1
|
Liao K, Xiang Y, Lin Y, Liao P, Xu W, Wang Z, Zhuang Z. Single-nucleus profiling decoding the subcortical visual pathway evolution of vertebrates. iScience 2025; 28:112128. [PMID: 40151640 PMCID: PMC11937672 DOI: 10.1016/j.isci.2025.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/11/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
During the evolution of vertebrates, significant transformations have occurred in the visual transmission and processing pathways. However, our understanding of the differences between two primary visual pathways in vertebrates and their evolutionary changes remains limited. The emerging technologies and comparative analysis have provided us with a more comprehensive way to decipher this process. Here, we applied single-nucleus RNA sequencing (snRNA-seq) onto the avian optic tectum, one of the key visual subcortical hubs in birds, to construct its cellular landscape. By integrating these data with mammalian snRNA-seq datasets, we revealed differences in the density of two types of thalamic-projecting excitatory neurons within the retinotectal pathway of birds and mammals. Additionally, a series of shared molecules were identified between two types of dominant visual pathways in vertebrates. Overall, this work provides a novel focus on the evolution of visual pathways and establishes a framework for their comparative analysis.
Collapse
Affiliation(s)
- Kuo Liao
- BGI Research, Hangzhou 310030, China
- Department of Clinical Neuroscience, Karolinska Institute, 17164 Stockholm, Sweden
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Pingfang Liao
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
2
|
Zhao P, Tong Y, Lazarte IP, Khan B, Tian G, Chen KKY, Lam TKC, Hu Y, Semmelhack JL. The visuomotor transformations underlying target-directed behavior. Proc Natl Acad Sci U S A 2025; 122:e2416215122. [PMID: 40127271 DOI: 10.1073/pnas.2416215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
The visual system can process diverse stimuli and make the decision to execute appropriate behaviors, but it remains unclear where and how this transformation takes place. Innate visually evoked behaviors such as hunting, freezing, and escape are thought to be deeply conserved, and have been described in a range of species from insects to humans. We found that zebrafish larvae would respond to predator-like visual stimuli with immobility and bradycardia, both hallmarks of freezing, in a head-fixed behavioral paradigm. We then imaged the zebrafish visual system while larvae responded to different visual stimuli with hunting, freezing, and escape behaviors and systematically identified visually driven neurons and behaviorally correlated sensorimotor neurons. Our analyses indicate that within the optic tectum, broadly tuned sensory neurons are functionally correlated with sensorimotor neurons which respond specifically during one behavior, indicating that it contains suitable information for sensorimotor transformation. We also identified sensorimotor neurons in four other areas downstream of the tectum, and these neurons are also specific for one behavior, indicating that the segregation of the pathways continues in other areas. While our findings shed light on how sensorimotor neurons may integrate visual inputs, further investigation will be required to determine how sensorimotor neurons in different regions interact and where the decision to behave is made.
