1
|
Verma J, Rath PP, Gourinath S, Subbarao N. Identification of potential novel inhibitors against the SARS-CoV-2 spike protein: targeting RBD and ACE2 interaction. J Biomol Struct Dyn 2025; 43:1027-1037. [PMID: 38063058 DOI: 10.1080/07391102.2023.2291161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 01/01/2025]
Abstract
The SARS-CoV-2, responsible for the COVID-19 pandemic has wrecked devastation throughout the globe. The SARS-CoV-2 spike (S) glycoprotein plays crucial role in virus attachment, fusion, and entry. This study aims to identify inhibitors targeting the receptor binding domain (RBD) of the S protein using computational and experimental techniques. We carried out virtual screening of four datasets against the S-RBD. Six potential candidate inhibitors were selected for experimental evaluation. Here, we provide experimental evidence that the molecules 9‴-MethyllithosperMate, Epimedin A, Pentagalloylglucose, and Theaflavin-3-gallate have a high binding affinity towards SARS-CoV-2 S-RBD. 9‴-MethyllithosperMate with a KD value of 1.3 nM serves as the best inhibitor, followed by others with KD values in micromolar range. We performed molecular dynamics simulation to assess the binding stability of these inhibitors. Hence, our study reports novel inhibitors against the SARS-CoV-2 S-RBD and their predicted binding mode also suggest the possibility to interfere with the ACE2 binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Lall S, Balaram P, Mathew MK, Gosavi S. Sequence of the SARS-CoV-2 Spike Transmembrane Domain Encodes Conformational Dynamics. J Phys Chem B 2025; 129:194-209. [PMID: 39692154 DOI: 10.1021/acs.jpcb.4c05270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The homotrimeric SARS-CoV-2 spike protein enables viral infection by undergoing a large conformational transition, which facilitates the fusion of the viral envelope with the host cell membrane. The spike protein is anchored to the SARS-CoV-2 envelope by its transmembrane domain (TMD), composed of three TM helices, each contributed by one of the protomers of spike. Although the TMD is known to be important for viral fusion, whether it is a passive anchor of the spike or actively promotes fusion remains unknown. Specifically, it is unclear if the TMD and its dynamics facilitate the prefusion to postfusion conformational transition of the spike. Here, we computationally study the dynamics and self-assembly of the SARS-CoV-2 spike TMD in homogeneous POPC and cholesterol containing membranes. Atomistic simulations of a long TM helix-containing protomer segment show that the membrane-embedded segment bobs, tilts and gains and loses helicity, locally thinning the membrane. Coarse-grained multimerization simulations using representative TM helix structures from the atomistic simulations exhibit diverse trimer populations whose architecture depends on the structure of the TM helix protomer. While a symmetric conformation reflects the symmetry of the resting spike, an asymmetric TMD conformation could promote membrane fusion through the stabilization of a fusion intermediate. Together, our simulations demonstrate that the sequence and length of the SARS-CoV-2 spike TM segment make it inherently dynamic, that trimerization does not abrogate these dynamics and that the various observed TMD conformations may enable viral fusion.
Collapse
Affiliation(s)
- Sahil Lall
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - M K Mathew
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
3
|
Latinne A, Hu B, Olival KJ, Zhu G, Zhang LB, Li H, Chmura AA, Field HE, Zambrana-Torrelio C, Epstein JH, Li B, Zhang W, Wang LF, Shi ZL, Daszak P. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun 2024; 15:10705. [PMID: 39702450 DOI: 10.1038/s41467-024-55384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 589 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.
Collapse
Affiliation(s)
- Alice Latinne
- EcoHealth Alliance, New York, New York, USA
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | - Ben Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Li-Biao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | | |
Collapse
|
4
|
Ma X, Cui H, Huang Y, Ma S, Chen H. Molecular detection and evolutionary analysis of porcine epidemic diarrhea virus in Henan and Shaanxi provinces in China. Arch Virol 2024; 170:20. [PMID: 39688728 DOI: 10.1007/s00705-024-06201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is a highly contagious and devastating enteric disease of pigs characterized by diarrhea, dehydration and 80-100% mortality in piglets, leading to substantial economic losses in the global swine industry. To investigate the prevalence of PEDV in Henan and Shaanxi provinces of China from 2022 to 2023, a total of 87 clinical samples (including intestinal tissues and faeces) were collected from diseased piglets during outbreaks of diarrhea on pig farms. Of the 87 samples, 32 (36.7%) tested positive for PEDV by RT-PCR, and the complete S gene from nine positive samples and the ORF3 gene from 11 positive samples, all from different farms, were subsequently sequenced. Phylogenetic analysis based on S gene sequences showed that most of the nine PEDV isolates sequenced belonged to the G2a clade and were most closely related to variant strains of PEDV. However, two strains from Shaanxi (CH-SX1-2023 and CH-SX2-2023) belonged to the G2b subtype, and one strain from Henan (CH-HNC2-2023) belonged to the S-INDEL branch. Amino acid sequence comparisons showed that there were several amino acid substitutions and deletions in the S and ORF3 proteins of the PEDV strains from Henan and Shaanxi compared to the CV777 vaccine strain. Some of these mutations occurred in neutralizing epitopes, particularly COE and might therefore be associated with the ineffective protection provided by existing vaccines. These results will provide insights for better understanding of the epidemiological situation of PEDV in Henan and Shaanxi provinces between 2022 and 2023, and this information also contributes to the development of new strategies for the prevention and control of variant PEDV strains.
Collapse
Affiliation(s)
- Xiao Ma
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China
| | - Hongbo Cui
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China
| | - Yanfei Huang
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China
| | - Shijie Ma
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China.
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Hongying Chen
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China.
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
6
|
Qing E, Salgado J, Wilcox A, Gallagher T. SARS-CoV-2 Omicron variations reveal mechanisms controlling cell entry dynamics and antibody neutralization. PLoS Pathog 2024; 20:e1012757. [PMID: 39621785 PMCID: PMC11637440 DOI: 10.1371/journal.ppat.1012757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane "S2" domains, yet we found that substitutions in peripheral "S1" domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry-fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Julisa Salgado
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Alexandria Wilcox
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
7
|
Lv L, Luo H, Zhang M, Wu C, Jiang Y, Tong W, Li G, Zhou Y, Li Y, Wang Z, Liu C. Comprehensive transcriptomic analysis identifies cholesterol transport pathway as a therapeutic target of porcine epidemic diarrhea coronavirus. Virus Res 2024; 350:199502. [PMID: 39580000 PMCID: PMC11625352 DOI: 10.1016/j.virusres.2024.199502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus that poses a serious threat to the global pig industry. Despite extensive efforts, the mechanism underlying virus entry for PEDV remains elusive. In this study, we first identified PEDV-susceptible and non-susceptible cell lines by using PEDV spike pseudotyped vesicular stomatitis virus. Subsequently, we conducted a comprehensive transcriptomic analysis on these cell lines. Through integrating differential expression gene analysis with weighted gene co-expression network analysis, we identified the key pathways that are correlated with the PEDV entry. Our analysis revealed a strong correlation between cholesterol, sterols, and lipid transport with PEDV entry, suggesting a potential role for cholesterol transport in the PEDV entry. For further investigation, we treated Huh7, Vero and LLC-PK1 cells with a cholesterol transport inhibitor, ezetimibe, and observed a significant inhibition of PEDV entry and subsequent viral replication in these cells. Interestingly, pre-treating Huh7 cells with ezetimibe resulted in an increase in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses. Moreover, we found that cholesterol could facilitate the entry of PEDV into Huh7 and Vero cells, and this promoting effect can be blocked by ezetimibe. These findings suggest that targeting cholesterol transport specifically inhibits PEDV entry into susceptible cells. Our study offers novel insights into the mechanism of PEDV entry and the development of new therapeutic strategies against this economically important virus.
Collapse
Affiliation(s)
- Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Chuntao Wu
- Office of Academic Research, Dongying Vocational Institute, Dongying 257091, PR China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China.
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
8
|
Wang C, Zhang Y, Yang C, Ren W, Qiu C, Fan S, Ding Q, Lan J. Receptor binding mechanism and immune evasion capacity of SARS-CoV-2 BQ.1.1 lineage. Virology 2024; 600:110241. [PMID: 39270455 DOI: 10.1016/j.virol.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The global spread of COVID-19 remains a significant threat to human health. The SARS-CoV-2 BQ.1.1 lineage, including BA.5.2, BF.7, BQ.1 and BQ.1.1, caused a new soaring of infection cases due to rapid transmission. However, the receptor binding mechanism and immune evasion capacity of these variants need to be explored further. Our study found that while the BA.5.2, BF.7 and BQ.1.1 variants pseudovirus had similar cell entry efficiency, the BF.7 and BQ.1.1 RBD bound to human ACE2 (hACE2) with a slightly stronger affinity than the BA.5.2 RBD. Structural analysis revealed R346T, K444T, and N460K mutations altered RBD-hACE2 binding interface details and surface electrostatic potential of BQ.1.1 RBD. Serum neutralization tests showed BQ.1.1 variant had stronger immune evasion capacity than BA.5.2 and BF.7 variants. Our findings illustrated the receptor binding mechanism and serological neutralization activity of the BA.5.2, BF.7 and BQ.1.1 variants, which verified the necessity for further antibody therapy optimization and vaccination development.
