín L, Huditz HI, García-Castillo P, de Ruijter NCA, van Oers MM, Herrero S, Ros VID. Covert RNA viruses in medflies differ in their mode of transmission and tissue tropism. J Virol 2024; 98:e0010824. [PMID: 38742874 PMCID: PMC11237731 DOI: 10.1128/jvi.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have demonstrated the presence of covert viral infections in insects. These infections can be transmitted in insect populations via two main routes: vertical from parents to offspring, or horizontal between nonrelated individuals. Thirteen covert RNA viruses have been described in the Mediterranean fruit fly (medfly). Some of these viruses are established in different laboratory-reared and wild medfly populations, although variations in the viral repertoire and viral levels have been observed at different time points. To better understand these viral dynamics, we characterized the prevalence and levels of covert RNA viruses in two medfly strains, assessed the route of transmission of these viruses, and explored their distribution in medfly adult tissues. Altogether, our results indicated that the different RNA viruses found in medflies vary in their preferred route of transmission. Two iflaviruses and a narnavirus are predominantly transmitted through vertical transmission via the female, while a nodavirus and a nora virus exhibited a preference for horizontal transmission. Overall, our results give valuable insights into the viral tropism and transmission of RNA viruses in the medfly, contributing to the understanding of viral dynamics in insect populations. IMPORTANCE The presence of RNA viruses in insects has been extensively covered. However, the study of host-virus interaction has focused on viruses that cause detrimental effects to the host. In this manuscript, we uncovered which tissues are infected with covert RNA viruses in the agricultural pest Ceratitis capitata, and which is the preferred transmission route of these viruses. Our results showed that vertical and horizontal transmission can occur simultaneously, although each virus is transmitted more efficiently following one of these routes. Additionally, our results indicated an association between the tropism of the RNA virus and the preferred route of transmission. Overall, these results set the basis for understanding how viruses are established and maintained in medfly populations.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Hannah-Isadora Huditz
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Pablo García-Castillo
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Norbert C. A. de Ruijter
- Laboratory of Cell and Developmental Biology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Vera I. D. Ros
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
15
|
Liu W, Li Q. Single-cell transcriptomics dissecting the development and evolution of nervous system in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101201. [PMID: 38608931 DOI: 10.1016/j.cois.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Insects can display a vast repertoire of complex and adaptive behaviors crucial for survival and reproduction. Yet, how the neural circuits underlying insect behaviors are assembled throughout development and remodeled during evolution remains largely obscure. The advent of single-cell transcriptomics has opened new paths to illuminate these historically intractable questions. Insect behavior is governed by its brain, whose functional complexity is realized through operations across multiple levels, from the molecular and cellular to the circuit and organ. Single-cell transcriptomics enables dissecting brain functions across all these levels and allows tracking regulatory dynamics throughout development and under perturbation. In this review, we mainly focus on the achievements of single-cell transcriptomics in dissecting the molecular and cellular architectures of nervous systems in representative insects, then discuss its applications in tracking the developmental trajectory and functional evolution of insect brains.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| | - Qiye Li
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Streicher T, Brinker P, Tragust S, Paxton RJ. Host Barriers Limit Viral Spread in a Spillover Host: A Study of Deformed Wing Virus in the Bumblebee Bombus terrestris. Viruses 2024; 16:607. [PMID: 38675948 PMCID: PMC11053533 DOI: 10.3390/v16040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission of pathogens from reservoir to recipient host species, termed pathogen spillover, can profoundly impact plant, animal, and public health. However, why some pathogens lead to disease emergence in a novel species while others fail to establish or do not elicit disease is often poorly understood. There is strong evidence that deformed wing virus (DWV), an (+)ssRNA virus, spills over from its reservoir host, the honeybee Apis mellifera, into the bumblebee Bombus terrestris. However, the low impact of DWV on B. terrestris in laboratory experiments suggests host barriers to virus spread in this recipient host. To investigate potential host barriers, we followed the spread of DWV genotype B (DWV-B) through a host's body using RT-PCR after experimental transmission to bumblebees in comparison to honeybees. Inoculation was per os, mimicking food-borne transmission, or by injection into the bee's haemocoel, mimicking vector-based transmission. In honeybees, DWV-B was present in both honeybee faeces and haemolymph within 3 days of inoculation per os or by injection. In contrast, DWV-B was not detected in B. terrestris haemolymph after inoculation per os, suggesting a gut barrier that hinders DWV-B's spread through the body of a B. terrestris. DWV-B was, however, detected in B. terrestris faeces after injection and feeding, albeit at a lower abundance than that observed for A. mellifera, suggesting that B. terrestris sheds less DWV-B than A. mellifera in faeces when infected. Barriers to viral spread in B. terrestris following oral infection may limit DWV's impact on this spillover host and reduce its contribution to the community epidemiology of DWV.
Collapse
Affiliation(s)
- Tabea Streicher
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Pina Brinker
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Simon Tragust
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Frunze O, Kim H, Lee JH, Kwon HW. The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health. Int J Mol Sci 2024; 25:4271. [PMID: 38673857 PMCID: PMC11049949 DOI: 10.3390/ijms25084271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Honey bees are commonly used to study metabolic processes, yet the molecular mechanisms underlying nutrient transformation, particularly proteins and their effects on development, health, and diseases, still evoke varying opinions among researchers. To address this gap, we investigated the digestibility and transformation of water-soluble proteins from four artificial diets in long-lived honey bee populations (Apis mellifera ligustica), alongside their impact on metabolism and DWV relative expression ratio, using transcriptomic and protein quantification methods. Diet 2, characterized by its high protein content and digestibility, was selected for further analysis from the other studied diets. Subsequently, machine learning was employed to identify six diet-related molecular markers: SOD1, Trxr1, defensin2, JHAMT, TOR1, and vg. The expression levels of these markers were found to resemble those of honey bees who were fed with Diet 2 and bee bread, renowned as the best natural food. Notably, honey bees exhibiting chalkbrood symptoms (Control-N) responded differently to the diet, underscoring the unique nutritional effects on health-deficient bees. Additionally, we proposed a molecular model to elucidate the transition of long-lived honey bees from diapause to development, induced by nutrition. These findings carry implications for nutritional research and beekeeping, underscoring the vital role of honey bees in agriculture.
Collapse
Affiliation(s)
- Olga Frunze
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyunjee Kim
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyung-Wook Kwon
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
18
|
Erdem E, Koç-İnak N, Rüstemoğlu M, İnak E. Geographical distribution of pyrethroid resistance mutations in Varroa destructor across Türkiye and a European overview. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:309-321. [PMID: 38401013 PMCID: PMC11035437 DOI: 10.1007/s10493-023-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Varroa destructor Anderson & Trueman (Acari: Varroidae) is of paramount significance in modern beekeeping, with infestations presenting a primary challenge that directly influences colony health, productivity, and overall apicultural sustainability. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate, flumethrin and organophosphate coumaphos. However, the excessive use of these substances has led to the widespread development of resistance in various beekeeping areas globally. In the present study, the occurrence of resistance mutations in the voltage-gated sodium channel (VGSC) and acetylcholinesterase (AChE), the target-site of pyrethroids and coumaphos, respectively, was examined in Varroa populations collected throughout the southeastern and eastern Anatolia regions of Türkiye. All Varroa samples belonged to the Korean haplotype, and a very low genetic distance was observed based on cytochrome c oxidase subunit I (COI) gene sequences. No amino acid substitutions were determined at the key residues of AChE. On the other hand, three amino acid substitutions, (L925V/I/M), previously associated with pyrethroid resistance, were identified in nearly 80% of the Turkish populations. Importantly, L925M, the dominant mutation in the USA, was detected in Turkish Varroa populations for the first time. To gain a more comprehensive perspective, we conducted a systematic analysis of the distribution of pyrethroid resistance mutations across Europe, based on the previously reported data. Varroa populations from Mediterranean countries such as Türkiye, Spain, and Greece exhibited the highest frequency of resistance mutation. Revealing the occurrence and geographical distribution of pyrethroid resistance mutations in V. destructor populations across the country will enhance the development of more efficient strategies for mite management.