Collapse
Affiliation(s)
- Peixiong Zhao
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
| | - Yuxin Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
| | - Ivan P Lazarte
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Biswadeep Khan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Guangnan Tian
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
| | - Kenny K Y Chen
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
| | - Thomas K C Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Yu Hu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
| | - Julie L Semmelhack
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
Hafed ZM. Superior colliculus peri-saccadic field potentials are dominated by a visual sensory preference for the upper visual field. iScience 2025; 28:112021. [PMID: 40104053 PMCID: PMC11914513 DOI: 10.1016/j.isci.2025.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/04/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
The primate superior colliculus (SC) plays important sensory, cognitive, and motor processing roles. Among its properties, the SC has clear visual field asymmetries: visual responses are stronger in the upper visual field representation, whereas saccade-related motor bursts are weaker. Here, I asked whether peri-saccadic SC network activity can still reflect the SC's visual sensitivity asymmetry, thus supporting recent evidence of sensory-related signals embedded within the SC's motor bursts. I analyzed collicular peri-saccadic local field potential (LFP) modulations and found them to be much stronger in the upper visual field, despite the weaker motor bursts. This effect persisted even with saccades toward a blank, suggesting an importance of visual field location. I also found that engaging working memory during saccade preparation differentially modulated the SC's LFP's, again with a dichotomous upper/lower visual field asymmetry. I conclude that the SC network possesses a clear sensory signal at the time of saccade generation.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Wu W, Hafed ZM. Stronger premicrosaccadic sensitivity enhancement for dark contrasts in the primate superior colliculus. Sci Rep 2025; 15:2761. [PMID: 39843661 PMCID: PMC11754629 DOI: 10.1038/s41598-025-87090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microsaccades are associated with enhanced visual perception and neural sensitivity right before their onset, and this has implications for interpreting experiments involving the covert allocation of peripheral spatial attention. However, the detailed properties of premicrosaccadic enhancement are not fully known. Here we investigated how such enhancement in the superior colliculus depends on luminance polarity. Rhesus macaque monkeys fixated a small spot while we presented either dark or bright image patches of different contrasts within the recorded neurons' response fields. Besides replicating premicrosaccadic enhancement of visual sensitivity, we observed stronger enhancement for dark contrasts. This was especially true at moderate contrast levels (such as 20%), and it occurred independent of an individual neuron's preference for either darks or brights. On the other hand, postmicrosaccadic visual sensitivity suppression was similar for either luminance polarity. Our results reveal an intriguing asymmetry in the properties of perimicrosaccadic modulations of superior colliculus visual neural sensitivity.
Collapse
Affiliation(s)
- Wenbin Wu
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Fei Y, Luh M, Ontiri A, Ghauri D, Hu W, Liang L. Coordination of distinct sources of excitatory inputs enhances motion selectivity in the mouse visual thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631826. [PMID: 39829841 PMCID: PMC11741327 DOI: 10.1101/2025.01.08.631826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Multiple sources innervate the visual thalamus to influence image-forming vision prior to the cortex, yet it remains unclear how non-retinal and retinal input coordinate to shape thalamic visual selectivity. Using dual-color two-photon calcium imaging in the thalamus of awake mice, we observed similar coarse-scale retinotopic organization between axons of superior colliculus neurons and retinal ganglion cells, both providing strong converging excitatory input to thalamic neurons. At a fine scale of ∼10 µm, collicular boutons often shared visual feature preferences with nearby retinal boutons. Inhibiting collicular input significantly suppressed visual responses in thalamic neurons and specifically reduced motion selectivity in neurons preferring nasal-to-temporal motion. The reduction in motion selectivity could be the result of silencing sharply tuned direction-selective colliculogeniculate input. These findings suggest that the thalamus is not merely a relay but selectively integrates inputs from multiple regions to build stimulus selectivity and shape the information transmitted to the cortex. HIGHLIGHTS Chronic dual-color calcium imaging reveals diverse visual tuning of collicular axonal boutons.Nearby collicular and retinal boutons often share feature preferences at ∼10 µm scaleSilencing of collicular input suppresses visual responses in the majority of thalamic neurons.Silencing of collicular input reduces motion selectivity in thalamic neurons.
Collapse
|
6
|
Bharmauria V, Seo S, Crawford JD. Neural integration of egocentric and allocentric visual cues in the gaze system. J Neurophysiol 2025; 133:109-120. [PMID: 39584726 DOI: 10.1152/jn.00498.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
A fundamental question in neuroscience is how the brain integrates egocentric (body-centered) and allocentric (landmark-centered) visual cues, but for many years this question was ignored in sensorimotor studies. This changed in recent behavioral experiments, but the underlying physiology of ego/allocentric integration remained largely unstudied. The specific goal of this review is to explain how prefrontal neurons integrate eye-centered and landmark-centered visual codes for optimal gaze behavior. First, we briefly review the whole brain/behavioral mechanisms for ego/allocentric integration in the human and summarize egocentric coding mechanisms in the primate gaze system. We then focus in more depth on cellular mechanisms for ego/allocentric coding in the frontal and supplementary eye fields. We first explain how prefrontal visual responses integrate eye-centered target and landmark codes to produce a transformation toward landmark-centered coordinates. Next, we describe what happens when a landmark shifts during the delay between seeing and acquiring a remembered target, initially resulting in independently coexisting ego/allocentric memory codes. We then describe how these codes are reintegrated in the motor burst for the gaze shift. Deep network simulations suggest that these properties emerge spontaneously for optimal gaze behavior. Finally, we synthesize these observations and relate them to normal brain function through a simplified conceptual model. Together, these results show that integration of visuospatial features continues well beyond visual cortex and suggest a general cellular mechanism for goal-directed visual behavior.