Collapse
Affiliation(s)
- Chenghai Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yu Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Chen Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Wenlin Ren
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Chenguang Qiu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shilong Fan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jun Lan
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
9
|
Jermsutjarit P, Venkateswaran D, Indrawattana N, Na Plord J, Tantituvanont A, Nilubol D. The development of a lateral flow immunochromatographic test strip for measurement of specific IgA and IgG antibodies level against porcine epidemic diarrhea virus in pig milk. Vet Q 2024; 44:1-15. [PMID: 39568374 PMCID: PMC11583322 DOI: 10.1080/01652176.2024.2429472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe enteric disease and high mortality in neonatal piglets, leading to significant economic losses in the swine industry. Considering that passive lactogenic immunity is crucial for preventing infection in piglets, necessitating a rapid and accurate tool to measure immunity levels. This study aims to develop a lateral flow immunochromatographic strip (LFICS) to assess IgA and IgG antibodies in colostrum and milk, using PEDV S protein. The performance of LFICS was compared to viral neutralization (VN) and enzyme-linked immunosorbent assay (ELISA) as reference methods, with a visual scoring system applied for field monitoring. Colostrum (n = 82) and milk (n = 106) samples were analyzed, showing strong correlation with reference methods and no cross-reactivity with other pig pathogens. The LFICS exhibited high relative sensitivity (Se) and specificity (Sp), with colostrum showing 98.73% Se and 66.67% Sp for IgA, and 96.15% Se and 75.00% Sp for IgG. Milk demonstrated 95.60% Se and 80.00% Sp for IgA, and 84.88% Se and 85.00% Sp for IgG. These findings indicate that the LFICS is a reliable, simple, and rapid method for measuring PEDV-specific IgA and IgG levels, offering valuable support for monitoring herd immunity and evaluating vaccination programs.
Collapse
Affiliation(s)
- Patumporn Jermsutjarit
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Biomedical Research Incubator Unit, Department of Research, Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Wang J, Ziarnik M, Zhang XF, Jagota A. Biomechanics Model to Characterize Atomic Force Microscopy-Based Virus-Host Cell Adhesion Measurements. J Phys Chem B 2024; 128:11546-11553. [PMID: 39316705 PMCID: PMC11613445 DOI: 10.1021/acs.jpcb.4c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
We present a model for virus-cell adhesion that can be used for quantitative extraction of adhesive properties from atomic force microscopy (AFM)-based force spectroscopy measurements. We extend a previously reported continuum model of viral cell interactions based on a single parameter representing adhesive energy density by using a cohesive zone model in which adhesion is represented by two parameters, a pull-off stress and associated characteristic displacement. This approach accounts for the deformability of the adhesive receptors, such as the Spike protein and transmembrane immunoglobulin and mucin domain (TIM) family that mediate adhesion of SARS-CoV-2 and Ebola viruses, and the omnipresent glycocalyx. Our model represents receptors as a Winkler foundation and aims to predict the pull-off force needed to break the adhesion between the virus and the cell. By comparing the force-separation curves simulated by the model and experimental data, we found that the model can effectively explain the AFM pull-off force trace, thus allowing quantification of the adhesion parameters. Our model provides a more refined understanding of viral cell adhesion and also establishes a framework for interpreting and predicting AFM force spectroscopy measurements.
Collapse
Affiliation(s)
- Jiajun Wang
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Matthew Ziarnik
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - X. Frank Zhang
- Department
of Biomedical Engineering, University of
Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Anand Jagota
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
11
|
Kobayashi J, Kanou K, Okura H, Akter TMST, Fukushi S, Matsuyama S. Biochemical analysis of packing and assembling heptad repeat motifs in the coronavirus spike protein trimer. mBio 2024; 15:e0120324. [PMID: 39440974 PMCID: PMC11559096 DOI: 10.1128/mbio.01203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
During a coronavirus infection, the spike protein undergoes sequential structural transitions triggered by its receptor and the host protease at the interface between the virus and cell membranes, thereby mediating membrane fusion. After receptor binding, the heptad repeat motif (HR1/HR2) within the viral spike protein bridges the viral and cellular membranes; however, the intermediate conformation adopted by the spike protein when drawing the viral and cellular membranes into close proximity remains unclear due to its transient and unstable nature. Here, we experimentally induced conformational changes in the spike protein of a murine coronavirus by incubating the virus with its receptor, followed by exposure to trypsin. We then treated the virus/receptor complex with proteinase K to probe the tightly packed core structure of the spike protein. The conformations of the spike protein were predicted from the sizes of the protease digestion products detected by western blot analysis. Upon receptor binding, two bands (each showing different reactivity with a fusion-inhibiting HR2-peptide) were detected; we propose that these bands correspond to the packed and unpacked HR1/HR2 motifs. After trypsin-mediated triggering, measurement of temperature and time dependency revealed that packing of the remaining unpacked HR1/HR2 motifs and assembly of three HR1 motifs in a trimer occur almost simultaneously. Thus, the trimeric spike protein adopts an asymmetric-unassembled conformation after receptor binding, followed by direct assembly into the post-fusion form triggered by the host protease. This biochemical study provides mechanistic insight into the previously unknown intermediate structure of the viral fusion protein.IMPORTANCEDuring infection by an enveloped virus, receptor binding triggers fusion between the cellular membrane and the virus envelope, enabling delivery of the viral genome to the cytoplasm. The viral spike protein mediates membrane fusion; however the molecular mechanism underlying this process is unclear. This is because using structural biology methods to track the transient conformational changes induced in the unstable spike trimer is challenging. Here, we harnessed the ability of protease enzymes to recognize subtle differences on protein surfaces, allowing us to detect structural differences in the spike protein before and after conformational changes. Differences in the size of the degradation products were analyzed by western blot analysis. The proposed model explaining the conformational changes presented herein is a plausible candidate that provides valuable insight into unanswered questions in the field of virology.
Collapse
Affiliation(s)
- Jun Kobayashi
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Kanou
- Department of Quality Assurance, Radiation Safety, and Information Management, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiyori Okura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tahmina MST Akter
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shutoku Matsuyama
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
12
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson SI, Manamela NP, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and characterization of a pan-betacoronavirus S2-binding antibody. Structure 2024; 32:1893-1909.e11. [PMID: 39326419 PMCID: PMC11560675 DOI: 10.1016/j.str.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibodies, Viral/chemistry
- Mice
- COVID-19/immunology
- COVID-19/virology
- Cryoelectron Microscopy
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Models, Molecular
- Protein Binding
- Epitopes/immunology
- Epitopes/chemistry
- Antibody-Dependent Cell Cytotoxicity
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandria A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., 53100 Siena, Italy; VisMederi S.r.l, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Gugulothu P, Bhukya R. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 39508163 DOI: 10.1080/10255842.2024.2404149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
The SARS-CoV-2 virus reportedly originated in Wuhan in 2019, causing the coronavirus outbreak (COVID-19), which was technically designated as a global epidemic. Numerous studies have been carried out to diagnose and treat COVID-19 throughout the midst of the disease's spread. However, the genetic similarity between COVID-19 and other types of coronaviruses makes it challenging to differentiate between them. Therefore it's essential to swiftly identify if an epidemic is brought on by a brand-new virus or a well-known disease. In the present article, the DeepCoV deep-learning (DL) approach utilizes layered convolutional neural networks (CNNs) to classify viral serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) besides other viral diseases. Additionally, various motifs linked with SARS-CoV-2 can be located by examining the computational filter processes. In identifying these important motifs, DeepCoV reveals the transparency of CNNs. Experiments were conducted using the 2019nCoVR datasets, and the results indicate that DeepCoV performed more accurately than several benchmark ML models. Additionally, DeepCoV scored its maximum area under the precision-recall curve (AUCPR) and receiver operating characteristic curve (AUC-ROC) at 98.62% and 98.58%, respectively. Overall, these investigations provide strong knowledge of the employment of deep learning (DL) algorithms as a crucial alternative to identifying SARS-CoV-2 and identifying patterns of disease in the SARS-CoV-2 genes.