Collapse
Affiliation(s)
- Esengül Erdem
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Nafiye Koç-İnak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Altindag, 06070, Ankara, Turkey
| | - Mustafa Rüstemoğlu
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, 06110, Ankara, Turkey.
| |
Collapse
|
19
|
Nikulin SL, Hesketh-Best PJ, Mckeown DA, Spivak M, Schroeder DC. A semi-automated and high-throughput approach for the detection of honey bee viruses in bee samples. PLoS One 2024; 19:e0297623. [PMID: 38483922 PMCID: PMC10939240 DOI: 10.1371/journal.pone.0297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/10/2024] [Indexed: 03/17/2024] Open
Abstract
Deformed wing virus (DWV) was first detected in dead honey bees in 1982 but has been in honey bees for at least 300 years. Due to its high prevalence and virulence, they have been linked with the ongoing decline in honey bee populations worldwide. A rapid, simple, semi-automated, high-throughput, and cost-effective method of screening colonies for viruses would benefit bee research and the beekeeping industry. Here we describe a semi-automated approach that combines an RNA-grade liquid homogenizer followed by magnetic bead capture for total virus nucleic acid extraction. We compare it to the more commonly applied nucleic acid column-based purification method and use qPCR plus Oxford Nanopore Technologies sequencing to evaluate the accuracy of analytical results for both methods. Our results showed high reproducibility and accuracy for both approaches. The semi-automated method described here allows for faster screening of viral loads in units of 96 samples at a time. We developed this method to monitor viral loads in honey bee colonies, but it could be easily applied for any PCR or genomic-based screening assays.
Collapse
Affiliation(s)
- Sofia Levin Nikulin
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Poppy J. Hesketh-Best
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Dean A. Mckeown
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
20
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
21
|
Boonmee T, Sinpoo C, Wongthaveethong L, Disayathanoowat T, Suanpoot P, Pettis JS, Chaimanee V. Properties of essential oils absorbed on the surface of cardboard pieces after using atmospheric-pressure plasma treatments to develop long-lasting Varroa miticides in honeybees (Apis mellifera). PLoS One 2024; 19:e0297980. [PMID: 38329992 PMCID: PMC10852235 DOI: 10.1371/journal.pone.0297980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The ectoparasitic mite, Varroa destructor is the most serious widespread pest of managed honeybees (Apis mellifera). Several acaricide products, which include essential oils, have been proposed for mite control. In this study, we aimed to apply atmospheric-pressure plasma to modify a cardboard piece surface in order to prolong the delivery of essential oils for controlling Varroa in honeybee colonies. Absorption capacity, release rates and evaporation rates of essential oils were determined. Cardboard piece showed a higher absorption capacity of cinnamon compared to citronella and clove. Surface modification of cardboard pieces using argon plasma at different gas flow rates and treatment durations, significantly affected the absorption of clove oil. Additionally, the release rate of cinnamon, citronella and clove was significantly enhanced after argon plasma treatments. Evaporation of cinnamon was dramatically increased by plasma treatment at 6-h of incubation. The highest evaporation rate was obtained by plasma-treated cardboard piece at a gas flow rate of 0.5 Lpm for 60 s (0.2175 ± 0.0148 μl/g•h). Efficiency of plasma-treated cardboard piece, impregnated with essential oils, was also investigated for Varroa control in honeybee colonies. In the first experiment, formic acid 65% (v/v) showed the highest efficiency of 90.60% and 81.59% with the percent of mite infestation was 0.23 ± 0.13% and 0.47 ± 0.19% at 21 and 35 days, respectively after treatment. The efficacy of cardamon oil (5% (v/v)) delivered using plasma-treated cardboard pieces was 57.71% (0.70 ± 0.16% of mite infestation) at day 21 of experiment. However, the delivery of cardamon oil at the concentration of 1% and 5% (v/v) by untreated cardboard piece had 16.93% and 24.05% of efficacy to control mites. In the 2nd experiment, the application of plasma-treated cardboard pieces impregnated with 5% (v/v) clove oil induced a 38.10% reduction in the population of Varroa mites followed by 5% (v/v) of cardamon with 30% efficiency. Although, the infestation rate of Varroa in colonies was not significant different between treatments, essential oils delivered using plasma-treated cardboard pieces tended to decrease Varroa population in the treated colonies. Hence, atmospheric-pressure plasma for the modification of other materials, should be further investigated to provide alternative control treatment applications against honeybee mites.
Collapse
Affiliation(s)
- Thummanoon Boonmee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae, Thailand
| | - Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | | | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Pradoong Suanpoot
- Department of Forest Industry Technology, Maejo University Phrae Campus, Phrae, Thailand
| | - Jeffery S. Pettis
- Pettis and Assoc. LLC, Salisbury, Maryland, United States of America
| | - Veeranan Chaimanee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae, Thailand
| |
Collapse
|
22
|
Lamas ZS, Krichton M, Ryabov EV, Hawthorne DJ, Evans JD. Susceptible and infectious states for both vector and host in a dynamic pathogen-vector-host system. Proc Biol Sci 2024; 291:20232293. [PMID: 38196351 PMCID: PMC10777147 DOI: 10.1098/rspb.2023.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
Deformed wing virus (DWV) is a resurgent insect pathogen of honeybees that is efficiently transmitted by vectors and through host social contact. Continual transmission of DWV between hosts and vectors is required to maintain the pathogen within the population, and this vector-host-pathogen system offers unique disease transmission dynamics for pathogen maintenance between vectors and a social host. In a series of experiments, we measured vector-vector, host-host and host-vector transmission routes and show how these maintain DWV in honeybee populations. We found co-infestations on shared hosts allowed for movement of DWV from mite to mite. Additionally, two social behaviours of the honeybee, trophallaxis and cannibalization of pupae, provide routes for horizontal transmission from bee to bee. Circulation of the virus solely among hosts through communicable modes provides a reservoir of DWV for naïve Varroa to acquire and subsequently vector the pathogen. Our findings illustrate the importance of community transmission between hosts and vector transmission. We use these results to highlight the key avenues used by DWV during maintenance and infection and point to similarities with a handful of other infectious diseases of zoonotic and medical importance.
Collapse
Affiliation(s)
- Zachary S. Lamas
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
| | - Maiya Krichton
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
| | - Eugene V. Ryabov
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - David J. Hawthorne
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
| | - Jay D. Evans
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
| |
Collapse
|
23
|
Robinson CRP, Dolezal AG, Newton ILG. Host species and geography impact bee-associated RNA virus communities with evidence for isolation by distance in viral populations. ISME COMMUNICATIONS 2024; 4:ycad003. [PMID: 38304079 PMCID: PMC10833078 DOI: 10.1093/ismeco/ycad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
Virus symbionts are important mediators of ecosystem function, yet we know little of their diversity and ecology in natural populations. The alarming decline of pollinating insects in many regions of the globe, especially the European honey bee, Apis mellifera, has been driven in part by worldwide transmission of virus pathogens. Previous work has examined the transmission of known honey bee virus pathogens to wild bee populations, but only a handful of studies have investigated the native viromes associated with wild bees, limiting epidemiological predictors associated with viral pathogenesis. Further, variation among different bee species might have important consequences in the acquisition and maintenance of bee-associated virome diversity. We utilized comparative metatranscriptomics to develop a baseline description of the RNA viromes associated with wild bee pollinators and to document viral diversity, community composition, and structure. Our sampling includes five wild-caught, native bee species that vary in social behavior as well as managed honey bees. We describe 26 putatively new RNA virus species based on RNA-dependent RNA polymerase phylogeny and show that each sampled bee species was associated with a specific virus community composition, even among sympatric populations of distinct host species. From 17 samples of a single host species, we recovered a single virus species despite over 600 km of distance between host populations and found strong evidence for isolation by distance in associated viral populations. Our work adds to the small number of studies examining viral prevalence and community composition in wild bees.
