1
|
Mothes W. The KT Jeang retrovirology prize 2024: Walther Mothes. Retrovirology 2024; 21:16. [PMID: 39449025 PMCID: PMC11515334 DOI: 10.1186/s12977-024-00649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
|
2
|
Yin P, Martin CK, Kielian M. Virus stealth technology: Tools to study virus cell-to-cell transmission. PLoS Pathog 2024; 20:e1012590. [PMID: 39383183 PMCID: PMC11463765 DOI: 10.1371/journal.ppat.1012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Caroline K. Martin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
3
|
Gunter K, Omoga D, Bowen JM, Gonzalez LR, Severt S, Davis M, Szymanski M, Sandusky G, Duprex WP, Tilston-Lunel NL. A reporter Oropouche virus expressing ZsGreen from the M segment enables pathogenesis studies in mice. J Virol 2024; 98:e0089324. [PMID: 39194249 PMCID: PMC11406970 DOI: 10.1128/jvi.00893-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Oropouche fever caused by Oropouche virus (OROV) is a significant zoonosis in Central and South America. Despite its public health significance, we lack high-throughput diagnostics, therapeutics, and a comprehensive knowledge of OROV biology. Reporter viruses are valuable tools to rapidly study virus dynamics and develop neutralization and antiviral screening assays. OROV is a tri-segmented bunyavirus, which makes generating a reporter virus challenging, as introducing foreign elements into the viral genome typically affects fitness. We previously demonstrated that the non-structural gene NSm on the OROV medium (M) segment is non-essential for replication in vitro. Taking advantage of this, we have now generated a recombinant OROV expressing fluorescent protein ZsGreen in place of NSm. This reporter OROV is both stable and pathogenic in IFNAR-/- mice and provides a powerful tool for OROV pathogenesis studies and assay development.IMPORTANCEEmerging and reemerging infectious agents such as zoonotic bunyaviruses are of global health concern. Oropouche virus (OROV) causes recurring outbreaks of acute febrile illness in the Central and South American human populations. Biting midges are the primary transmission vectors, whereas sloths and non-human primates are their reservoir hosts. As global temperatures increase, we will likely see an expansion in arthropod-borne pathogens such as OROV. Therefore, developing reagents to study pathogen biology to aid in identifying druggable targets is essential. Here, we demonstrate the feasibility and use of a fluorescent OROV reporter in mice to study viral dynamics and pathogenesis. We show that this reporter OROV maintains characteristics such as growth and pathogenicity similar to the wild-type virus. Using this reporter virus, we can now develop methods to assist OROV studies and establish various high-throughput assays.
Collapse
Affiliation(s)
- Krista Gunter
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dorcus Omoga
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James M. Bowen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lorimar Robledo Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sydney Severt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mackenzie Davis
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Megan Szymanski
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - W. Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natasha L. Tilston-Lunel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Lau CY, Martinez-Orengo N, Lyndaker A, Flavahan K, Johnson RF, Shah S, Hammoud DA. Advances and Challenges in Molecular Imaging of Viral Infections. J Infect Dis 2023; 228:S270-S280. [PMID: 37788495 PMCID: PMC10547465 DOI: 10.1093/infdis/jiad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Molecular imaging of viral infection, using a variety of advanced imaging techniques such as optical and nuclear imaging, can and has been used for direct visualization of the virus as well as assessment of virus-host interactions. Unlike imaging of other pathogens such as bacteria and fungi, challenging aspects of imaging viral infections include the small size of viruses, the complexity of viral infection animal models (eg, species dependence), and the high-level containment needs for many high-consequence pathogens, among others. In this review, using representative viral infections, we discuss how molecular imaging can reveal real-time infection dynamics, improve our understanding of disease pathogenesis, and guide optimization of treatment and prevention strategies. Key findings from human and animal studies are highlighted.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neysha Martinez-Orengo
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Lyndaker
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly Flavahan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Swati Shah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Dima A Hammoud
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Kemeter LM, Birzer A, Heym S, Thoma-Kress AK. Milk Transmission of Mammalian Retroviruses. Microorganisms 2023; 11:1777. [PMID: 37512949 PMCID: PMC10386362 DOI: 10.3390/microorganisms11071777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The transmission of viruses from one host to another typically occurs through horizontal or vertical pathways. The horizontal pathways include transmission amongst individuals, usually through bodily fluids or excretions, while vertical transmission transpires from mother to their offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk, including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here, we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted through breast milk, covering various species. We also elaborate on the production and composition of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral transmission.