Collapse
Affiliation(s)
- Vishal Bharmauria
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- York Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario, Canada
| | - Serah Seo
- York Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - J Douglas Crawford
- York Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Baumann MP, Denninger AF, Hafed ZM. Perisaccadic perceptual mislocalization strength depends on the visual appearance of saccade targets. J Neurophysiol 2025; 133:85-100. [PMID: 39560111 DOI: 10.1152/jn.00368.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
We normally perceive a stable visual environment despite eye movements. To achieve such stability, visual processing integrates information across a given saccade, and laboratory hallmarks of such integration are robustly observed by presenting brief perisaccadic visual probes. In one classic phenomenon, probe locations are grossly mislocalized. This mislocalization is believed to depend, at least in part, on corollary discharge associated with saccade-related neuronal movement commands. However, we recently found that superior colliculus motor bursts, a known source of corollary discharge, can be different for different image appearances of the saccade target. Therefore, here we investigated whether perisaccadic mislocalization also depends on saccade target appearance. We asked human participants to generate saccades to either low (0.5 cycles/°) or high (5 cycles/°) spatial frequency gratings. We always placed a high-contrast target spot at grating center, to ensure matched saccades across image types. We presented a single, brief perisaccadic probe, which was high in contrast to avoid saccadic suppression, and the subjects pointed (via mouse cursor) at the seen probe location. We observed stronger perisaccadic mislocalization for low-spatial frequency saccade targets and for upper visual field probe locations. This was despite matched saccade metrics and kinematics across conditions, and it was also despite matched probe visibility for the different saccade target images (low vs. high spatial frequency). Assuming that perisaccadic visual mislocalization depends on corollary discharge, our results suggest that such discharge might relay more than just spatial saccade vectors to the visual system; saccade target visual features can also be transmitted.NEW & NOTEWORTHY Brief visual probes are grossly mislocalized when presented in the temporal vicinity of saccades. Although the mechanisms of such mislocalization are still under investigation, one component of them could derive from corollary discharge signals associated with saccade movement commands. Here, we were motivated by the observation that superior colliculus movement bursts, one source of corollary discharge, vary with saccade target image appearance. If so, then perisaccadic mislocalization should also do so, which we confirmed.
Collapse
Affiliation(s)
- Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anna F Denninger
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department for Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Liu B, van Ede F. High-level visual cognition deep down in the brain. Trends Cogn Sci 2024; 28:1057-1058. [PMID: 39488468 DOI: 10.1016/j.tics.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
A recent study by Peysakhovich and colleagues reveals how the superior colliculus (SC), a deep brain structure commonly associated with spatial orienting and motor control, causally contributes to the abstraction of visual categories. This highlights how subcortical areas with motor-control labels may have central roles in high-level visual cognition and opens avenues for investigation.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Taylor R, Buonocore A, Fracasso A. Saccadic "inhibition" unveils the late influence of image content on oculomotor programming. Exp Brain Res 2024; 242:2281-2294. [PMID: 39080097 PMCID: PMC11422452 DOI: 10.1007/s00221-024-06890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 09/26/2024]
Abstract
Image content is prioritized in the visual system. Faces are a paradigmatic example, receiving preferential processing along the visual pathway compared to other visual stimuli. Moreover, face prioritization manifests also in behavior. People tend to look at faces more frequently and for longer periods, and saccadic reaction times can be faster when targeting a face as opposed to a phase-scrambled control. However, it is currently not clear at which stage image content affects oculomotor planning and execution. It can be hypothesized that image content directly influences oculomotor signal generation. Alternatively, the image content could exert its influence on oculomotor planning and execution at a later stage, after the image has been processed. Here we aim to disentangle these two alternative hypotheses by measuring the frequency of saccades toward a visual target when the latter is followed by a visual transient in the central visual field. Behaviorally, this paradigm leads to a reduction in saccade frequency that happens about 90 ms after any visual transient event, also known as saccadic "inhibition". In two experiments, we measured occurrence of saccades in visually guided saccades as well as microsaccades during fixation, using face and noise-matched visual stimuli. We observed that while the reduction in saccade occurrence was similar for both stimulus types, face stimuli lead to a prolonged reduction in eye movements. Moreover, saccade kinematics were altered by both stimulus types, showing an amplitude reduction without change in peak velocity for the earliest saccades. Taken together, our experiments imply that face stimuli primarily affect the later stages of the behavioral phenomenon of saccadic "inhibition". We propose that while some stimulus features are processed at an early stage and can quickly influence eye movements, a delayed signal conveying image content information is necessary to further inhibit/delay activity in the oculomotor system to trigger eye movements.