Collapse
Affiliation(s)
- Chris R P Robinson
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
24
|
Doublet V, Oddie MAY, Mondet F, Forsgren E, Dahle B, Furuseth-Hansen E, Williams GR, De Smet L, Natsopoulou ME, Murray TE, Semberg E, Yañez O, de Graaf DC, Le Conte Y, Neumann P, Rimstad E, Paxton RJ, de Miranda JR. Shift in virus composition in honeybees ( Apis mellifera) following worldwide invasion by the parasitic mite and virus vector Varroa destructor. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231529. [PMID: 38204792 PMCID: PMC10776227 DOI: 10.1098/rsos.231529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.
Collapse
Affiliation(s)
- Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Melissa A. Y. Oddie
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Elisabeth Furuseth-Hansen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Geoffrey R. Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
- Entomology & Plant Pathology, Auburn University, Auburn, AL 36832, USA
| | - Lina De Smet
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Myrsini E. Natsopoulou
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Tomás E. Murray
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Dirk C. de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Germany
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| |
Collapse
|
25
|
Damayo JE, McKee RC, Buchmann G, Norton AM, Ashe A, Remnant EJ. Virus replication in the honey bee parasite, Varroa destructor. J Virol 2023; 97:e0114923. [PMID: 37966226 PMCID: PMC10746231 DOI: 10.1128/jvi.01149-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.
Collapse
Affiliation(s)
- James E. Damayo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca C. McKee
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Institute of Plant Genetics, Heinrich-Heine University, Duesseldorf, Germany
| | - Amanda M. Norton
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Academic Support Unit, Research and Advanced Instrumentation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Reuscher CM, Barth S, Gockel F, Netsch A, Seitz K, Rümenapf T, Lamp B. Processing of the 3C/D Region of the Deformed Wing Virus (DWV). Viruses 2023; 15:2344. [PMID: 38140585 PMCID: PMC10748302 DOI: 10.3390/v15122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The deformed wing virus (DWV) belongs to the genus Iflavirus and the family Iflaviridae within the order Picornavirales. It is an important pathogen of the Western honey bee, Apis mellifera, causing major losses among honey bee colonies in association with the ectoparasitic mite Varroa destructor. Although DWV is one of the best-studied insect viruses, the mechanisms of viral replication and polyprotein processing have been poorly studied in the past. We investigated the processing of the protease-polymerase region at the C-terminus of the polyprotein in more detail using recombinant expression, novel serological reagents, and virus clone mutagenesis. Edman degradation of purified maturated polypeptides uncovered the C- and N-termini of the mature 3C-like (3CL) protease and RNA-dependent RNA polymerase (3DL, RdRp), respectively. Autocatalytic processing of the recombinant DWV 3CL protease occurred at P1 Q2118 and P1' G2119 (KPQ/GST) as well as P1 Q2393 and P1' S2394 (HAQ/SPS) cleavage sites. New monoclonal antibodies (Mab) detected the mature 3CL protease with an apparent molecular mass of 32 kDa, mature 3DL with an apparent molecular mass of 55 kDa as well as a dominant 3CDL precursor of 90 kDa in DWV infected honey bee pupae. The observed pattern corresponds well to data obtained via recombinant expression and N-terminal sequencing. Finally, we were able to show that 3CL protease activity and availability of the specific protease cleavage sites are essential for viral replication, protein synthesis, and establishment of infection using our molecular clone of DWV-A.
Collapse
Affiliation(s)
- Carina Maria Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| | - Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| | - Fiona Gockel
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
- Institute of Medical Virology, Justus Liebig University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| | - Kerstin Seitz
- Department for Pathobiology, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Till Rümenapf
- Department for Pathobiology, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| |
Collapse
|
27
|
Robi DT, Temteme S, Aleme M, Bogale A, Getachew A, Mendesil E. Epidemiology, factors influencing prevalence and level of varroosis infestation ( Varroa destructor) in honeybee ( Apis mellifera) colonies in different agroecologies of Southwest Ethiopia. Parasite Epidemiol Control 2023; 23:e00325. [PMID: 37711152 PMCID: PMC10498395 DOI: 10.1016/j.parepi.2023.e00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
Little information is available on the epidemiology of varroosis caused by Varroa mite, Varroa destructor infestation in Ethiopia, although it is a devastating honeybee disease that results in significant economic losses in beekeeping. Therefore, between October 2021 and October 2022, a cross-sectional study was carried out in different agroecology zones in Southwest Ethiopia to determine the prevalence and associated risk factors for varroosis, as well as the effects of this disease on honeybee colonies and honey production. A multivariate logistic regression analysis was performed to identify possible risk factors for the prevalence of V. destructor. A total of 384 adult honeybee and worker or drone brood samples were collected from honeybee colonies and examined using standard diagnostic techniques in the laboratory. The result shows that the prevalence of V. destructor was found to be 39.3% (95% CI 34.44-44.21) and 43.2% (38.27-48.18) in adult honeybees and brood, respectively. The major risk factors for the prevalence of V. destructor in the study areas included agroecology (OR = 5.2, 95% CI 1.75-14.85), type of hive (OR = 2.9, 95% CI 1.17-17.03), management system (OR = 4.3, 95% CI 1.23-14.70), and colony management (OR = 3.5, 95% CI 1.31-9.14). The lower level of colony infestation in adult bees and brood was measured as 1.97 ± 0.14 and 3.19 ± 0.25, respectively. Season, colony status, colony management, and agroecology were among the determinant factors of the level of varroa mite infestation in adult bees and brood. The results of the study demonstrated that honey production losses are largely attributable to V. destructor infestation. Therefore, it is critical to inform the community about the effects of V. destructor on honey production and develop and implement effective management strategies for this disease. In addition, further research should be done to identify and isolate additional factors that contribute to varroosis in honeybees in different regions.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Awraris Getachew
- Department of Animal Sciences, College of Agriculture and Environmental Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Esayas Mendesil
- Department of Horticulture and Plant Sciences, Jimma University College of Agriculture & Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
28
|
Zhang Y, Liu A, Kang Huang S, Evans JD, Cook SC, Palmer-Young E, Corona M, Alburaki M, Liu G, Chou Han R, Feng Li W, Hao Y, Lian Li J, Gilligan TM, Smith-Pardo AH, Banmeke O, Posada-Florez FJ, Hui Gao Y, DeGrandi-Hoffman G, Chun Xie H, Sadzewicz AM, Hamilton M, Ping Chen Y. Mediating a host cell signaling pathway linked to overwinter mortality offers a promising therapeutic approach for improving bee health. J Adv Res 2023; 53:99-114. [PMID: 36564001 PMCID: PMC10658305 DOI: 10.1016/j.jare.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Honey bees provides valuable pollination services for world food crops and wild flowering plants which are habitats of many animal species and remove carbon dioxide from the atmosphere, a powerful tool in the fight against climate change. Nevertheless, the honey bee population has been declining and the majority of colony losses occur during the winter. OBJECTIVES The goal of this study was to understand the mechanisms underlying overwinter colony losses and develop novel therapeutic strategies for improving bee health. METHODS First, pathogen prevalence in overwintering bees were screened between 2015 and 2018. Second, RNA sequencing (RNA-Seq) for transcriptional profiling of overwintering honey bees was conducted and qRT-PCR was performed to confirm the results of the differential expression of selected genes. Lastly, laboratory bioassays were conducted to measure the effects of cold challenges on bee survivorship and stress responses and to assess the effect of a novel medication for alleviating cold stress in honey bees. RESULTS We identified that sirtuin signaling pathway is the most significantly enriched pathway among the down-regulated differentially expressed genes (DEGs) in overwintering diseased bees. Moreover, we showed that the expression of SIRT1 gene, a major sirtuin that regulates energy and immune metabolism, was significantly downregulated in bees merely exposed to cold challenges, linking cold stress with altered gene expression of SIRT1. Furthermore, we demonstrated that activation of SIRT1 gene expression by SRT1720, an activator of SIRT1 expression, could improve the physiology and extend the lifespan of cold-stressed bees. CONCLUSION Our study suggests that increased energy consumption of overwintering bees for maintaining hive temperature reduces the allocation of energy toward immune functions, thus making the overwintering bees more susceptible to disease infections and leading to high winter colony losses. The novel information gained from this study provides a promising avenue for the development of therapeutic strategies for mitigating colony losses, both overwinter and annually.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guanzhou 510260, PR China; U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu 527527, PR China