Collapse
Affiliation(s)
| | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.K.); (A.B.); (S.H.)
| |
Collapse
|
6
|
Haugh KA, Ladinsky MS, Ullah I, Stone HM, Pi R, Gilardet A, Grunst MW, Kumar P, Bjorkman PJ, Mothes W, Uchil PD. In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. eLife 2021; 10:64179. [PMID: 34223819 PMCID: PMC8298093 DOI: 10.7554/elife.64179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous, and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer’s patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood-, and milk-borne retroviruses spanning three routes was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue-resident sentinel macrophages for establishing infection.
Collapse
Affiliation(s)
- Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Helen M Stone
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Alexandre Gilardet
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
7
|
|
8
|
EWI-2 Inhibits Cell-Cell Fusion at the HIV-1 Virological Presynapse. Viruses 2019; 11:v11121082. [PMID: 31757023 PMCID: PMC6950393 DOI: 10.3390/v11121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-to-cell transfer of virus particles at the Env-dependent virological synapse (VS) is a highly efficient mode of HIV-1 transmission. While cell–cell fusion could be triggered at the VS, leading to the formation of syncytia and preventing exponential growth of the infected cell population, this is strongly inhibited by both viral (Gag) and host (ezrin and tetraspanins) proteins. Here, we identify EWI-2, a protein that was previously shown to associate with ezrin and tetraspanins, as a host factor that contributes to the inhibition of Env-mediated cell–cell fusion. Using quantitative fluorescence microscopy, shRNA knockdowns, and cell–cell fusion assays, we show that EWI-2 accumulates at the presynaptic terminal (i.e., the producer cell side of the VS), where it contributes to the fusion-preventing activities of the other viral and cellular components. We also find that EWI-2, like tetraspanins, is downregulated upon HIV-1 infection, most likely by Vpu. Despite the strong inhibition of fusion at the VS, T cell-based syncytia do form in vivo and in physiologically relevant culture systems, but they remain small. In regard to that, we demonstrate that EWI-2 and CD81 levels are restored on the surface of syncytia, where they (presumably) continue to act as fusion inhibitors. This study documents a new role for EWI-2 as an inhibitor of HIV-1-induced cell–cell fusion and provides novel insight into how syncytia are prevented from fusing indefinitely.
Collapse
|
9
|
Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, Bjorkman PJ, Kieffer C. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. eLife 2019; 8:46916. [PMID: 31657719 PMCID: PMC6839903 DOI: 10.7554/elife.46916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Wannisa Khamaikawin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yujin Jung
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Samantha Lin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Lam
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Dong Sung An
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
10
|
Abstract
Single-molecule Förster resonance energy transfer (smFRET) imaging has emerged as a powerful tool to probe conformational dynamics of viral proteins, identify novel structural intermediates that are hiding in averaging population-based measurements, permit access to the energetics of transitions and as such to the precise molecular mechanisms of viral replication. One strength of smFRET is the capability of characterizing biological molecules in their fully hydrated/native state, which are not necessarily available to other structural methods. Elegant experimental design for physiologically relevant conditions, such as intact virions, has permitted the detection of previously unknown conformational states of viral glycoproteins, revealed asymmetric intermediates, and allowed access to the real-time imaging of conformational changes during viral fusion. As more laboratories are applying smFRET, our understanding of the molecular mechanisms and the dynamic nature of viral proteins throughout the virus life cycle are predicted to improve and assist the development of novel antiviral therapies and vaccine design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|