Collapse
Affiliation(s)
- Praveen Gugulothu
- Computer Science and Engineering, National Institute of Technology, Warangal, India
| | - Raju Bhukya
- Computer Science and Engineering, National Institute of Technology, Warangal, India
| |
Collapse
|
14
|
Zehr JD, Kosakovsky Pond SL, Shank SD, McQueary H, Grenier JK, Whittaker GR, Stanhope MJ, Goodman LB. Positive selection, genetic recombination, and intra-host evolution in novel equine coronavirus genomes and other members of the Embecovirus subgenus. Microbiol Spectr 2024; 12:e0086724. [PMID: 39373506 PMCID: PMC11542594 DOI: 10.1128/spectrum.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
There are several examples of coronaviruses in the Betacoronavirus subgenus Embecovirus that have jumped from an animal to the human host. Studying how evolutionary factors shape coronaviruses in non-human hosts may provide insight into the coronavirus host-switching potential. Equids, such as horses and donkeys, are susceptible to equine coronaviruses (ECoVs). With increased testing prevalence, several ECoV genome sequences have become available for molecular evolutionary analyses, especially those from the United States of America (USA). To date, no analyses have been performed to characterize evolution within coding regions of the ECoV genome. Here, we obtain and describe four new ECoV genome sequences from infected equines from across the USA presenting clinical symptoms of ECoV, and infer ECoV-specific and Embecovirus-wide patterns of molecular evolution. Within two of the four data sets analyzed, we find evidence of intra-host evolution within the nucleocapsid (N) gene, suggestive of quasispecies development. We also identify 12 putative genetic recombination events within the ECoV genome, 11 of which fall in ORF1ab. Finally, we infer and compare sites subject to positive selection on the ancestral branch of each major Embecovirus member clade. Specifically, for the two currently identified human coronavirus (HCoV) embecoviruses that have spilled from animals to humans (HCoV-OC43 and HCoV-HKU1), we find that there are 42 and 2 such sites, respectively, perhaps reflective of the more complex ancestral evolutionary history of HCoV-OC43, which involves several different animal hosts.IMPORTANCEThe Betacoronavirus subgenus Embecovirus contains coronaviruses that not only pose a health threat to animals and humans, but also have jumped from animal to human host. Equids, such as horses and donkeys are susceptible to equine coronavirus (ECoV) infections. No studies have systematically examined evolutionary patterns within ECoV genomes. Our study addresses this gap and provides insight into intra-host ECoV evolution from infected horses. Further, we identify and report natural selection pattern differences between two embecoviruses that have jumped from animals to humans [human coronavirus OC43 and HKU1 (HCoV-OC43 and HCoV-HKU1, respectively)], and hypothesize that the differences observed may be due to the different animal host(s) that each virus circulated in prior to its jump into humans. Finally, we contribute four novel, high-quality ECoV genomes to the scientific community.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Stephen D. Shank
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Holly McQueary
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Jennifer K. Grenier
- Cornell Institute of
Biotechnology, Transcriptional Regulation and Expression
Facility, Ithaca,
New York, USA
| | - Gary R. Whittaker
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Michael J. Stanhope
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Laura B. Goodman
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| |
Collapse
|
15
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Wang SF, Chen HL, Liu FT. Galectins and Host-Pathogen Interactions: The roles in viral infections. Semin Immunol 2024; 76:101911. [PMID: 39580998 DOI: 10.1016/j.smim.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Galectins, a family of carbohydrate-binding proteins, play crucial roles in the host-virus interaction landscape. This review explores the multifaceted contributions of endogenous galectins to various stages of the viral lifecycle, including attachment, replication, assembly, and release of progeny virions. Recent studies have indicated that viral infections can induce the expression and secretion of specific galectins, with elucidated signaling pathways in some cases, enhancing our understanding of their regulatory mechanisms. While many studies have focused on the effects of exogenous recombinant galectins, there is growing interest in the intrinsic functions of endogenous galectins, particularly through genetic alterations in cellular models. This review highlights the need for further research to uncover the complex roles of galectins in modulating viral infections and emphasizes their potential as therapeutic targets in the fight against viral diseases. Understanding these interactions could pave the way for novel strategies to enhance host defense mechanisms and mitigate viral pathogenesis.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-Tong Liu
- Department of Dermatology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
17
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
18
|
Ojha R, Jiang A, Mäntylä E, Quirin T, Modhira N, Witte R, Gaudin A, De Zanetti L, Gormal RS, Vihinen-Ranta M, Mercer J, Suomalainen M, Greber UF, Yamauchi Y, Lozach PY, Helenius A, Vapalahti O, Young P, Watterson D, Meunier FA, Joensuu M, Balistreri G. Dynamin independent endocytosis is an alternative cell entry mechanism for multiple animal viruses. PLoS Pathog 2024; 20:e1012690. [PMID: 39541404 PMCID: PMC11594517 DOI: 10.1371/journal.ppat.1012690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mammalian receptor-mediated endocytosis (RME) often involves at least one of three isoforms of the large GTPase dynamin (Dyn). Dyn pinches-off vesicles at the plasma membrane and mediates uptake of many viruses, although some viruses directly penetrate the plasma membrane. RME is classically interrogated by genetic and pharmacological interference, but this has been hampered by undesired effects. Here we studied virus entry in conditional genetic knock-out (KO) mouse embryonic fibroblasts lacking expression of all three dynamin isoforms (Dyn-KO-MEFs). The small canine parvovirus known to use a single receptor, transferrin receptor, strictly depended on dynamin. Larger viruses or viruses known to use multiple receptors, including alphaviruses, influenza, vesicular stomatitis, bunya, adeno, vaccinia, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinoviruses infected Dyn-KO-MEFs, albeit at higher dosage than wild-type MEFs. In absence of the transmembrane protease serine subtype 2 (TMPRSS2), which normally activates the SARS-CoV-2 spike protein for plasma membrane fusion, SARS-CoV-2 infected angiotensin-converting enzyme 2 (ACE2)-expressing MEFs predominantly through dynamin- and actin-dependent endocytosis. In presence of TMPRSS2 the ancestral Wuhan-strain bypassed both dynamin-dependent and -independent endocytosis, and was less sensitive to endosome maturation inhibitors than the Omicron B1 and XBB variants, supporting the notion that the Omicron variants do not efficiently use TMPRSS2. Collectively, our study suggests that dynamin function at endocytic pits can be essential for infection with single-receptor viruses, while it is not essential but increases uptake and infection efficiency of multi-receptor viruses that otherwise rely on a functional actin network for infection.
Collapse
Affiliation(s)
- Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elina Mäntylä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tania Quirin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Naphak Modhira
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Arnaud Gaudin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lisa De Zanetti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Rachel Sarah Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre-Yves Lozach
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France
| | - Ari Helenius
- Department of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Paul Young
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Yang M, Li Z, Chen J, Li Y, Xu R, Wang M, Xu Y, Chen R, Ji W, Li X, Wei J, Zhou Z, Ren M, Ma K, Guan J, Mo G, Zhou P, Shu B, Guo J, Yuan Y, Shi ZL, Zhang S. Structural basis for human DPP4 receptor recognition by a pangolin MERS-like coronavirus. PLoS Pathog 2024; 20:e1012695. [PMID: 39514585 DOI: 10.1371/journal.ppat.1012695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and the pangolin MERS-like coronavirus MjHKU4r-CoV-1 employ dipeptidyl peptidase 4 (DPP4) as an entry receptor. MjHKU4r-CoV-1 could infect transgenic mice expressing human DPP4. To understand the mechanism of MjHKU4r-CoV-1 entry into cells, we determined the crystal structures of the receptor binding domain (RBD) of MjHKU4r-CoV-1 spike protein bound to human DPP4 (hDPP4) and Malayan pangolin DPP4 (MjDPP4), respectively. The overall hDPP4-binding mode of MjHKU4r-CoV-1 RBD is similar to that of MERS-CoV RBD. MjHKU4r-CoV-1 RBD shows higher binding affinity to hDPP4 compared to the bat MERS-like coronavirus Ty-BatCoV-HKU4. Via swapping residues between MjHKU4r-CoV-1 RBD and Ty-BatCoV-HKU4 RBD, we identified critical determinants on MjHKU4r-CoV-1 that are responsible for virus usage of hDPP4. Our study suggests that MjHKU4r-CoV-1 is more adapted to the human receptor compared to the bat HKU4 coronavirus and highlights the potential of virus emergence into the human population.
Collapse
Affiliation(s)
- Mo Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zehou Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Meihua Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Weiwei Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxia Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhengrong Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Minjie Ren
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ke Ma
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Guan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Bo Shu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Yuan Yuan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shuijun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Lee YJ, Easwaran M, Jung YS, Qian Y, Shin HJ. Enhanced Humoral and Cellular Immune Responses Elicited by Adenoviral Delivery of SARS-CoV-2 Receptor-Binding Motif Fused to Human Fc. Vaccines (Basel) 2024; 12:1247. [PMID: 39591150 PMCID: PMC11598816 DOI: 10.3390/vaccines12111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The receptor binding motif (RBM) of the SARS-CoV-2 spike protein is critical for viral entry into host cells. Development of a vaccine targeting this region is a promising strategy for COVID-19 prevention. To enhance the immunogenicity of SARS-CoV-2 vaccines, we developed an adenoviral vector expressing the RBM from the SARS-CoV-2 spike protein that fused to the human Fc (hFc) domain. Methods: The recombinant RBM_hFc fusion protein was successfully cloned into the pacAd5CMV-N-pA (pAd5) vector and expressed in HEK293 cells as a ~40 kDa protein. A recombinant adenovirus encoding RBM_hFc was subsequently generated and confirmed by cytopathic effect assay. Results: Western blot analysis verified the expression of RBM_hFc in the adenovirus (AdV). ELISA assays, validated for IgG detection, demonstrated a twofold increase in IgG antibody levels (M-1.090 at 450 nm; SD-±0.326; and 95% CI-0.250 [0.839 to 1.340]) in sera from BALB/c mice immunized with Ad/RBM_hFc, compared to the negative control group. Result suggests a robust humoral immune response induced by the Ad/RBM_hFc vaccine. Moreover, ELISpot assays demonstrated a tenfold increase in IFN-γ -producing cells (M-440 spot-forming cells; SD-±124.976; and 95% CI-75.522 [364.478 to 515.522]) in mice immunized with AdV/RBM_hFc compared to the negative control group. Result proved that AdV/RBM_hFc-stimulated a robust cellular immune response in animal model. Conclusions: Our findings indicate that the RBM_hFc fusion protein enhances both humoral and cellular immune responses. These results suggest the potential of adenoviral vectors carrying RBM_hFc as vaccine candidates. However, comprehensive evaluation of the protective efficacy of these adenoviral vectors will necessitate rigorous experimental studies.
Collapse
Affiliation(s)
- Yea-Jin Lee
- Laboratory of Infectious Disease, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.-S.J.); (Y.Q.)