Collapse
Affiliation(s)
- Rebecca Taylor
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
- School of Psychology and Neuroscience, University of Glasgow, Hillhead Street 62, Glasgow, G12 8QE5, Scotland, UK
| | - Antimo Buonocore
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, 80135, Italy
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Hillhead Street 62, Glasgow, G12 8QE5, Scotland, UK.
| |
Collapse
|
11
|
Seo S, Bharmauria V, Schütz A, Yan X, Wang H, Crawford JD. Multiunit Frontal Eye Field Activity Codes the Visuomotor Transformation, But Not Gaze Prediction or Retrospective Target Memory, in a Delayed Saccade Task. eNeuro 2024; 11:ENEURO.0413-23.2024. [PMID: 39054056 PMCID: PMC11373882 DOI: 10.1523/eneuro.0413-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
Collapse
Affiliation(s)
- Serah Seo
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida 33606
| | - Adrian Schütz
- Department of Neurophysics, Philipps-Universität Marburg, 35032 Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, 35032 Marburg, and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Xiaogang Yan
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Hongying Wang
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
12
|
Carrasco M, Spering M. Perception-action Dissociations as a Window into Consciousness. J Cogn Neurosci 2024; 36:1557-1566. [PMID: 38865201 DOI: 10.1162/jocn_a_02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Understanding the neural correlates of unconscious perception stands as a primary goal of experimental research in cognitive psychology and neuroscience. In this Perspectives paper, we explain why experimental protocols probing qualitative dissociations between perception and action provide valuable insights into conscious and unconscious processing, along with their corresponding neural correlates. We present research that utilizes human eye movements as a sensitive indicator of unconscious visual processing. Given the increasing reliance on oculomotor and pupillary responses in consciousness research, these dissociations also provide a cautionary tale about inferring conscious perception solely based on no-report protocols.
Collapse
|
13
|
Ambrad Giovannetti E, Rancz E. Behind mouse eyes: The function and control of eye movements in mice. Neurosci Biobehav Rev 2024; 161:105671. [PMID: 38604571 DOI: 10.1016/j.neubiorev.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The mouse visual system has become the most popular model to study the cellular and circuit mechanisms of sensory processing. However, the importance of eye movements only started to be appreciated recently. Eye movements provide a basis for predictive sensing and deliver insights into various brain functions and dysfunctions. A plethora of knowledge on the central control of eye movements and their role in perception and behaviour arose from work on primates. However, an overview of various eye movements in mice and a comparison to primates is missing. Here, we review the eye movement types described to date in mice and compare them to those observed in primates. We discuss the central neuronal mechanisms for their generation and control. Furthermore, we review the mounting literature on eye movements in mice during head-fixed and freely moving behaviours. Finally, we highlight gaps in our understanding and suggest future directions for research.