| | - Andrew Liu
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Shao Kang Huang
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jay D Evans
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Steve C Cook
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Evan Palmer-Young
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Miguel Corona
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Mohamed Alburaki
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Ge Liu
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Ri Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guanzhou 510260, PR China
| | - Wen Feng Li
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Yue Hao
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, PR China
| | - Ji Lian Li
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, PR China
| | - Todd M Gilligan
- Identification Technology Program (ITP) Molecular Laboratory, USDA-APHIS-PPQ-Science & Technology (S&T), Fort Collins, CO 80526-1825, USA
| | - Allan H Smith-Pardo
- Identification Technology Program (ITP) Molecular Laboratory, USDA-APHIS-PPQ-Science & Technology (S&T), Fort Collins, CO 80526-1825, USA
| | - Olubukola Banmeke
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Francisco J Posada-Florez
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Ya Hui Gao
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | | | - Hui Chun Xie
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Normal University, Xining 810000, China
| | - Alex M Sadzewicz
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Michele Hamilton
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Yan Ping Chen
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
29
|
Ray AM, Gordon EC, Seeley TD, Rasgon JL, Grozinger CM. Signatures of adaptive decreased virulence of deformed wing virus in an isolated population of wild honeybees ( Apis mellifera). Proc Biol Sci 2023; 290:20231965. [PMID: 37876196 PMCID: PMC10598435 DOI: 10.1098/rspb.2023.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Understanding the ecological and evolutionary processes that drive host-pathogen interactions is critical for combating epidemics and conserving species. The Varroa destructor mite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despite Varroa infestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host-pathogen interactions in honeybees.
Collapse
Affiliation(s)
- Allyson M. Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240-0002, USA
| | - Emma C. Gordon
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Thomas D. Seeley
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Christina M. Grozinger
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| |
Collapse
|
30
|
Xiao Y, Fei D, Li M, Ma Y, Ma M. Establishment and Application of CRISPR-Cas12a-Based Recombinase Polymerase Amplification and a Lateral Flow Dipstick and Fluorescence for the Detection and Distinction of Deformed Wing Virus Types A and B. Viruses 2023; 15:2041. [PMID: 37896818 PMCID: PMC10612068 DOI: 10.3390/v15102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Deformed wing virus (DWV) is one of the important pathogens of the honey bee (Apis mellifera), which consists of three master variants: types A, B, and C. Among them, DWV types A (DWV-A) and B (DWV-B) are the most prevalent variants in honey bee colonies and have been linked to colony decline. DWV-A and DWV-B have different virulence, but it is difficult to distinguish them via traditional methods. In this study, we established a visual detection assay for DWV-A and DWV-B using recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 12a fluorescence system (RPA-CRISPR-Cas12a-LFD). The limit of detection of this system was ~6.5 × 100 and 6.2 × 101 copies/μL for DWV-A and DWV-B, respectively. The assays were specific and non-cross-reactive against other bee viruses, and the results could be visualized within 1 h. The assays were validated by extracting cDNA from 36 clinical samples of bees that were suspected to be infected with DWV. The findings were consistent with those of traditional reverse transcription-quantitative polymerase chain reaction, and the RPA-CRISPR-Cas12a assay showed the specific, sensitive, simple, and appropriate detection of DWV-A and DWV-B. This method can facilitate the visual and qualitative detection of DWV-A and DWV-B as well as the monitoring of different subtypes, thereby providing potentially better control and preventing current and future DWV outbreaks.
Collapse
Affiliation(s)
- Yuting Xiao
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Dongliang Fei
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Ming Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Yueyu Ma
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Mingxiao Ma
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| |
Collapse
|
31
|
Miles GP, Liu XF, Amiri E, Grodowitz MJ, Allen ML, Chen J. Co-Occurrence of Wing Deformity and Impaired Mobility of Alates with Deformed Wing Virus in Solenopsis invicta Buren (Hymenoptera: Formicidae). INSECTS 2023; 14:788. [PMID: 37887800 PMCID: PMC10607916 DOI: 10.3390/insects14100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Deformed wing virus (DWV), a major honey bee pathogen, is a generalist insect virus detected in diverse insect phyla, including numerous ant genera. Its clinical symptoms have only been reported in honey bees, bumble bees, and wasps. DWV is a quasispecies virus with three main variants, which, in association with the ectoparasitic mite, Varroa destructor, causes wing deformity, shortened abdomens, neurological impairments, and colony mortality in honey bees. The red imported fire ant, Solenopsis invicta Buren, is one of the most-invasive and detrimental pests in the world. In this study, we report the co-occurrence of DWV-like symptoms in S. invicta and DWV for the first time and provide molecular evidence of viral replication in S. invicta. Some alates in 17 of 23 (74%) lab colonies and 9 of 14 (64%) field colonies displayed deformed wings (DWs), ranging from a single crumpled wing tip to twisted, shriveled wings. Numerous symptomatic alates also exhibited altered locomotion ranging from an altered gait to the inability to walk. Deformed wings may prevent S. invicta alates from reproducing since mating only occurs during a nuptial flight. The results from conventional RT-PCR and Sanger sequencing confirmed the presence of DWV-A, and viral replication of DWV was confirmed using a modified strand-specific RT-PCR. Our results suggest that S. invicta can potentially be an alternative and reservoir host for DWV. However, further research is needed to determine whether DWV is the infectious agent that causes the DW syndrome in S. invicta.
Collapse
Affiliation(s)
- Godfrey P. Miles
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Xiaofen F. Liu
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Esmaeil Amiri
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, Stoneville, MS 38776, USA
| | - Michael J. Grodowitz
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Margaret L. Allen
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Jian Chen
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| |
Collapse
|
32
|
Anderson A, Keime N, Fong C, Kraemer A, Fassbinder-Orth C. Resilin Distribution and Abundance in Apis mellifera across Biological Age Classes and Castes. INSECTS 2023; 14:764. [PMID: 37754732 PMCID: PMC10532044 DOI: 10.3390/insects14090764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
The presence of resilin, an elastomeric protein, in insect vein joints provides the flexible, passive deformations that are crucial to flapping flight. This study investigated the resilin gene expression and autofluorescence dynamics among Apis mellifera (honey bee) worker age classes and drone honey bees. Resilin gene expression was determined via ddPCR on whole honey bees and resilin autofluorescence was measured in the 1m-cu, 2m-cu, Cu-V, and Cu2-V joints on the forewing and the Cu-V joint of the hindwing. Resilin gene expression varied significantly with age, with resilin activity being highest in the pupae. Autofluorescence of the 1m-cu and the Cu-V joints on the ventral forewing and the Cu-V joint on the ventral hindwing varied significantly between age classes on the left and right sides of the wing, with the newly emerged honey bees having the highest level of resilin autofluorescence compared to all other groups. The results of this study suggest that resilin gene expression and deposition on the wing is age-dependent and may inform us more about the physiology of aging in honey bees.