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.-S.J.); (Y.Q.)
| | - Hyun-Jin Shin
- Laboratory of Infectious Disease, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| |
Collapse
|
21
|
Ye G, Bu F, Saxena D, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Du L, Liu B, Zheng J, Li F. Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate. PLoS Pathog 2024; 20:e1012726. [PMID: 39591462 PMCID: PMC11630572 DOI: 10.1371/journal.ppat.1012726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/10/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Kentucky, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Jian Zheng
- Center for Predictive Medicine, University of Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
22
|
Li D, Li C, Chen Q, Zhou H, Zhong Z, Huang Z, Liu H, Li X. Generalizing a Ligation Site at the N-Glycosylation Sequon for Chemical Synthesis of N-Linked Glycopeptides and Glycoproteins. J Am Chem Soc 2024; 146:29017-29027. [PMID: 39390739 DOI: 10.1021/jacs.4c09996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemical synthesis can generate homogeneous glycoproteins with well-defined and modifiable glycan structures at designated sites. The precision and flexibility of the chemical synthetic approach provide a solution to the heterogeneity problem of glycopeptides/glycoproteins obtained through biological approaches. In this study, we reported that the conserved N-glycosylation sequon (Asn-Xaa-Ser/Thr) of glycoproteins can serve as a general site for performing Ser/Thr ligation to achieve N-linked glycoprotein synthesis. We developed an N + 2 strategy to prepare the corresponding glycopeptide salicylaldehyde esters for Ser/Thr ligation and demonstrated that Ser/Thr ligation at the sequon was not affected by the steric hindrance brought about by the large-sized glycan structures. The effectiveness of this strategy was showcased by the total synthesis of the glycosylated receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Can Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Qiushi Chen
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR 999077, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zhixiang Zhong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zirong Huang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
23
|
Yu Q, Zhu Q, Huang X, Wu J, Zhou Q, Chen T, Zhu C, Ding L, Deng G, Wang Y, Zhang Z, Zhang B. Preparation of bovine coronavirus virus-like particles and its immunogenicity in mice and cattle. Microb Pathog 2024; 197:107062. [PMID: 39442811 DOI: 10.1016/j.micpath.2024.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The widespread prevalence of bovine coronavirus (BCoV) disease worldwide has impacted the livestock industry economically. No effective vaccine is available in China. In this study, we produced BCoV virus-like particles (VLPs) containing E, M, N, S, and hemagglutinin-esterase (HE) proteins using a baculovirus expression system. Five recombinant baculoviruses were co-infected with Sf9 cells, and the VLPs were assembled and characterized. Mice and cattle were immunized by VLPs mixed with MF59 and CpG 55.2 adjuvants. Two doses of the VLPs/MF59/CpG vaccine were administered in mice and cattle. The immune effect of the VLPs/MF59/CpG vaccine was measured using indirect ELISA and neutralization assays. After immunization, the serum IgG-specific antibody titer against S protein and neutralization antibody titer increased to 1:1.28 × 104 (p < 0.01) and 1:128 (p < 0.01) in mice, respectively. Interestingly, the high IgG antibody and neutralizing antibody titers were maintained for seven days in mice. In addition, the serum IgG-specific antibody titer against S proteins and neutralization antibody titer increased to 1:1.024 × 105 and 1:512 (p < 0.05) in cattle, respectively. The high IgG antibody and neutralizing antibody titers were maintained for 21 days in cattle. Notably, BCoV VLPs group interferon-gamma (IFN-γ) lymphocytes in spleens were significantly increased (p < 0.01). These findings suggest that BCoV VLPs induced strong cellular and humoral immune responses in mice and cattle. These findings suggest that BCoV VLPs could serve as a potent immunogen for vaccine development.
Collapse
Affiliation(s)
- Qisheng Yu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qing Zhu
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefecture, Kangding, 626000, China.
| | - Xiangyue Huang
- Animal Husbandry Science Institute of Aba Autonomous Prefecture, Hongyuan, 624400, China.
| | - Jinbo Wu
- Animal Husbandry Science Institute of Aba Autonomous Prefecture, Hongyuan, 624400, China.
| | - Qun Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Taoyun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Chenxi Zhu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Lu Ding
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Gunan Deng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Yi Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Zhaohui Zhang
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefecture, Kangding, 626000, China.
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
24
|
Okeke KI, Ahamefule CS, Nnabuife OO, Orabueze IN, Iroegbu CU, Egbe KA, Ike AC. Antiseptics: An expeditious third force in the prevention and management of coronavirus diseases. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100293. [PMID: 39497935 PMCID: PMC11532748 DOI: 10.1016/j.crmicr.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Notably, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19) have all had significant negative impact on global health and economy. COVID-19 alone, has resulted to millions of deaths with new cases and mortality still being reported in its various waves. The development and use of vaccines have not stopped the transmission of SARS coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, even among vaccinated individuals. The use of vaccines and curative drugs should be supplemented with adoption of simple hygiene preventive measures in the fight against the spread of the virus, especially for healthcare workers. Several virucidal topical antiseptics, such as povidone-iodine (PVP-I), citrox, cyclodextrins among others, have been demonstrated to be efficacious in the inactivation of SARS-CoV-2 and other coronaviruses in both in vitro and in vivo studies. The strategic application of these virucidal formulations could provide the additional impetus needed to effectively control the spread of the virus. We have here presented a simple dimension towards curtailing the dissemination of COVID-19, and other coronaviruses, through the application of effective oral, nasal and eye antiseptics among patients and medical personnel. We have further discussed the mechanism of action of some of these commonly available virucidal solutions while also highlighting some essential controversies in their use.
Collapse
Affiliation(s)
- Kizito I. Okeke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Chukwuemeka Samson Ahamefule
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Obianuju O. Nnabuife
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Ibuchukwu N. Orabueze
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Christian U. Iroegbu
- Department of Microbiology, Cross River University of Technology, Calabar, Cross River State, Nigeria
| | - Kingsley A. Egbe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Anthony C. Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| |
Collapse
|
25
|
Zhang L, Yang X, Shi H, Zhang J, Feng T, Liu D, Zhang X, Chen J, Shi D, Feng L. Identification of two novel B-cell epitopes located on the spike protein of swine acute diarrhea syndrome coronavirus. Int J Biol Macromol 2024; 278:135049. [PMID: 39182883 DOI: 10.1016/j.ijbiomac.2024.135049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging alpha-coronavirus that causes diarrhea in piglets and results in serious economic losses. During SADS-CoV infection, the spike protein (S) serves as a crucial structural component of the virion, interacting with receptors and eliciting the production of neutralizing antibodies. Due to the potential risk of zoonotic transmission of SADS-CoV, the identification and screening of epitopes on the S glycoproteins will be crucial for development of sensitive and specific diagnostic tools. In this study, we immunized BALB/c mice with recombinant SADS-CoV S trimer protein and generated two S1-specific monoclonal antibodies (mAbs): 8D6 and 6E9, which recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 8D6 was mapped to 311NPDQRD316, the minimal fragment recognized by mAb 6E9 was mapped to 492ARFVDRL498. Homology analysis of the regions corresponding to 13 typical strains of different SADS-CoV subtypes showed high conservation of these two epitopes. These findings contribute to a deeper understanding of the structure of the SADS-CoV S protein, which is valuable for vaccine design and holds potential for developing diagnostic methods to detect SADS-CoV.
Collapse
Affiliation(s)
- Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
26
|
Lin KJ, Turner KC, Rosario M, Harnisch LO, Davis JD, DiCioccio AT. Population Pharmacokinetics of Casirivimab and Imdevimab in Pediatric and Adult Non-Infected Individuals, Pediatric and Adult Ambulatory or Hospitalized Patients or Household Contacts of Patients Infected with SARS-COV-2. Pharm Res 2024; 41:1933-1949. [PMID: 39294447 PMCID: PMC11530482 DOI: 10.1007/s11095-024-03764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Casirivimab (CAS) and imdevimab (IMD) are two fully human monoclonal antibodies that bind different epitopes on the receptor binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and block host receptor interactions. CAS + IMD and was developed for the treatment and prevention of SARS-CoV-2 infections. METHODS A population pharmacokinetic (PopPK) analysis was conducted using pooled data from 7598 individuals from seven clinical studies to simultaneously fit concentration-time data of CAS and IMD and investigate selected covariates as sources of variability in PK parameters. The dataset comprised CAS + IMD-treated pediatric and adult non-infected individuals, ambulatory or hospitalized patients infected with SARS-CoV-2, or household contacts of patients infected with SARS-CoV-2. RESULTS CAS and IMD concentration-time data were both appropriately described simultaneously by a two-compartment model with first-order absorption following subcutaneous dose administration and first-order elimination. Clearance estimates of CAS and IMD were 0.193 and 0.236 L/day, respectively. Central volume of distribution estimates were 3.92 and 3.82 L, respectively. Among the covariates identified as significant, body weight and serum albumin had the largest impact (20-34%, and ~ 7-31% change in exposures at extremes, respectively), while all other covariates resulted in small differences in exposures. Application of the PopPK model included simulations to support dose recommendations in pediatrics based on comparable exposures of CAS and IMD between different weight groups in pediatrics and adults following weight-based dosing regimens. CONCLUSIONS This analysis provided important insights to characterize CAS and IMD PK simultaneously in a diverse patient population and informed pediatric dose selection.
Collapse
Affiliation(s)
- Kuan-Ju Lin
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| | - Kenneth C Turner
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Maria Rosario
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lutz O Harnisch
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - John D Davis
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - A Thomas DiCioccio
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
27
|
Ma X, Zheng H, Chen H, Ma S, Wei Z. Porcine epidemic diarrhea virus: A review of detection, inhibition of host gene expression and evasion of host innate immune. Microb Pathog 2024; 195:106873. [PMID: 39173850 DOI: 10.1016/j.micpath.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.
