1
|
Puzzo CD, Martinez-Garcia RI, Liu H, Dyson LF, Gilbert WO, Cruikshank SJ. Integration of distinct cortical inputs to primary and higher order inhibitory cells of the thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618039. [PMID: 39416152 PMCID: PMC11482941 DOI: 10.1101/2024.10.12.618039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neocortex controls its own sensory input in part through top-down inhibitory mechanisms. Descending corticothalamic projections drive GABAergic neurons of the thalamic reticular nucleus (TRN), which govern thalamocortical cell activity via inhibition. Neurons in sensory TRN are organized into primary and higher order (HO) subpopulations, with separate intrathalamic connections and distinct genetic and functional properties. Here, we investigated top-down neocortical control over primary and HO neurons of somatosensory TRN. Projections from layer 6 of somatosensory cortex evoked stronger and more state-dependent activity in primary than in HO TRN, driven by more robust synaptic inputs and potent T-type calcium currents. However, HO TRN received additional, physiologically distinct, inputs from motor cortex and layer 5 of S1. Thus, in a departure from the canonical focused sensory layer 6 innervation characteristic of primary TRN, HO TRN integrates broadly from multiple corticothalamic systems, with unique state-dependence, extending the range of mechanisms for top-down control.
Collapse
|
2
|
Wang Y, Wang H, Hu S, Nguchu BA, Zhang D, Chen S, Ji Y, Qiu B, Wang X. Sub-bundle based analysis reveals the role of human optic radiation in visual working memory. Hum Brain Mapp 2024; 45:e26800. [PMID: 39093044 PMCID: PMC11295295 DOI: 10.1002/hbm.26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
White matter (WM) functional activity has been reliably detected through functional magnetic resonance imaging (fMRI). Previous studies have primarily examined WM bundles as unified entities, thereby obscuring the functional heterogeneity inherent within these bundles. Here, for the first time, we investigate the function of sub-bundles of a prototypical visual WM tract-the optic radiation (OR). We use the 7T retinotopy dataset from the Human Connectome Project (HCP) to reconstruct OR and further subdivide the OR into sub-bundles based on the fiber's termination in the primary visual cortex (V1). The population receptive field (pRF) model is then applied to evaluate the retinotopic properties of these sub-bundles, and the consistency of the pRF properties of sub-bundles with those of V1 subfields is evaluated. Furthermore, we utilize the HCP working memory dataset to evaluate the activations of the foveal and peripheral OR sub-bundles, along with LGN and V1 subfields, during 0-back and 2-back tasks. We then evaluate differences in 2bk-0bk contrast between foveal and peripheral sub-bundles (or subfields), and further examine potential relationships between 2bk-0bk contrast and 2-back task d-prime. The results show that the pRF properties of OR sub-bundles exhibit standard retinotopic properties and are typically similar to the properties of V1 subfields. Notably, activations during the 2-back task consistently surpass those under the 0-back task across foveal and peripheral OR sub-bundles, as well as LGN and V1 subfields. The foveal V1 displays significantly higher 2bk-0bk contrast than peripheral V1. The 2-back task d-prime shows strong correlations with 2bk-0bk contrast for foveal and peripheral OR fibers. These findings demonstrate that the blood oxygen level-dependent (BOLD) signals of OR sub-bundles encode high-fidelity visual information, underscoring the feasibility of assessing WM functional activity at the sub-bundle level. Additionally, the study highlights the role of OR in the top-down processes of visual working memory beyond the bottom-up processes for visual information transmission. Conclusively, this study innovatively proposes a novel paradigm for analyzing WM fiber tracts at the individual sub-bundle level and expands understanding of OR function.