Collapse
Affiliation(s)
- Audrey Anderson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 1400 R Street, Lincoln, NE 68588, USA;
| | - Noah Keime
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Chandler Fong
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Carol Fassbinder-Orth
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
33
|
Rako L, Agarwal A, Eow L, Roberts JMK, Rodoni BC, Blacket MJ. LAMP (Loop-mediated isothermal amplification) assay for rapid identification of Varroa mites. Sci Rep 2023; 13:11931. [PMID: 37488147 PMCID: PMC10366197 DOI: 10.1038/s41598-023-38860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
Varroa mites are serious pests of European honeybees (Apis mellifera). For detection of Varroa mite, a new molecular LAMP-based assay has been developed, which retains the body of the mite intact for morphological identification. Six novel Varroa LAMP primers were designed from existing DNA sequences of the COI locus to target V. destructor and V. jacobsoni, providing the ability to tell them apart from other non-target beehive associated mite and insect species. This LAMP assay is specific in detecting these Varroa species and has been tested on specimens originating from multiple countries. It produces amplification of V. destructor and V. jacobsoni in 16 ± 3.4 min with an anneal derivative of 78 ± 0.5 °C whilst another Varroa species,V. underwoodi, showed late amplification. A gBlock gene fragment, used here as a positive control has a different anneal derivative of 80 °C. Three non-destructive DNA extraction methods (HotShot, QuickExtract and Xtract) were tested and found to be suitable for use in the field. The LAMP assay was sensitive to very low levels of Varroa DNA, down to 0.24 picogram (~ 1 × 10 copies/µL of Varroa gBlock). This is a new molecular tool for rapid and accurate detection and identification of Varroa mites for pest management, in areas where these mites do not occur.
Collapse
Grants
- 4-8KPXYWM Department of Agriculture, Fisheries and Forestry, Australian Government
- 4-8KPXYWM Department of Agriculture, Fisheries and Forestry, Australian Government
- 4-8KPXYWM Department of Agriculture, Fisheries and Forestry, Australian Government
- 4-8KPXYWM Department of Agriculture, Fisheries and Forestry, Australian Government
- 4-8KPXYWM Department of Agriculture, Fisheries and Forestry, Australian Government
Collapse
Affiliation(s)
- Lea Rako
- Agriculture Victoria Research, AgriBio - Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Arati Agarwal
- Agriculture Victoria Research, AgriBio - Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Lixin Eow
- Agriculture Victoria Research, AgriBio - Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio - Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Mark J Blacket
- Agriculture Victoria Research, AgriBio - Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| |
Collapse
|
34
|
Gaubert J, Giovenazzo P, Derome N. Individual and social defenses in Apis mellifera: a playground to fight against synergistic stressor interactions. Front Physiol 2023; 14:1172859. [PMID: 37485064 PMCID: PMC10360197 DOI: 10.3389/fphys.2023.1172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The honeybee is an important species for the agri-food and pharmaceutical industries through bee products and crop pollination services. However, honeybee health is a major concern, because beekeepers in many countries are experiencing significant colony losses. This phenomenon has been linked to the exposure of bees to multiple stresses in their environment. Indeed, several biotic and abiotic stressors interact with bees in a synergistic or antagonistic way. Synergistic stressors often act through a disruption of their defense systems (immune response or detoxification). Antagonistic interactions are most often caused by interactions between biotic stressors or disruptive activation of bee defenses. Honeybees have developed behavioral defense strategies and produce antimicrobial compounds to prevent exposure to various pathogens and chemicals. Expanding our knowledge about these processes could be used to develop strategies to shield bees from exposure. This review aims to describe current knowledge about the exposure of honeybees to multiple stresses and the defense mechanisms they have developed to protect themselves. The effect of multi-stress exposure is mainly due to a disruption of the immune response, detoxification, or an excessive defense response by the bee itself. In addition, bees have developed defenses against stressors, some behavioral, others involving the production of antimicrobials, or exploiting beneficial external factors.
Collapse
Affiliation(s)
- Joy Gaubert
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| | - Pierre Giovenazzo
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nicolas Derome
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
35
|
Power K, Martano M, Ragusa E, Altamura G, Maiolino P. Detection of honey bee viruses in larvae of Vespa orientalis. Front Cell Infect Microbiol 2023; 13:1207319. [PMID: 37424785 PMCID: PMC10326897 DOI: 10.3389/fcimb.2023.1207319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The Oriental hornet (Vespa orientalis) is one of the major predators of honey bees. It has been demonstrated that adults of V. orientalis can harbor honey bee viruses, however the transmission route of infection is still not clear. The aim of this study was to study the possible presence of honey bee viruses in V. orientalis larvae and honey bees collected from the same apiary. Therefore, 29 samples of V. orientalis larvae and 2 pools of honey bee (Apis mellifera). samples were analyzed by multiplex PCR to detect the presence of six honeybee viruses: Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Chronic Bee Paralysis Virus (CBPV), Deformed Wing Virus (DWV), Kashmir Bee Virus (KBV) and Sac Brood Virus (SBV). Biomolecular analysis of V. orientalis larvae revealed that DWV was present in 24/29 samples, SBV in 10/29, BQCV in 7/29 samples and ABPV in 5/29 samples, while no sample was found positive for CBPV or KBV. From biomolecular analysis of honey bee samples DWV was the most detected virus, followed by SBV, BQCV, ABPV. No honey bee sample was found positive for CBPV or KBV. Considering the overlapping of positivities between V.orientalis larvae and honey bee samples, and that V.orientalis larvae are fed insect proteins, preferably honey bees, we can suggest the acquisition of viral particles through the ingestion of infected bees. However, future studies are needed to confirm this hypothesis and rule out any other source of infection.
Collapse
Affiliation(s)
- Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Ernesto Ragusa
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
36
|
Lang H, Wang H, Wang H, Zhong Z, Xie X, Zhang W, Guo J, Meng L, Hu X, Zhang X, Zheng H. Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees. Nat Commun 2023; 14:2778. [PMID: 37210527 DOI: 10.1038/s41467-023-38498-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023] Open
Abstract
Nosema ceranae is an intracellular parasite invading the midgut of honeybees, which causes serious nosemosis implicated in honeybee colony losses worldwide. The core gut microbiota is involved in protecting against parasitism, and the genetically engineering of the native gut symbionts provides a novel and efficient way to fight pathogens. Here, using laboratory-generated bees mono-associated with gut members, we find that Snodgrassella alvi inhibit microsporidia proliferation, potentially via the stimulation of host oxidant-mediated immune response. Accordingly, N. ceranae employs the thioredoxin and glutathione systems to defend against oxidative stress and maintain a balanced redox equilibrium, which is essential for the infection process. We knock down the gene expression using nanoparticle-mediated RNA interference, which targets the γ-glutamyl-cysteine synthetase and thioredoxin reductase genes of microsporidia. It significantly reduces the spore load, confirming the importance of the antioxidant mechanism for the intracellular invasion of the N. ceranae parasite. Finally, we genetically modify the symbiotic S. alvi to deliver dsRNA corresponding to the genes involved in the redox system of the microsporidia. The engineered S. alvi induces RNA interference and represses parasite gene expression, thereby inhibits the parasitism significantly. Specifically, N. ceranae is most suppressed by the recombinant strain corresponding to the glutathione synthetase or by a mixture of bacteria expressing variable dsRNA. Our findings extend our previous understanding of the protection of gut symbionts against N. ceranae and provide a symbiont-mediated RNAi system for inhibiting microsporidia infection in honeybees.