Collapse
Affiliation(s)
- Xiao Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihua Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, China
| | - Hongying Chen
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Shijie Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Ferreira JC, Villanueva AJ, Al Adem K, Fadl S, Alzyoud L, Ghattas MA, Rabeh WM. Identification of novel allosteric sites of SARS-CoV-2 papain-like protease (PLpro) for the development of COVID-19 antivirals. J Biol Chem 2024; 300:107821. [PMID: 39342997 PMCID: PMC11538808 DOI: 10.1016/j.jbc.2024.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
Coronaviruses such as SARS-CoV-2 encode a conserved papain-like protease (PLpro) that is crucial for viral replication and immune evasion, making it a prime target for antiviral drug development. In this study, three surface pockets on SARS-CoV-2 PLpro that may function as sites for allosteric inhibition were computationally identified. To evaluate the effects of these pockets on proteolytic activity, 52 residues were separately mutated to alanine. In Pocket 1, located between the Ubl and thumb domains, the introduction of alanine at T10, D12, T54, Y72, or Y83 reduced PLpro activity to <12% of that of WT. In Pocket 2, situated at the interface of the thumb, fingers, and palm domains, Q237A, S239A, H275A, and S278A inactivated PLpro. Finally, introducing alanine at five residues in Pocket 3, between the fingers and palm domains, inactivated PLpro: S212, Y213, Y251, K254, and Y305. Pocket 1 has a higher druggability score than Pockets 2 and 3. MD simulations showed that interactions within and between domains play critical roles in PLpro activity and thermal stability. The essential residues in Pockets 1 and 2 participate in a combination of intra- and inter-domain interactions. By contrast, the essential residues in Pocket three predominantly participate in inter-domain interactions. The most promising targets for therapeutic development are Pockets one and 3, which have the highest druggability score and the largest number of essential residues, respectively. Non-competitive inhibitors targeting these pockets may be antiviral agents against COVID-19 and related coronaviruses.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adrian J Villanueva
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kenana Al Adem
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lara Alzyoud
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
29
|
Domanska-Blicharz K, Lisowska A, Opolska J, Ruszkowski JJ, Gogulski M, Pomorska-Mól M. Whole genome characteristics of hedgehog coronaviruses from Poland and analysis of the evolution of the Spike protein for its interspecies transmission potential. BMC Vet Res 2024; 20:424. [PMID: 39304831 PMCID: PMC11415979 DOI: 10.1186/s12917-024-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The hedgehogs have been recently identified as possible reservoir of Middle East respiratory syndrome coronavirus like (MERS-CoV-like). These viruses were classified as a distinct Betacoronavirus erinacei (BCoV-Eri) species within the MerBCoV-Eriirus subgenus. As coronaviruses are known for their ability to jump between different hosts, including humans, this can pose a particular threat to people in direct contact with hedgehogs, such as those working at animal asylums. Our previous studies have shown the presence of BCoV-Eri strains in animals collected in the wildlife rehabilitation centre. This study aimed to investigate the presence of CoV in subsequent hedgehogs collected from the urban area of Poland and their molecular characteristics. RESULTS Monitoring for the presence of coronavirus infection in hedgehogs revealed five positive individuals. The presence of BCoV-Eri was found in a total of 20% of animals tested. Our analyses revealed no correlation between CoVs positivity and animal health conditions but a higher probability of such infection in juveniles and females. The whole genome of two Polish Hedgehog coronavirus 1 strains were sequenced and compared with available counterparts from European and Asian countries. Phylogenetic analysis showed that both CoV strains formed common cluster with other similar MerBCoV-Eriirus, but they were also found to be genetically variable and most changes in the S protein were identified. Our analysis revealed that some S protein sites of the Hedgehog coronavirus 1 strains evolved under positive selection pressure and of five such sites, three are in the S1 region while the other two in the S2 region of the Spike. CONCLUSIONS BCoV-Eri is to some extent prevalent in wildlife asylums in Poland. Given that the S protein of BCoVs-Eri is highly variable and that some sites of this protein evolve under positive selection pressure, these strains could potentially acquire a favourable feature for cross-species transmission. Consequently, the threat to humans working in such asylums is particularly high. Adequate biosecurity safeguards, but also human awareness of such risks, are therefore essential.
Collapse
Affiliation(s)
- Katarzyna Domanska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantów 57, Puławy, 24-100, Poland.
| | - Anna Lisowska
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantów 57, Puławy, 24-100, Poland
| | - Justyna Opolska
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantów 57, Puławy, 24-100, Poland
| | - Jakub J Ruszkowski
- Department of Animal Anatomy, University of Life Sciences in Poznań, ul. Wojska Polskiego 71C, Poznań, 60-625, Poland
- University Centre for Veterinary Medicine, University of Life Sciences in Poznań, Szydłowska 43, Poznań, 60-656, Poland
| | - Maciej Gogulski
- Department of Animal Anatomy, University of Life Sciences in Poznań, ul. Wojska Polskiego 71C, Poznań, 60-625, Poland
- University Centre for Veterinary Medicine, University of Life Sciences in Poznań, Szydłowska 43, Poznań, 60-656, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, University of Life Sciences in Poznań, ul. Wołyńska 35, Poznań, 60-637, Poland
| |
Collapse
|
30
|
Su C, He J, Wang L, Hu Y, Cao J, Bai B, Qi J, Gao GF, Yang M, Wang Q. Structural characteristics of BtKY72 RBD bound to bat ACE2 reveal multiple key residues affecting ACE2 usage of sarbecoviruses. mBio 2024; 15:e0140424. [PMID: 39082798 PMCID: PMC11389363 DOI: 10.1128/mbio.01404-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 09/12/2024] Open
Abstract
Two different sarbecoviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, have caused serious challenges to public health. Certain sarbecoviruses utilize angiotensin-converting enzyme 2 (ACE2) as their cellular receptor, whereas some do not, speculatively due to the two deletions in their receptor-binding domain (RBD). However, it remains unclear whether sarbecoviruses with one deletion in the RBD can still bind to ACE2. Here, we showed that two phylogenetically related sarbecoviruses with one deletion, BtKY72 and BM48-31, displayed a different ACE2-usage range. The cryo-electron microscopy structure of BtKY72 RBD bound to bat ACE2 identified a key residue important for the interaction between RBD and ACE2. In addition, we demonstrated that the mutations involving four types of core residues enabled the sarbecoviruses with deletion(s) to bind to human ACE2 (hACE2) and broadened the ACE2 usage of SARS-CoV-2. Our findings help predict the potential hACE2-binding ability to emerge sarbecoviruses and develop pan-sarbecovirus therapeutic agents. IMPORTANCE Many sarbecoviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), possess the ability to bind to receptor angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD). However, certain sarbecoviruses with deletion(s) in the RBD lack this capability. In this study, we investigated two closely related short-deletion sarbecoviruses, BtKY72 and BM48-31, and revealed that BtKY72 exhibited a broader ACE2-binding spectrum compared to BM48-31. Structural analysis of the BtKY72 RBD-bat ACE2 complex identifies a critical residue at position 493 contributing to these differences. Furthermore, we demonstrated that the mutations involving four core residues in the RBD enabled the sarbecoviruses with deletion(s) to bind to human ACE2 and expanded the ACE2 usage spectra of SARS-CoV-2. These findings offer crucial insights for accurately predicting the potential threat of newly emerging sarbecoviruses to human health.
Collapse
Affiliation(s)
- Chao Su
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Juanhua He
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Liang Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Yu Hu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Cao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
31
|
Pauciullo S, Riccio A, Santopolo S, Albecka A, Papa G, James LC, Piacentini S, Lanzilli G, Rossi A, Santoro MG. Human coronaviruses activate and hijack the host transcription factor HSF1 to enhance viral replication. Cell Mol Life Sci 2024; 81:386. [PMID: 39243335 PMCID: PMC11380654 DOI: 10.1007/s00018-024-05370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Organisms respond to proteotoxic-stress by activating the heat-shock response, a cellular defense mechanism regulated by a family of heat-shock factors (HSFs); among six human HSFs, HSF1 acts as a proteostasis guardian regulating severe stress-driven transcriptional responses. Herein we show that human coronaviruses (HCoV), both low-pathogenic seasonal-HCoVs and highly-pathogenic SARS-CoV-2 variants, are potent inducers of HSF1, promoting HSF1 serine-326 phosphorylation and triggering a powerful and distinct HSF1-driven transcriptional-translational response in infected cells. Despite the coronavirus-mediated shut-down of the host translational machinery, selected HSF1-target gene products, including HSP70, HSPA6 and AIRAP, are highly expressed in HCoV-infected cells. Using silencing experiments and a direct HSF1 small-molecule inhibitor we show that, intriguingly, HCoV-mediated activation of the HSF1-pathway, rather than representing a host defense response to infection, is hijacked by the pathogen and is essential for efficient progeny particles production. The results open new scenarios for the search of innovative antiviral strategies against coronavirus infections.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sara Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
- Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
32
|
Buchynskyi M, Oksenych V, Kamyshna I, Budarna O, Halabitska I, Petakh P, Kamyshnyi O. Genomic insight into COVID-19 severity in MAFLD patients: a single-center prospective cohort study. Front Genet 2024; 15:1460318. [PMID: 39296547 PMCID: PMC11408174 DOI: 10.3389/fgene.2024.1460318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
This study investigated the influence of single nucleotide polymorphisms (SNPs) in genes associated with the interferon pathway (IFNAR2 rs2236757), antiviral response (OAS1 rs10774671, OAS3 rs10735079), and viral entry (ACE2 rs2074192) on COVID-19 severity and their association with nonalcoholic fatty liver disease (MAFLD). We did not observe a significant association between the investigated SNPs and COVID-19 severity. While the IFNAR2 rs2236757 A allele was correlated with higher creatinine levels upon admission and the G allele was correlated with lower band neutrophils upon discharge, these findings require further investigation. The distribution of OAS gene polymorphisms (rs10774671 and rs10735079) did not differ between MAFLD patients and non-MAFLD patients. Our study population's distribution of ACE2 rs2074192 genotypes and alleles differed from that of the European reference population. Overall, our findings suggest that these specific SNPs may not be major contributors to COVID-19 severity in our patient population, highlighting the potential role of other genetic factors and environmental influences.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Olena Budarna
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
33
|
Wang AD, Shen YX, Li SY, Zhang HL, Wang D, Guo ZW, Huang YM, Cui M, Xia J, Huang Y. The N545S and K717N substitution at the N-glycosylation sites of the S2 subunit of avian infectious bronchitis virus can significantly enhance viral pathogenicity. Poult Sci 2024; 103:103991. [PMID: 38991387 PMCID: PMC11283224 DOI: 10.1016/j.psj.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
The S2 subunit of infectious bronchitis virus (IBV) is a heavily glycosylated protein that can impact various characteristics of the virus. It is currently known that N-glycosylation modifications are predominantly located on the S2 subunit. However, the exact role of their N-glycosylation modification remains undisclosed. To elucidate the function of these N-glycosylation sites, we identified 14 common sites distributed on the S2 subunit of the 5 genotypes of IBV in present study. Subsequently, we selected 7 sites to generate mutants and assessed their impact on viral virulence, replication ability, and antigenicity. Our finding revealed that only 2 substitutions, N545S and K717N, increased the viral replication titer and antigenicity, and ultimately the pathogenicity in chicks. To delve into the mechanisms underlying this increased pathogenicity, we discovered that K717N can change the structure of antigenic epitopes. The N545S substitution not only influenced antigenic epitope structure, but also enhanced the ability of the virus to enter CEKs during the early stages of viral replication. These results suggest that the enhanced viral pathogenicity associated with N545S and K717N substitutions is multifaceted, with acceleration of the viral membrane fusion process and alterations in epitope structure representing crucial factors in the capability of N-glycosylation modifications to boost viral virulence. These insights provide valuable guidance for the efficient development of live attenuated vaccines.