Collapse
Affiliation(s)
| | - Ede Rancz
- INMED, INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
14
|
Johnston R, Smith MA. Brain-wide arousal signals are segregated from movement planning in the superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591284. [PMID: 38746466 PMCID: PMC11092505 DOI: 10.1101/2024.04.26.591284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The superior colliculus (SC) is traditionally considered a brain region that functions as an interface between processing visual inputs and generating eye movement outputs. Although its role as a primary reflex center is thought to be conserved across vertebrate species, evidence suggests that the SC has evolved to support higher-order cognitive functions including spatial attention. When it comes to oculomotor areas such as the SC, it is critical that high precision fixation and eye movements are maintained even in the presence of signals related to ongoing changes in cognition and brain state, both of which have the potential to interfere with eye position encoding and movement generation. In this study, we recorded spiking responses of neuronal populations in the SC while monkeys performed a memory-guided saccade task and found that the activity of some of the neurons fluctuated over tens of minutes. By leveraging the statistical power afforded by high-dimensional neuronal recordings, we were able to identify a low-dimensional pattern of activity that was correlated with the subjects' arousal levels. Importantly, we found that the spiking responses of deep-layer SC neurons were less correlated with this brain-wide arousal signal, and that neural activity associated with changes in pupil size and saccade tuning did not overlap in population activity space with movement initiation signals. Taken together, these findings provide a framework for understanding how signals related to cognition and arousal can be embedded in the population activity of oculomotor structures without compromising the fidelity of the motor output.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| | - Matthew A. Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
15
|
Liao K, Xiang Y, Huang F, Huang M, Xu W, Lin Y, Liao P, Wang Z, Yang L, Tian X, Chen D, Wang Z, Liu S, Zhuang Z. Spatial and single-nucleus transcriptomics decoding the molecular landscape and cellular organization of avian optic tectum. iScience 2024; 27:109009. [PMID: 38333704 PMCID: PMC10850779 DOI: 10.1016/j.isci.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The avian optic tectum (OT) has been studied for its diverse functions, yet a comprehensive molecular landscape at the cellular level has been lacking. In this study, we applied spatial transcriptome sequencing and single-nucleus RNA sequencing (snRNA-seq) to explore the cellular organization and molecular characteristics of the avian OT from two species: Columba livia and Taeniopygia guttata. We identified precise layer structures and provided comprehensive layer-specific signatures of avian OT. Furthermore, we elucidated diverse functions in different layers, with the stratum griseum periventriculare (SGP) potentially playing a key role in advanced functions of OT, like fear response and associative learning. We characterized detailed neuronal subtypes and identified a population of FOXG1+ excitatory neurons, resembling those found in the mouse neocortex, potentially involved in neocortex-related functions and expansion of avian OT. These findings could contribute to our understanding of the architecture of OT, shedding light on visual perception and multifunctional association.
Collapse
Affiliation(s)
- Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fubaoqian Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Pingfang Liao
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinmao Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Duoyuan Chen
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
16
|
Bogadhi AR, Hafed ZM. Express detection of visual objects by primate superior colliculus neurons. Sci Rep 2023; 13:21730. [PMID: 38066070 PMCID: PMC10709564 DOI: 10.1038/s41598-023-48979-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Primate superior colliculus (SC) neurons exhibit visual feature tuning properties and are implicated in a subcortical network hypothesized to mediate fast threat and/or conspecific detection. However, the mechanisms through which SC neurons contribute to peripheral object detection, for supporting rapid orienting responses, remain unclear. Here we explored whether, and how quickly, SC neurons detect real-life object stimuli. We presented experimentally-controlled gray-scale images of seven different object categories, and their corresponding luminance- and spectral-matched image controls, within the extrafoveal response fields of SC neurons. We found that all of our functionally-identified SC neuron types preferentially detected real-life objects even in their very first stimulus-evoked visual bursts. Intriguingly, even visually-responsive motor-related neurons exhibited such robust early object detection. We further identified spatial frequency information in visual images as an important, but not exhaustive, source for the earliest (within 100 ms) but not for the late (after 100 ms) component of object detection by SC neurons. Our results demonstrate rapid and robust detection of extrafoveal visual objects by the SC. Besides supporting recent evidence that even SC saccade-related motor bursts can preferentially represent visual objects, these results reveal a plausible mechanism through which rapid orienting responses to extrafoveal visual objects can be mediated.