Collapse
Affiliation(s)
- Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Haoqing Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Zhaopeng Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, 330006, Nanchang, China
| | - Wenhao Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, 650031, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650031, Kunming, China
| | - Liang Meng
- BGI-Qingdao, BGI-Shenzhen, 266555, Qingdao, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xue Zhang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| |
Collapse
|
37
|
Glavinić U, Rajković M, Ristanić M, Stevanović J, Vejnović B, Djelić N, Stanimirović Z. Genotoxic Potential of Thymol on Honey Bee DNA in the Comet Assay. INSECTS 2023; 14:insects14050451. [PMID: 37233079 DOI: 10.3390/insects14050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Thymol is a natural essential oil derived from the plant Thymus vulgaris L. It is known to be beneficial for human and animal health and has been used in beekeeping practice against Varroa mite for years. In this study, the genotoxic and antigenotoxic potential of thymol were evaluated on the honey bee (Apis mellifera L.) continuous cell line AmE-711 for the first time. Using the Comet assay, three increasing concentrations (10, 100, and 1000 µg/mL) of thymol were tested. Negative control (non-treated cells) and positive control (cells treated with 100 µM H2O2) were also included. The absence of thymol cytotoxicity was confirmed with the Trypan blue exclusion test. Thymol in the concentration of 10 µg/mL did not increase DNA damage in AmE-711 honey bee cells, while 100 and 1000 µg/mL concentrations showed genotoxic effects. For testing the antigenotoxic effect, all concentrations of thymol were mixed and incubated with H2O2. The antigenotoxic effect against was absent at all concentrations (10, 100, 1000 μg/mL) tested. Moreover, thymol enhanced the H2O2-induced DNA migration in the Comet assay. The obtained results indicate genotoxic effects of thymol on cultured honey bee cells suggesting its careful application in beekeeping practice to avoid possible negative effects on honey bees.
Collapse
Affiliation(s)
- Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Rajković
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislav Vejnović
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ninoslav Djelić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
38
|
Chapman NC, Colin T, Cook J, da Silva CRB, Gloag R, Hogendoorn K, Howard SR, Remnant EJ, Roberts JMK, Tierney SM, Wilson RS, Mikheyev AS. The final frontier: ecological and evolutionary dynamics of a global parasite invasion. Biol Lett 2023; 19:20220589. [PMID: 37222245 PMCID: PMC10207324 DOI: 10.1098/rsbl.2022.0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Studying rapid biological changes accompanying the introduction of alien organisms into native ecosystems can provide insights into fundamental ecological and evolutionary theory. While powerful, this quasi-experimental approach is difficult to implement because the timing of invasions and their consequences are hard to predict, meaning that baseline pre-invasion data are often missing. Exceptionally, the eventual arrival of Varroa destructor (hereafter Varroa) in Australia has been predicted for decades. Varroa is a major driver of honeybee declines worldwide, particularly as vectors of diverse RNA viruses. The detection of Varroa in 2022 at over a hundred sites poses a risk of further spread across the continent. At the same time, careful study of Varroa's spread, if it does become established, can provide a wealth of information that can fill knowledge gaps about its effects worldwide. This includes how Varroa affects honeybee populations and pollination. Even more generally, Varroa invasion can serve as a model for evolution, virology and ecological interactions between the parasite, the host and other organisms.
Collapse
Affiliation(s)
- Nadine C. Chapman
- School of Life and Environmental Sciences, Behaviour, Ecology and Evolution Lab, The University of Sydney, NSW 2006, Australia
| | - Théotime Colin
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - James Cook
- Hawkesbury Institute for the Environment, Western Sydney University, NSW 2753, Australia
| | - Carmen R. B. da Silva
- School of Biological Sciences, Faculty of Science, Monash University, Clayton Victoria 3800, Australia
| | - Ros Gloag
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Katja Hogendoorn
- School of Agriculture, The University of Adelaide, Food and Wine, Adelaide SA 5005, Australia
| | - Scarlett R. Howard
- Hawkesbury Institute for the Environment, Western Sydney University, NSW 2753, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, Behaviour, Ecology and Evolution Lab, The University of Sydney, NSW 2006, Australia
| | - John M. K. Roberts
- Commonwealth Scientific & Industrial Research Organisation, Canberra 2601, ACT, Australia
| | - Simon M. Tierney
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, USA
| | - Rachele S. Wilson
- School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander S. Mikheyev
- Research School of Biology, Australian National University, Canberra, ACT 26000, Australia
| |
Collapse
|
39
|
Balbuena S, Castelli L, Zunino P, Antúnez K. Effect of Chronic Exposure to Sublethal Doses of Imidacloprid and Nosema ceranae on Immunity, Gut Microbiota, and Survival of Africanized Honey Bees. MICROBIAL ECOLOGY 2023; 85:1485-1497. [PMID: 35460373 DOI: 10.1007/s00248-022-02014-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 05/10/2023]
Abstract
Large-scale honey bee colony losses reported around the world have been associated with intoxication with pesticides, as with the presence of pests and pathogens. Among pesticides, neonicotinoid insecticides are the biggest threat. Due to their extensive use, they can be found in all agricultural environments, including soil, water, and air, are persistent in the environment, and are highly toxic for honey bees. In addition, infection by different pests and pathogens can act synergistically, weakening bees. In this study, we investigated the effects of chronic exposure to sublethal doses of imidacloprid alone or combined with the microsporidia Nosema ceranae on the immune response, deformed wing virus infection (DWV), gut microbiota, and survival of Africanized honey bees. We found that imidacloprid affected the expression of some genes associated with immunity generating an altered physiological state, although it did not favor DWV or N. ceranae infection. The pesticide alone did not affect honey bee gut microbiota, as previously suggested, but when administered to N. ceranae infected bees, it generated significant changes. Finally, both stress factors caused high mortality rates. Those results illustrate the negative impact of imidacloprid alone or combined with N. ceranae on Africanized honey bees and are useful to understand colony losses in Latin America.
Collapse
Affiliation(s)
- Sofía Balbuena
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay
| | - Loreley Castelli
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay
| | - Karina Antúnez
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay.
| |
Collapse
|
40
|
Underwood RM, Lawrence BL, Turley NE, Cambron-Kopco LD, Kietzman PM, Traver BE, López-Uribe MM. A longitudinal experiment demonstrates that honey bee colonies managed organically are as healthy and productive as those managed conventionally. Sci Rep 2023; 13:6072. [PMID: 37055462 PMCID: PMC10100614 DOI: 10.1038/s41598-023-32824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Honey bee colony management is critical to mitigating the negative effects of biotic and abiotic stressors. However, there is significant variation in the practices implemented by beekeepers, which results in varying management systems. This longitudinal study incorporated a systems approach to experimentally test the role of three representative beekeeping management systems (conventional, organic, and chemical-free) on the health and productivity of stationary honey-producing colonies over 3 years. We found that the survival rates for colonies in the conventional and organic management systems were equivalent, but around 2.8 times greater than the survival under chemical-free management. Honey production was also similar, with 102% and 119% more honey produced in conventional and organic management systems, respectively, than in the chemical-free management system. We also report significant differences in biomarkers of health including pathogen levels (DWV, IAPV, Vairimorpha apis, Vairimorpha ceranae) and gene expression (def-1, hym, nkd, vg). Our results experimentally demonstrate that beekeeping management practices are key drivers of survival and productivity of managed honey bee colonies. More importantly, we found that the organic management system-which uses organic-approved chemicals for mite control-supports healthy and productive colonies, and can be incorporated as a sustainable approach for stationary honey-producing beekeeping operations.