Collapse
Affiliation(s)
- An-Dong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yu-Xi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shu-Yun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Meishan Vocational & Technical College, Meishan, Sichuan 620010, PR China
| | - Hai-Li Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Di Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhong-Wei Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ya-Mei Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
34
|
Ye G, Bu F, Pan R, Mendoza A, Saxena D, Zheng J, Perlman S, Liu B, Li F. Dual-role epitope on SARS-CoV-2 spike enhances and neutralizes viral entry across different variants. PLoS Pathog 2024; 20:e1012493. [PMID: 39236072 PMCID: PMC11407660 DOI: 10.1371/journal.ppat.1012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Grasping the roles of epitopes in viral glycoproteins is essential for unraveling the structure and function of these proteins. Up to now, all identified epitopes have been found to either neutralize, have no effect on, or enhance viral entry into cells. Here, we used nanobodies (single-domain antibodies) as probes to investigate a unique epitope on the SARS-CoV-2 spike protein, located outside the protein's receptor-binding domain. Nanobody binding to this epitope enhances the cell entry of prototypic SARS-CoV-2, while neutralizing the cell entry of SARS-CoV-2 Omicron variant. Moreover, nanobody binding to this epitope promotes both receptor binding activity and post-attachment activity of prototypic spike, explaining the enhanced viral entry. The opposite occurs with Omicron spike, explaining the neutralized viral entry. This study reveals a unique epitope that can both enhance and neutralize viral entry across distinct viral variants, suggesting that epitopes may vary their roles depending on the viral context. Consequently, antibody therapies should be assessed across different viral variants to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jian Zheng
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
35
|
Ye G, Bu F, Pan R, Mendoza A, Yang G, Spiller B, Wadzinski BE, Du L, Perlman S, Liu B, Li F. Structure-guided in vitro evolution of nanobodies targeting new viral variants. PLoS Pathog 2024; 20:e1012600. [PMID: 39325826 PMCID: PMC11460708 DOI: 10.1371/journal.ppat.1012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
36
|
Zhou Q, Song X, Li Y, Huang J, Yu QS, Den GN, Zhang JQ, Zhu CX, Zhang B. Preparation of a novel type I feline coronavirus virus-like particle vaccine and its immunogenicity in mice and cats. Microb Pathog 2024; 194:106795. [PMID: 39019122 DOI: 10.1016/j.micpath.2024.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/10/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.
Collapse
MESH Headings
- Animals
- Cats
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Coronavirus, Feline/immunology
- Immunoglobulin G/blood
- Adjuvants, Immunologic/administration & dosage
- Viral Load
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Interleukin-4/metabolism
- Interferon-gamma/metabolism
- Mice, Inbred BALB C
- Feces/virology
- Adjuvants, Vaccine
- Polysorbates/administration & dosage
- Female
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spleen/immunology
- Cat Diseases/prevention & control
- Cat Diseases/immunology
- Cat Diseases/virology
- Baculoviridae/genetics
- Vaccination
- Immunization, Secondary
- Squalene
Collapse
Affiliation(s)
- Qun Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xin Song
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Jian Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Qi-Sheng Yu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Gu-Nan Den
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jia-Qi Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Chen-Xi Zhu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
37
|
Kasle G, Das Sarma J. The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in Mice: Parallels to the SARS-CoV-2 Virus. J Neuroophthalmol 2024; 44:319-329. [PMID: 39164897 DOI: 10.1097/wno.0000000000002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
BACKGROUND Optic neuritis (ON), one of the clinical manifestations of the human neurological disease multiple sclerosis (MS), was also reported in patients with COVID-19 infection, highlighting one potential neurological manifestation of SARS-CoV-2. However, the mechanism of ON in these patients is poorly understood. EVIDENCE ACQUISITION Insight may be gained by studying the neurotropic mouse hepatitis virus (MHV-A59), a β-coronavirus that belongs to the same family as SARS-CoV-2. RESULTS Mouse hepatitis virus-A59, or its isogenic spike protein recombinant strains, inoculation in mice provides an important experimental model to understand underpinning mechanisms of neuroinflammatory demyelination in association with acute stage optic nerve inflammation and chronic stage optic nerve demyelination concurrent with axonal loss. Spike is a surface protein that mediates viral binding and entry into host cells, as well as cell-cell fusion and viral spread. Studies have implicated spike-mediated mechanisms of virus-induced neuroinflammatory demyelination by comparing naturally occurring demyelinating (DM) and nondemyelinating (NDM) MHV strains. CONCLUSIONS Here, we summarize findings in MHV-induced experimental ON and myelitis, using natural DM and NDM strains as well as engineered recombinant strains of MHV to understand the role of spike protein in inducing ON and demyelinating disease pathology. Potential parallels in human coronavirus-mediated ON and demyelination, and insight into potential therapeutic strategies, are discussed.
Collapse
Affiliation(s)
- Grishma Kasle
- Department of Biological Sciences (GK, JDS), Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India; and Department of Ophthalmology (JDS), University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
38
|
Ellmen I, Overton AK, Knapp JJ, Nash D, Ho H, Hungwe Y, Prasla S, Nissimov JI, Charles TC. Reconstructing SARS-CoV-2 lineages from mixed wastewater sequencing data. Sci Rep 2024; 14:20273. [PMID: 39217200 PMCID: PMC11365997 DOI: 10.1038/s41598-024-70416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Wastewater surveillance of SARS-CoV-2 has emerged as a critical tool for tracking the spread of COVID-19. In addition to estimating the relative case numbers using quantitative PCR, SARS-CoV-2 genomic RNA can be extracted from wastewater and sequenced. There are many existing techniques for using the sequenced RNA to determine the relative abundance of known lineages in a sample. However, it is very challenging to predict novel lineages from wastewater data due to its mixed composition and unreliable genomic coverage. In this work, we present a novel technique based on non-negative matrix factorization which is able to reconstruct lineage definitions by analyzing data from across different samples. We test the method both on synthetic and real wastewater sequencing data. We show that the technique is able to determine major lineages such as Omicron and Delta as well as sub-lineages such as BA.5.2.1. We provide a method for determining emerging lineages in wastewater without the need for genomic data from clinical samples. This could be used for routine monitoring of SARS-CoV-2 as well as other emerging viral pathogens in wastewater. Additionally, it may be used to determine more full-genome sequences for viruses with fewer available genomes.
Collapse
Affiliation(s)
- Isaac Ellmen
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada.
- Department of Statistics, University of Oxford, Oxford, United Kingdom.
| | - Alyssa K Overton
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jennifer J Knapp
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | - Hannifer Ho
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Yemurayi Hungwe
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Samran Prasla
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
39
|
Nuqui X, Casalino L, Zhou L, Shehata M, Wang A, Tse AL, Ojha AA, Kearns FL, Rosenfeld MA, Miller EH, Acreman CM, Ahn SH, Chandran K, McLellan JS, Amaro RE. Simulation-driven design of stabilized SARS-CoV-2 spike S2 immunogens. Nat Commun 2024; 15:7370. [PMID: 39191724 PMCID: PMC11350062 DOI: 10.1038/s41467-024-50976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The full-length prefusion-stabilized SARS-CoV-2 spike (S) is the principal antigen of COVID-19 vaccines. Vaccine efficacy has been impacted by emerging variants of concern that accumulate most of the sequence modifications in the immunodominant S1 subunit. S2, in contrast, is the most evolutionarily conserved region of the spike and can elicit broadly neutralizing and protective antibodies. Yet, S2's usage as an alternative vaccine strategy is hampered by its general instability. Here, we use a simulation-driven approach to design S2-only immunogens stabilized in a closed prefusion conformation. Molecular simulations provide a mechanistic characterization of the S2 trimer's opening, informing the design of tryptophan substitutions that impart kinetic and thermodynamic stabilization. Structural characterization via cryo-EM shows the molecular basis of S2 stabilization in the closed prefusion conformation. Informed by molecular simulations and corroborated by experiments, we report an engineered S2 immunogen that exhibits increased protein expression, superior thermostability, and preserved immunogenicity against sarbecoviruses.