Collapse
Affiliation(s)
- Amarender R Bogadhi
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
17
|
Khademi F, Zhang T, Baumann MP, Buonocore A, Malevich T, Yu Y, Hafed ZM. Visual feature tuning properties of stimulus-driven saccadic inhibition in macaque monkeys. J Neurophysiol 2023; 130:1282-1302. [PMID: 37818591 DOI: 10.1152/jn.00289.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Saccadic inhibition refers to a short-latency transient cessation of saccade generation after visual sensory transients. This oculomotor phenomenon occurs with a latency that is consistent with a rapid influence of sensory responses, such as stimulus-induced visual bursts, on oculomotor control circuitry. However, the neural mechanisms underlying saccadic inhibition are not well understood. Here, we exploited the fact that macaque monkeys experience robust saccadic inhibition to test the hypothesis that inhibition time and strength exhibit systematic visual feature tuning properties to a multitude of visual feature dimensions commonly used in vision science. We measured saccades in three monkeys actively controlling their gaze on a target, and we presented visual onset events at random times. Across seven experiments, the visual onsets tested size, spatial frequency, contrast, orientation, motion direction, and motion speed dependencies of saccadic inhibition. We also investigated how inhibition might depend on the behavioral relevance of the appearing stimuli. We found that saccadic inhibition starts earlier, and is stronger, for large stimuli of low spatial frequencies and high contrasts. Moreover, saccadic inhibition timing depends on motion direction and orientation, with earlier inhibition systematically occurring for horizontally drifting vertical gratings. On the other hand, saccadic inhibition is stronger for faster motions and when the appearing stimuli are subsequently foveated. Besides documenting a range of feature tuning dimensions of saccadic inhibition to the properties of exogenous visual stimuli, our results establish macaque monkeys as an ideal model system for unraveling the neural mechanisms underlying a ubiquitous oculomotor phenomenon in visual neuroscience.NEW & NOTEWORTHY Visual onsets dramatically reduce saccade generation likelihood with very short latencies. Such latencies suggest that stimulus-induced visual responses, normally jump-starting perceptual and scene analysis processes, can also directly impact the decision of whether to generate saccades or not, causing saccadic inhibition. Consistent with this, we found that changing the appearance of the visual onsets systematically alters the properties of saccadic inhibition. These results constrain neurally inspired models of coordination between saccade generation and exogenous sensory stimulation.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tong Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, Italy
| | - Tatiana Malevich
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Yue Yu
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
18
|
Kehoe DH, Fallah M. Oculomotor feature discrimination is cortically mediated. Front Syst Neurosci 2023; 17:1251933. [PMID: 37899790 PMCID: PMC10600481 DOI: 10.3389/fnsys.2023.1251933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Eye movements are often directed toward stimuli with specific features. Decades of neurophysiological research has determined that this behavior is subserved by a feature-reweighting of the neural activation encoding potential eye movements. Despite the considerable body of research examining feature-based target selection, no comprehensive theoretical account of the feature-reweighting mechanism has yet been proposed. Given that such a theory is fundamental to our understanding of the nature of oculomotor processing, we propose an oculomotor feature-reweighting mechanism here. We first summarize the considerable anatomical and functional evidence suggesting that oculomotor substrates that encode potential eye movements rely on the visual cortices for feature information. Next, we highlight the results from our recent behavioral experiments demonstrating that feature information manifests in the oculomotor system in order of featural complexity, regardless of whether the feature information is task-relevant. Based on the available evidence, we propose an oculomotor feature-reweighting mechanism whereby (1) visual information is projected into the oculomotor system only after a visual representation manifests in the highest stage of the cortical visual processing hierarchy necessary to represent the relevant features and (2) these dynamically recruited cortical module(s) then perform feature discrimination via shifting neural feature representations, while also maintaining parity between the feature representations in cortical and oculomotor substrates by dynamically reweighting oculomotor vectors. Finally, we discuss how our behavioral experiments may extend to other areas in vision science and its possible clinical applications.