Collapse
Affiliation(s)
- Robyn M Underwood
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Brooke L Lawrence
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Nash E Turley
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | | | - Parry M Kietzman
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Brenna E Traver
- Department of Biology, Penn State Schuylkill, Schuylkill Haven, PA, USA
| | | |
Collapse
|
41
|
Alonso-Sampedro M, Feás X, Bravo SB, Chantada-Vázquez MP, Vidal C. Proteomics of Vespa velutina nigrithorax Venom Sac Queens and Workers: A Quantitative SWATH-MS Analysis. Toxins (Basel) 2023; 15:toxins15040266. [PMID: 37104204 PMCID: PMC10144020 DOI: 10.3390/toxins15040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Health risks caused by stings from Vespa velutina nigrithorax (VV), also known as the yellow-legged Asian hornet, have become a public concern, but little is known about its venom composition. This study presents the proteome profile of the VV’s venom sac (VS) based on Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS). The study also performed proteomic quantitative analysis and examined the biological pathways and molecular functions of the proteins in the VS of VV gynes (i.e., future queens [SQ]) and workers [SW]. The total protein content per VS was significantly higher in the SW than in the SQ (274 ± 54 µg/sac vs. 175 ± 22 µg/sac; p = 0.02). We quantified a total of 228 proteins in the VS, belonging to 7 different classes: Insecta (n = 191); Amphibia and Reptilia (n = 20); Bacilli, γ-Proteobacteria and Pisoniviricetes (n = 12); and Arachnida (n = 5). Among the 228 identified proteins, 66 showed significant differential expression between SQ and SW. The potential allergens hyaluronidase A, venom antigen 5 and phospholipase A1 were significantly downregulated in the SQ venom.
Collapse
Affiliation(s)
- Manuela Alonso-Sampedro
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Hospital Clínico, 15706 Santiago de Compostela, Spain
- Research Methods Group (RESMET), Health Research Institute of Santiago de Compostela (IDIS), Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS-ISCIII/RD21/0016/0022), University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Xesús Feás
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Hospital Clínico, 15706 Santiago de Compostela, Spain
- Universitat Carlemany, Av. Verge de Canòlich, 47 AD600 Sant Julià de Lòria, Andorra
- Academy of Veterinary Sciences of Galicia, 15707 Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Hospital Clínico, 15706 Santiago de Compostela, Spain
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - María Pilar Chantada-Vázquez
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Hospital Clínico, 15706 Santiago de Compostela, Spain
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Carmen Vidal
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Hospital Clínico, 15706 Santiago de Compostela, Spain
- Research Methods Group (RESMET), Health Research Institute of Santiago de Compostela (IDIS), Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS-ISCIII/RD21/0016/0022), University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Allergy Department, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, Faculty of Medicine, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
42
|
Palmer-Young EC, Ryabov EV, Markowitz LM, Boncristiani DL, Grubbs K, Pawar A, Peterson R, Evans JD. Host-driven temperature dependence of Deformed wing virus infection in honey bee pupae. Commun Biol 2023; 6:333. [PMID: 36973325 PMCID: PMC10042853 DOI: 10.1038/s42003-023-04704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
The temperature dependence of infection reflects changes in performance of parasites and hosts. High temperatures often mitigate infection by favoring heat-tolerant hosts over heat-sensitive parasites. Honey bees exhibit endothermic thermoregulation-rare among insects-that can favor resistance to parasites. However, viruses are heavily host-dependent, suggesting that viral infection could be supported-not threatened-by optimum host function. To understand how temperature-driven changes in performance of viruses and hosts shape infection, we compared the temperature dependence of isolated viral enzyme activity, three honey bee traits, and infection of honey bee pupae. Viral enzyme activity varied <2-fold over a > 30 °C interval spanning temperatures typical of ectothermic insects and honey bees. In contrast, honey bee performance peaked at high (≥ 35 °C) temperatures and was highly temperature-sensitive. Although these results suggested that increasing temperature would favor hosts over viruses, the temperature dependence of pupal infection matched that of pupal development, falling only near pupae's upper thermal limits. Our results reflect the host-dependent nature of viruses, suggesting that infection is accelerated-not curtailed-by optimum host function, contradicting predictions based on relative performance of parasites and hosts, and suggesting tradeoffs between infection resistance and host survival that limit the viability of bee 'fever'.
Collapse
Affiliation(s)
| | - Eugene V Ryabov
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Lindsey M Markowitz
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | - Kyle Grubbs
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Asha Pawar
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| |
Collapse
|
43
|
Viljakainen L, Fürst MA, Grasse AV, Jurvansuu J, Oh J, Tolonen L, Eder T, Rattei T, Cremer S. Antiviral immune response reveals host-specific virus infections in natural ant populations. Front Microbiol 2023; 14:1119002. [PMID: 37007485 PMCID: PMC10060816 DOI: 10.3389/fmicb.2023.1119002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.
Collapse
Affiliation(s)
- Lumi Viljakainen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- *Correspondence: Lumi Viljakainen,
| | - Matthias A. Fürst
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Anna V. Grasse
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jaana Jurvansuu
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Jinook Oh
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lassi Tolonen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Thomas Eder
- Centre for Microbiology and Environmental Systems Science, Division of Computational System Biology, University of Vienna, Vienna, Austria
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, Division of Computational System Biology, University of Vienna, Vienna, Austria
| | - Sylvia Cremer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Sylvia Cremer,
| |
Collapse
|
44
|
Schläppi D, Chejanovsky N, Yañez O, Neumann P. Virus transmission via honey bee prey and potential impact on cocoon-building in labyrinth spiders (Agelena labyrinthica). PLoS One 2023; 18:e0282353. [PMID: 36857367 PMCID: PMC9977037 DOI: 10.1371/journal.pone.0282353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Interspecies transmission of RNA viruses is a major concern for human and animal health. However, host-range, transmission routes and especially the possible impact of these viruses on alternative hosts are often poorly understood. Here, we investigated the role of the labyrinth spider, Agelena labyrinthica, as a potential alternative host of viruses commonly known from western honey bees, Apis mellifera. Field-collected spiders were screened for Acute bee paralysis virus (ABPV), Black queen cell virus, Chronic bee paralysis virus, Deformed wing virus type A and B (DWV-B), Israeli acute paralysis virus, Lake Sinai virus and Sacbrood virus. In a laboratory experiment, labyrinth spiders were fed with ABPV and DWV-B infected honey bees or virus free control food. Our results show that natural infections of A. labyrinthica with these viruses are common in the field, as 62.5% of the samples were positive for at least one virus, supporting their wide host range. For DWV-B, the laboratory data indicate that foodborne transmission occurs and that high virus titres may reduce cocoon building, which would be the first report of clinical symptoms of DWV in Araneae. Since cocoons are tokens of fitness, virus transmission from honey bees might affect spider populations, which would constitute a concern for nature conservation.
Collapse
Affiliation(s)
- Daniel Schläppi
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Nor Chejanovsky
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Morrow JL, Sharpe SR, Tilden G, Wyatt P, Oczkowicz S, Riegler M. Transmission modes and efficiency of iflavirus and cripavirus in Queensland fruit fly, Bactrocera tryoni. J Invertebr Pathol 2023; 197:107874. [PMID: 36574813 DOI: 10.1016/j.jip.2022.107874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Infections of insects with insect-specific RNA viruses are common and can affect host fitness and health. Previously, persistent RNA virus infections were detected in tephritid fruit flies, including the Queensland fruit fly (Bactrocera tryoni), Australia's most significant horticultural pest. Their transmission modes and efficiency are unclear yet may influence virus epidemiology in field and laboratory populations. Using standard RT-PCR and RT-qPCR we detected iflavirus, cripavirus and sigmavirus in five laboratory populations recently established with field-collected B.tryoni. Virus absence in some individuals suggested that virus transmission is incomplete. Random virus segregation in an isofemale experiment resulted in the establishment of isofemale lines with and without iflavirus and cripavirus. In infected lines, viral loads normalised against host gene transcripts were variable, but did not differ between pupae and adults. Iflavirus and cripavirus were transmitted horizontally, with viruses detected (including at low viral loads) in many previously uninfected individuals after four days, and in most after 12 days cohabitation with infected flies. Iflavirus, but not cripavirus, was transmitted vertically, and surface-sterilised embryos contained high loads. Furthermore, high iflavirus loads in individual females resulted in high loads in their offspring. We demonstrated that viruses are highly prevalent in laboratory populations and that it is possible to establish and maintain uninfected fly lines for the assessment of virus transmission and host effects. This is important for pest management strategies such as the sterile insect technique which requires the mass-rearing of flies, as their fitness and performance may be affected by covert virus infections.