Collapse
Affiliation(s)
- Xandra Nuqui
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Mohamed Shehata
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anupam A Ojha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Fiona L Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cory M Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Surl-Hee Ahn
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
40
|
Qiao S, Wang X. Structural determinants of spike infectivity in bat SARS-like coronaviruses RsSHC014 and WIV1. J Virol 2024; 98:e0034224. [PMID: 39028202 PMCID: PMC11334503 DOI: 10.1128/jvi.00342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The recurrent spillovers of coronaviruses (CoVs) have posed severe threats to public health and the global economy. Bat severe acute respiratory syndrome (SARS)-like CoVs RsSHC014 and WIV1, currently circulating in bat populations, are poised for human emergence. The trimeric spike (S) glycoprotein, responsible for receptor recognition and membrane fusion, plays a critical role in cross-species transmission and infection. Here, we determined the cryo-electron microscopy (EM) structures of the RsSHC014 S protein in the closed state at 2.9 Å, the WIV1 S protein in the closed state at 2.8 Å, and the intermediate state at 4.0 Å. In the intermediate state, one receptor-binding domain (RBD) is in the "down" position, while the other two RBDs exhibit poor density. We also resolved the complex structure of the WIV1 S protein bound to human ACE2 (hACE2) at 4.5 Å, which provides structural basis for the future emergence of WIV1 in humans. Through biochemical experiments, we found that despite strong binding affinities between the RBDs and both human and civet ACE2, the pseudoviruses of RsSHC014, but not WIV1, failed to infect 293T cells overexpressing either human or civet ACE2. Mutagenesis analysis revealed that the Y623H substitution, located in the SD2 region, significantly improved the cell entry efficiency of RsSHC014 pseudoviruses, which is likely accomplished by promoting the open conformation of spike glycoproteins. Our findings emphasize the necessity of both efficient RBD lifting and tight RBD-hACE2 binding for viral infection and underscore the significance of the 623 site of the spike glycoprotein for the infectivity of bat SARS-like CoVs. IMPORTANCE The bat SARS-like CoVs RsSHC014 and WIV1 can use hACE2 for cell entry without further adaptation, indicating their potential risk of emergence in human populations. The S glycoprotein, responsible for receptor recognition and membrane fusion, plays a crucial role in cross-species transmission and infection. In this study, we determined the cryo-EM structures of the S glycoproteins of RsSHC014 and WIV1. Detailed comparisons revealed dynamic structural variations within spike proteins. We also elucidated the complex structure of WIV1 S-hACE2, providing structural evidence for the potential emergence of WIV1 in humans. Although RsSHC014 and WIV1 had similar hACE2-binding affinities, they exhibited distinct pseudovirus cell entry behavior. Through mutagenesis and cryo-EM analysis, we revealed that besides the structural variations, the 623 site in the SD2 region is another important structural determinant of spike infectivity.
Collapse
Affiliation(s)
- Shuyuan Qiao
- The Ministry of Education Key Laboratory of Protein Science, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Akpoviroro O, Sauers NK, Uwandu Q, Castagne M, Akpoviroro OP, Humayun S, Mirza W, Woodard J. Severe COVID-19 infection: An institutional review and literature overview. PLoS One 2024; 19:e0304960. [PMID: 39163410 PMCID: PMC11335168 DOI: 10.1371/journal.pone.0304960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Our study aimed to describe the group of severe COVID-19 patients at an institutional level, and determine factors associated with different outcomes. METHODS A retrospective chart review of patients admitted with severe acute hypoxic respiratory failure due to COVID-19 infection. Based on outcomes, we categorized 3 groups of severe COVID-19: (1) Favorable outcome: progressive care unit admission and discharge (2) Intermediate outcome: ICU care (3) Poor outcome: in-hospital mortality. RESULTS Eighty-nine patients met our inclusion criteria; 42.7% were female. The average age was 59.7 (standard deviation (SD):13.7). Most of the population were Caucasian (95.5%) and non-Hispanic (91.0%). Age, sex, race, and ethnicity were similar between outcome groups. Medicare and Medicaid patients accounted for 62.9%. The average BMI was 33.5 (SD:8.2). Moderate comorbidity was observed, with an average Charlson Comorbidity index (CCI) of 3.8 (SD:2.6). There were no differences in the average CCI between groups(p = 0.291). Many patients (67.4%) had hypertension, diabetes (42.7%) and chronic lung disease (32.6%). A statistical difference was found when chronic lung disease was evaluated; p = 0.002. The prevalence of chronic lung disease was 19.6%, 27.8%, and 40% in the favorable, intermediate, and poor outcome groups, respectively. Smoking history was associated with poor outcomes (p = 0.04). Only 7.9% were fully vaccinated. Almost half (46.1%) were intubated and mechanically ventilated. Patients spent an average of 12.1 days ventilated (SD:8.5), with an average of 6.0 days from admission to ventilation (SD:5.1). The intermediate group had a shorter average interval from admission to ventilator (77.2 hours, SD:67.6), than the poor group (212.8 hours, SD:126.8); (p = 0.001). The presence of bacterial pneumonia was greatest in the intermediate group (72.2%), compared to the favorable group (17.4%), and the poor group (56%); this was significant (p<0.0001). In-hospital mortality was seen in 28.1%. CONCLUSION Most patients were male, obese, had moderate-level comorbidity, a history of tobacco abuse, and government-funded insurance. Nearly 50% required mechanical ventilation, and about 28% died during hospitalization. Bacterial pneumonia was most prevalent in intubated groups. Patients who were intubated with a good outcome were intubated earlier during their hospital course, with an average difference of 135.6 hours. A history of cigarette smoking and chronic lung disease were associated with poor outcomes.
Collapse
Affiliation(s)
- Ogheneyoma Akpoviroro
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Nathan Kyle Sauers
- Department of Engineering, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Queeneth Uwandu
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Myriam Castagne
- Clinical & Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | | | - Sara Humayun
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Wasique Mirza
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Jameson Woodard
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|
42
|
Catanzaro NJ, Wu Z, Fan C, Schäfer A, Yount BL, Bjorkman PJ, Baric R, Letko M. ACE2 from Pipistrellus abramus bats is a receptor for HKU5 coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584892. [PMID: 38559009 PMCID: PMC10980018 DOI: 10.1101/2024.03.13.584892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The merbecovirus subgenus of coronaviruses includes Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a zoonotic pathogen transmitted from dromedary camels to humans that causes severe respiratory disease. Viral discovery efforts have uncovered hundreds of merbecoviruses in different species across multiple continents, but few have been studied under laboratory conditions, leaving basic questions regarding their human threat potential unresolved. Viral entry into host cells is a critical step for transmission between hosts. Here, a scalable approach that assesses novel merbecovirus cell entry was developed and used to evaluate receptor use across the entire merbecovirus subgenus. Merbecoviruses are sorted into clades based on the receptor-binding domain of the spike glycoprotein. Receptor tropism is clade-specific, with the clade including MERS-CoV using DPP4 and multiple clades using ACE2, including HKU5 bat coronaviruses. Mutational analysis identified possible structural limitations to HKU5 adaptability and a cryo-EM structure of the HKU5-20s spike trimer revealed only 'down' RBDs.
Collapse
Affiliation(s)
- Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Ziyan Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Boyd L. Yount
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Ralph Baric
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99163
| |
Collapse
|
43
|
Rosal RJZ, Paderes MC. Inhibiting SARS-CoV-2 viral entry by targeting spike:ACE2 interaction with O-modified quercetin derivatives. RSC Med Chem 2024:d4md00286e. [PMID: 39165908 PMCID: PMC11331306 DOI: 10.1039/d4md00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
The cell entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction between the receptor-binding domain of its spike (S) protein and human angiotensin-converting enzyme 2 (ACE2). Quercetin, a flavonoid found abundantly in plants, shows potential as a SARS-CoV-2 S:ACE2 inhibitor but is known to have low bioavailability. Modification of quercetin by capping its hydroxyl moieties could enhance the metabolic stability, solubility, and bioavailability, and reduce toxicity. In this study, sixteen (16) O-modified quercetin derivatives were synthesized by incorporating alkyl and acyl moieties of varying lengths, sizes, and polarities to the hydroxyl groups. The SARS-CoV-2 S:ACE2 inhibitory activity and toxicity of the synthesized derivatives were assessed in vitro, and their physicochemical properties, pharmacokinetics, and drug-likeness were predicted and evaluated using the SwissADME web tool. Results showed that functionalization of the hydroxyl moieties of quercetin generally resulted in more potent inhibitors (>50% inhibition). Five (5) derivatives displayed a dose-dependent inhibition against the SARS-CoV-2 S:ACE2 interaction with promising IC50 values (i.e., 2e (IC50 = 7.52 μM), 3a (IC50 = 5.00 μM), 3b (IC50 = 25.70 μM), 3c (IC50 = 2.22 μM), and 4b (IC50 = 3.28 μM)). Moreover, these compounds exhibited low hepato-, nephro-, and cardiotoxicity, and their SwissADME profiles indicated favorable physicochemical, pharmacokinetic, and drug-like properties, suggesting their potential as promising lead SARS-CoV-2 S:ACE2 inhibitors.