Collapse
Affiliation(s)
- Devin H. Kehoe
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- VISTA: Vision Science to Applications, York University, Toronto, ON, Canada
- Canadian Action and Perception Network, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Mazyar Fallah
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Canadian Action and Perception Network, Canada
- College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Fracasso A, Buonocore A, Hafed ZM. Peri-Saccadic Orientation Identification Performance and Visual Neural Sensitivity Are Higher in the Upper Visual Field. J Neurosci 2023; 43:6884-6897. [PMID: 37640553 PMCID: PMC10573757 DOI: 10.1523/jneurosci.1740-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Visual neural processing is distributed among a multitude of sensory and sensory-motor brain areas exhibiting varying degrees of functional specializations and spatial representational anisotropies. Such diversity raises the question of how perceptual performance is determined, at any one moment in time, during natural active visual behavior. Here, exploiting a known dichotomy between the primary visual cortex (V1) and superior colliculus (SC) in representing either the upper or lower visual fields, we asked whether peri-saccadic orientation identification performance is dominated by one or the other spatial anisotropy. Humans (48 participants, 29 females) reported the orientation of peri-saccadic upper visual field stimuli significantly better than lower visual field stimuli, unlike their performance during steady-state gaze fixation, and contrary to expected perceptual superiority in the lower visual field in the absence of saccades. Consistent with this, peri-saccadic superior colliculus visual neural responses in two male rhesus macaque monkeys were also significantly stronger in the upper visual field than in the lower visual field. Thus, peri-saccadic orientation identification performance is more in line with oculomotor, rather than visual, map spatial anisotropies.SIGNIFICANCE STATEMENT Different brain areas respond to visual stimulation, but they differ in the degrees of functional specializations and spatial anisotropies that they exhibit. For example, the superior colliculus (SC) both responds to visual stimulation, like the primary visual cortex (V1), and controls oculomotor behavior. Compared with the primary visual cortex, the superior colliculus exhibits an opposite pattern of upper/lower visual field anisotropy, being more sensitive to the upper visual field. Here, we show that human peri-saccadic orientation identification performance is better in the upper compared with the lower visual field. Consistent with this, monkey superior colliculus visual neural responses to peri-saccadic stimuli follow a similar pattern. Our results indicate that peri-saccadic perceptual performance reflects oculomotor, rather than visual, map spatial anisotropies.
Collapse
Affiliation(s)
- Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QE, Scotland, United Kingdom
| | - Antimo Buonocore
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples 80135, Italy
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen 72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen 72076, Germany
| |
Collapse
|
20
|
Baumann MP, Bogadhi AR, Denninger AF, Hafed ZM. Sensory tuning in neuronal movement commands. Proc Natl Acad Sci U S A 2023; 120:e2305759120. [PMID: 37695898 PMCID: PMC10515157 DOI: 10.1073/pnas.2305759120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
Movement control is critical for successful interaction with our environment. However, movement does not occur in complete isolation of sensation, and this is particularly true of eye movements. Here, we show that the neuronal eye movement commands emitted by the superior colliculus (SC), a structure classically associated with oculomotor control, encompass a robust visual sensory representation of eye movement targets. Thus, similar saccades toward different images are associated with different saccade-related "motor" bursts. Such sensory tuning in SC saccade motor commands appeared for all image manipulations that we tested, from simple visual features to real-life object images, and it was also strongest in the most motor neurons in the deeper collicular layers. Visual-feature discrimination performance in the motor commands was also stronger than in visual responses. Comparing SC motor command feature discrimination performance to that in the primary visual cortex during steady-state gaze fixation revealed that collicular motor bursts possess a reliable perisaccadic sensory representation of the peripheral saccade target's visual appearance, exactly when retinal input is expected to be most uncertain. Our results demonstrate that SC neuronal movement commands likely serve a fundamentally sensory function.
Collapse
Affiliation(s)
- Matthias P. Baumann
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
| | - Amarender R. Bogadhi
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
- Central Nervous Systems Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach88400, Germany
| | - Anna F. Denninger
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
| | - Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
| |
Collapse
|