Collapse
Affiliation(s)
- Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Geraldine Tilden
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Pauline Wyatt
- Department of Agriculture and Fisheries Queensland, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sybilla Oczkowicz
- Department of Agriculture and Fisheries Queensland, Redden Street Research Facility, 21-23 Redden Street, Portsmith, QLD 4870, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
46
|
Tian JX, Tsai WS, Sung IH. A Novel Variant of Deformed Wing Virus (DWV) from the Invasive Honeybee Apis florea (Apidae, Hymenoptera) and Its Ectoparasite Euvarroa sinhai (Acarina, Mesostigmata) in Taiwan. INSECTS 2023; 14:103. [PMID: 36835672 PMCID: PMC9958760 DOI: 10.3390/insects14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The invasion of Apis florea in Taiwan was first recorded in 2017. The deformed wing virus (DWV) has been identified as a common bee virus in apiculture around the world. Ectoparasitic mites are the main DWV vector for horizontal transmission. However, there are few studies about the ectoparasitic mite of Euvarroa sinhai, which has been found in A. florea. In this study, the prevalence of DWV among four hosts, including A. florea, Apis mellifera, E. sinhai, and Varroa destructor, was determined. The results showed that a high DWV-A prevalence rate in A. florea, ranging from 69.2% to 94.4%, was detected. Additionally, the genome of DWV isolates was sequenced and subjected to phylogenetic analysis based on the complete polyprotein sequence. Furthermore, isolates from A. florea and E. sinhai both formed a monophyletic group for the DWV-A lineage, and the sequence identity was 88% between the isolates and DWV-A reference strains. As noted above, two isolates could be the novel DWV strain. It cannot be excluded that novel DWV strains could pose an indirect threat to sympatric species, such as A. mellifera and Apis cerana.
Collapse
|
47
|
Global honeybee health decline factors and potential conservation techniques. Food Secur 2023. [DOI: 10.1007/s12571-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Li N, Li C, Hu T, Li J, Zhou H, Ji J, Wu J, Kang W, Holmes EC, Shi W, Xu S. Nationwide genomic surveillance reveals the prevalence and evolution of honeybee viruses in China. MICROBIOME 2023; 11:6. [PMID: 36631833 PMCID: PMC9832778 DOI: 10.1186/s40168-022-01446-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The economic and environmental value of honeybees has been severely challenged in recent years by the collapse of their colonies worldwide, often caused by outbreaks of infectious diseases. However, our understanding of the diversity, prevalence, and transmission of honeybee viruses is largely obscure due to a lack of large-scale and longitudinal genomic surveillance on a global scale. RESULTS We report the meta-transcriptomic sequencing of nearly 2000 samples of the two most important economic and widely maintained honeybee species, as well as an associated ectoparasite mite, collected across China during 2016-2019. We document the natural diversity and evolution of honeybee viruses in China, providing evidence that multiple viruses commonly co-circulate within individual bee colonies. We also expanded the genomic data for 12 important honeybee viruses and revealed novel genetic variants and lineages associated with China. We identified more than 23 novel viruses from the honeybee and mite viromes, with some exhibiting ongoing replication in their respective hosts. Together, these data provide additional support to the idea that mites are an important reservoir and spill-over host for honeybee viruses. CONCLUSIONS Our data show that honeybee viruses are more widespread, prevalent, and genetically diverse than previously realized. The information provided is important in mitigating viral infectious diseases in honeybees, in turn helping to maintain sustainable productive agriculture on a global scale. Video Abstract.
Collapse
Affiliation(s)
- Nannan Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cixiu Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Juan Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Hong Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Jingkai Ji
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Jiangli Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Edward C Holmes
- Sydeny Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Weifeng Shi
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| | - Shufa Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
49
|
Dobelmann J, Felden A, Lester PJ. An invasive ant increases deformed wing virus loads in honey bees. Biol Lett 2023; 19:20220416. [PMID: 36651030 PMCID: PMC9845979 DOI: 10.1098/rsbl.2022.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The majority of invasive species are best known for their effects as predators. However, many introduced predators may also be substantial reservoirs for pathogens. Honey bee-associated viruses are found in various arthropod species including invasive ants. We examined how the globally invasive Argentine ant (Linepithema humile), which can reach high densities and infest beehives, is associated with pathogen dynamics in honey bees. Viral loads of deformed wing virus (DWV), which has been linked to millions of beehive deaths around the globe, and black queen cell virus significantly increased in bees when invasive ants were present. Microsporidian and trypanosomatid infections, which are more bee-specific, were not affected by ant invasion. The bee virome in autumn revealed that DWV was the predominant virus with the highest infection levels and that no ant-associated viruses were infecting bees. Viral spillback from ants could increase infections in bees. In addition, ant attacks could pose a significant stressor to bee colonies that may affect virus susceptibility. These viral dynamics are a hidden effect of ant pests, which could have a significant impact on disease emergence in this economically important pollinator. Our study highlights a perhaps overlooked effect of species invasions: changes in pathogen dynamics.
Collapse
Affiliation(s)
- Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm 89081, Germany
| | - Antoine Felden
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
50
|
Zhou D, Liu S, Guo G, He X, Xing C, Miao Q, Chen G, Chen X, Yan H, Zeng J, Zheng Z, Deng H, Weng S, He J. Virome Analysis of Normal and Growth Retardation Disease-Affected Macrobrachium rosenbergii. Microbiol Spectr 2022; 10:e0146222. [PMID: 36445118 PMCID: PMC9769563 DOI: 10.1128/spectrum.01462-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important aquaculture species in China. Growth retardation disease (GRD) is a common contagious disease in M. rosenbergii, resulting in slow growth and precocious puberty in prawns, and has caused growing economic losses in the M. rosenbergii industry. To investigate the viral diversity of M. rosenbergii and identify potentially high-risk viruses linked to GRD, virome analysis of the GRD-affected and normal M. rosenbergii was carried out using next-generation sequencing (NGS). A total of 327 contigs (>500 bp) were related to viral sequences belonging to 23 families/orders and a group of unclassified viruses. The majority of the viral contigs in M. rosenbergii belonged to the order Picornavirales, with the Solinviviridae family being the most abundant in both the diseased and normal groups. Furthermore, 16 RNA viral sequences with nearly complete genomes were characterized and phylogenetically analyzed, belonging to the families Solinviviridae, Flaviviridae, Polycipiviridae, Marnaviridae, and Dicistroviridae as well as three new clades of the order Picornavirales. Notably, the cross-species transmission of a picorna-like virus was observed between M. rosenbergii and plants. The "core virome" seemed to be present in the diseased and normal prawns. Still, a clear difference in viral abundance was observed between the two groups. These results showed that the broad diversity of viruses is present in M. rosenbergii and that the association between viruses and disease of M. rosenbergii needs to be further investigated. IMPORTANCE Growth retardation disease (GRD) has seriously affected the development and economic growth of the M. rosenbergii aquaculture industry. Our virome analysis showed that diverse viral sequences were present in M. rosenbergii, significantly expanding our knowledge of viral diversity in M. rosenbergii. Some differences in viral composition were noted between the diseased and normal prawns, indicating that some viruses become more abundant in occurrences or outbreaks of diseases. In the future, more research will be needed to determine which viruses pose a risk for M. rosenbergii. Our study provides important baseline information contributing to disease surveillance and risk assessment in M. rosenbergii aquaculture.
Collapse
Affiliation(s)
- Dandan Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Guangyu Guo
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyi He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Qijin Miao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Yan
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenwen Zheng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|