Collapse
Affiliation(s)
- Reuben James Z Rosal
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City 1101 Philippines
| | - Monissa C Paderes
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City 1101 Philippines
| |
Collapse
|
44
|
Díaz-Dinamarca DA, Cárdenas-Cáceres S, Muena NA, Díaz P, Barra G, Puentes R, Escobar DF, Díaz-Samirin M, Santis-Alay NT, Canales C, Díaz J, García-Escorza HE, Grifoni A, Sette A, Tischler ND, Vasquez AE. Booster Vaccination with BNT162b2 Improves Cellular and Humoral Immune Response in the Pediatric Population Immunized with CoronaVac. Vaccines (Basel) 2024; 12:919. [PMID: 39204043 PMCID: PMC11359105 DOI: 10.3390/vaccines12080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 09/03/2024] Open
Abstract
The SARS-CoV-2 Omicron variant and its sublineages continue to cause COVID-19-associated pediatric hospitalizations, severe disease, and death globally. BNT162b2 and CoronaVac are the main vaccines used in Chile. Much less is known about the Wuhan-Hu-1 strain-based vaccines in the pediatric population compared to adults. Given the worldwide need for booster vaccinations to stimulate the immune response against new Omicron variants of SARS-CoV-2, we characterized the humoral and cellular immune response against Omicron variant BA.1 in a pediatric cohort aged 10 to 16 years who received heterologous vaccination based on two doses of CoronaVac, two doses of CoronaVac (2x) plus one booster dose of BNT162b2 [CoronaVac(2x) + BNT162b2 (1x)], two doses of CoronaVac plus two booster doses of BNT162b2 [CoronaVac(2x) + BNT162b2 (2x)], and three doses of BNT162b2. We observed that the [CoronaVac(2x) + BNT162b2 (2x)] vaccination showed higher anti-S1 and neutralizing antibody titers and CD4 and CD8 T cell immunity specific to the Omicron variant compared to immunization with two doses of CoronaVac alone. Furthermore, from all groups tested, immunity against Omicron was highest in individuals who received three doses of BNT162b2. We conclude that booster vaccination with BNT162b2, compared to two doses of CoronaVac alone, induces a greater protective immunity.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Simone Cárdenas-Cáceres
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile; (S.C.-C.); (N.A.M.)
| | - Nicolás A. Muena
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile; (S.C.-C.); (N.A.M.)
| | - Pablo Díaz
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Gisselle Barra
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Rodrigo Puentes
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | - Daniel F. Escobar
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Michal Díaz-Samirin
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Natalia T. Santis-Alay
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | - Cecilia Canales
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | - Janepsy Díaz
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | | | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (A.G.); (A.S.)
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (A.G.); (A.S.)
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole D. Tischler
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile; (S.C.-C.); (N.A.M.)
- Escuela de Bioquímica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Abel E. Vasquez
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| |
Collapse
|
45
|
Zhang W, Shi K, Hsueh FC, Mendoza A, Ye G, Huang L, Perlman S, Aihara H, Li F. Structural basis for mouse receptor recognition by bat SARS2-like coronaviruses. Proc Natl Acad Sci U S A 2024; 121:e2322600121. [PMID: 39083418 PMCID: PMC11317568 DOI: 10.1073/pnas.2322600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
The animal origin of SARS-CoV-2 remains elusive, lacking a plausible evolutionary narrative that may account for its emergence. Its spike protein resembles certain segments of BANAL-236 and RaTG13, two bat coronaviruses considered possible progenitors of SARS-CoV-2. Additionally, its spike contains a furin motif, a common feature of rodent coronaviruses. To explore the possible involvement of rodents in the emergence of SARS-CoV-2 spike, we examined the crystal structures of the spike receptor-binding domains (RBDs) of BANAL-236 and RaTG13 each complexed with mouse receptor ACE2. Both RBDs have residues at positions 493 and 498 that align well with two virus-binding hotspots on mouse ACE2. Our biochemical evidence supports that both BANAL-236 and RaTG13 spikes can use mouse ACE2 as their entry receptor. These findings point to a scenario in which these bat coronaviruses may have coinfected rodents, leading to a recombination of their spike genes and a subsequent acquisition of a furin motif in rodents, culminating in the emergence of SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Fu-Chun Hsueh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Linfen Huang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
46
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
47
|
Yang D, Wang X, Yang X, Qi S, Zhao F, Guo D, Li C, Zhu Q, Xing X, Cao Y, Sun D. Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus. Virology 2024; 596:110113. [PMID: 38801794 DOI: 10.1016/j.virol.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xinglin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
48
|
Daniels A, Padariya M, Fletcher S, Ball K, Singh A, Carragher N, Hupp T, Tait-Burkard C, Kalathiya U. Molecules targeting a novel homotrimer cavity of Spike protein attenuate replication of SARS-CoV-2. Antiviral Res 2024; 228:105949. [PMID: 38942150 DOI: 10.1016/j.antiviral.2024.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The SARS-CoV-2 Spike glycoprotein (S) utilizes a unique trimeric conformation to interact with the ACE2 receptor on host cells, making it a prime target for inhibitors that block viral entry. We have previously identified a novel proteinaceous cavity within the Spike protein homotrimer that could serve as a binding site for small molecules. However, it is not known whether these molecules would inhibit, stimulate, or have no effect on viral replication. To address this, we employed structural-based screening to identify small molecules that dock into the trimer cavity and assessed their impact on viral replication. Our findings show that a cohort of identified small molecules binding to the Spike trimer cavity effectively reduces the replication of various SARS-CoV-2 variants. These molecules exhibited inhibitory effects on B.1 (European original, D614G, EDB2) and B.1.617.2 (δ) variants, while showing moderate activity against the B.1.1.7 (α) variant. We further categorized these molecules into distinct groups based on their structural similarities. Our experiments demonstrated a dose-dependent viral replication inhibitory activity of these compounds, with some, like BCC0040453 exhibiting no adverse effects on cell viability even at high concentrations. Further investigation revealed that pre-incubating virions with compounds like BCC0031216 at different temperatures significantly inhibited viral replication, suggesting their specificity towards the S protein. Overall, our study highlights the inhibitory impact of a diverse set of chemical molecules on the biological activity of the Spike protein. These findings provide valuable insights into the role of the trimer cavity in the viral replication cycle and aid drug discovery programs aimed at targeting the coronavirus family.
Collapse
Affiliation(s)
- Alison Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdańsk, Poland
| | - Sarah Fletcher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Kathryn Ball
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Ashita Singh
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Neil Carragher
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdańsk, Poland; University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Christine Tait-Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdańsk, Poland.
| |
Collapse
|
49
|
Roohi A, Gharagozlou S. Vitamin D supplementation and calcium: Many-faced gods or nobody in fighting against Corona Virus Disease 2019. Clin Nutr ESPEN 2024; 62:172-184. [PMID: 38901939 DOI: 10.1016/j.clnesp.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
In December 2019, Corona Virus Disease 2019 (COVID-19) was first identified and designated as a pandemic in March 2020 due to rapid spread of the virus globally. At the beginning of the pandemic, only a few treatment options, mainly focused on supportive care and repurposing medications, were available. Due to its effects on immune system, vitamin D was a topic of interest during the pandemic, and researchers investigated its potential impact on COVID-19 outcomes. However, the results of studies about the impact of vitamin D on the disease are inconclusive. In the present narrative review, different roles of vitamin D regarding the COVID-19 have been discussed to show that vitamin D supplementation should be recommended carefully.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
50
|
Tan Z, Yang C, Lin PH, Ramadan S, Yang W, Rashidi Z, Lang S, Shafieichaharberoud F, Gao J, Pan X, Soloff N, Wu X, Bolin S, Pyeon D, Huang X. Inducing Long Lasting B Cell and T Cell Immunity Against Multiple Variants of SARS-CoV-2 Through Mutant Bacteriophage Qβ-Receptor Binding Domain Conjugate. Adv Healthc Mater 2024; 13:e2302755. [PMID: 38733291 PMCID: PMC11305917 DOI: 10.1002/adhm.202302755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/04/2024] [Indexed: 05/13/2024]
Abstract
More than 3 years into the global pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a significant threat to public health. Immunities acquired from infection or current vaccines fail to provide long term protection against subsequent infections, mainly due to their fast-waning nature and the emergence of variants of concerns (VOCs) such as Omicron. To overcome these limitations, SARS-CoV-2 Spike protein receptor binding domain (RBD)-based epitopes are investigated as conjugates with a powerful carrier, the mutant bacteriophage Qβ (mQβ). The epitope design is critical to eliciting potent antibody responses with the full length RBD being superior to peptide and glycopeptide antigens. The full length RBD conjugated with mQβ activates both humoral and cellular immune systems in vivo, inducing broad spectrum, persistent, and comprehensive immune responses effective against multiple VOCs including Delta and Omicron variants, rendering it a promising vaccine candidate.
Collapse
Affiliation(s)
- Zibin Tan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Po-Han Lin
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry, Benha University, Benha, 13518, Egypt
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Zahra Rashidi
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xingling Pan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nachy Soloff
- Hatzalah of Michigan, 13650 Oak Park Blvd., Oak Park, MI, 48237, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 250100, China
| | - Steven Bolin
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|