Collapse
Affiliation(s)
- Yanming Wang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Sheng Hu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Benedictor Alexander Nguchu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Du Zhang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Shishuo Chen
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Yang Ji
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| | - Bensheng Qiu
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
- Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
| | - Xiaoxiao Wang
- Medical Imaging Center, Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
3
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. eNeuro 2024; 11:ENEURO.0255-24.2024. [PMID: 38926084 PMCID: PMC11236587 DOI: 10.1523/eneuro.0255-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extrasensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in CT neurons projecting to the dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) located in lower L6a than VPm-only-projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
- Luis E Martinetti
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
4
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590613. [PMID: 38712153 PMCID: PMC11071411 DOI: 10.1101/2024.04.22.590613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extra-sensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in Dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) projecting CT neurons located in lower L6a than VPm-only projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
| | - Dawn M. Autio
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| | - Shane R. Crandall
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
5
|
Revsine C, Gonzalez-Castillo J, Merriam EP, Bandettini PA, Ramírez FM. A Unifying Model for Discordant and Concordant Results in Human Neuroimaging Studies of Facial Viewpoint Selectivity. J Neurosci 2024; 44:e0296232024. [PMID: 38438256 PMCID: PMC11044116 DOI: 10.1523/jneurosci.0296-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Recognizing faces regardless of their viewpoint is critical for social interactions. Traditional theories hold that view-selective early visual representations gradually become tolerant to viewpoint changes along the ventral visual hierarchy. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest a three-stage architecture including an intermediate face-selective patch abruptly achieving invariance to mirror-symmetric face views. Human studies combining neuroimaging and multivariate pattern analysis (MVPA) have provided convergent evidence of view selectivity in early visual areas. However, contradictory conclusions have been reached concerning the existence in humans of a mirror-symmetric representation like that observed in macaques. We believe these contradictions arise from low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two face databases. Analyses of image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across neuroimaging studies, we constructed a network model incorporating three constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network-layers is sufficient to replicate view-tuning in early processing stages and mirror-symmetry in later stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the inconsistent observation of mirror-symmetry across prior studies. Pattern analyses of human fMRI data (of either sex) revealed biases compatible with our model. The model provides a unifying explanation of MVPA studies of viewpoint selectivity and suggests observations of mirror-symmetry originate from ineffectively normalized signal imbalances across different face views.
Collapse
Affiliation(s)
- Cambria Revsine
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- Department of Psychology, University of Chicago, Chicago, Illinois 60637
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- Functional MRI Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Fernando M Ramírez
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
6
|
Schmid D, Jarvers C, Neumann H. Canonical circuit computations for computer vision. BIOLOGICAL CYBERNETICS 2023; 117:299-329. [PMID: 37306782 PMCID: PMC10600314 DOI: 10.1007/s00422-023-00966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Advanced computer vision mechanisms have been inspired by neuroscientific findings. However, with the focus on improving benchmark achievements, technical solutions have been shaped by application and engineering constraints. This includes the training of neural networks which led to the development of feature detectors optimally suited to the application domain. However, the limitations of such approaches motivate the need to identify computational principles, or motifs, in biological vision that can enable further foundational advances in machine vision. We propose to utilize structural and functional principles of neural systems that have been largely overlooked. They potentially provide new inspirations for computer vision mechanisms and models. Recurrent feedforward, lateral, and feedback interactions characterize general principles underlying processing in mammals. We derive a formal specification of core computational motifs that utilize these principles. These are combined to define model mechanisms for visual shape and motion processing. We demonstrate how such a framework can be adopted to run on neuromorphic brain-inspired hardware platforms and can be extended to automatically adapt to environment statistics. We argue that the identified principles and their formalization inspires sophisticated computational mechanisms with improved explanatory scope. These and other elaborated, biologically inspired models can be employed to design computer vision solutions for different tasks and they can be used to advance neural network architectures of learning.
Collapse
Affiliation(s)
- Daniel Schmid
- Institute for Neural Information Processing, Ulm University, James-Franck-Ring, Ulm, 89081 Germany
| | - Christian Jarvers
- Institute for Neural Information Processing, Ulm University, James-Franck-Ring, Ulm, 89081 Germany
| | - Heiko Neumann
- Institute for Neural Information Processing, Ulm University, James-Franck-Ring, Ulm, 89081 Germany
| |
Collapse
|
7
|
Kruper J, Benson NC, Caffarra S, Owen J, Wu Y, Lee AY, Lee CS, Yeatman JD, Rokem A. Optic radiations representing different eccentricities age differently. Hum Brain Mapp 2023; 44:3123-3135. [PMID: 36896869 PMCID: PMC10171550 DOI: 10.1002/hbm.26267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
The neural pathways that carry information from the foveal, macular, and peripheral visual fields have distinct biological properties. The optic radiations (OR) carry foveal and peripheral information from the thalamus to the primary visual cortex (V1) through adjacent but separate pathways in the white matter. Here, we perform white matter tractometry using pyAFQ on a large sample of diffusion MRI (dMRI) data from subjects with healthy vision in the U.K. Biobank dataset (UKBB; N = 5382; age 45-81). We use pyAFQ to characterize white matter tissue properties in parts of the OR that transmit information about the foveal, macular, and peripheral visual fields, and to characterize the changes in these tissue properties with age. We find that (1) independent of age there is higher fractional anisotropy, lower mean diffusivity, and higher mean kurtosis in the foveal and macular OR than in peripheral OR, consistent with denser, more organized nerve fiber populations in foveal/parafoveal pathways, and (2) age is associated with increased diffusivity and decreased anisotropy and kurtosis, consistent with decreased density and tissue organization with aging. However, anisotropy in foveal OR decreases faster with age than in peripheral OR, while diffusivity increases faster in peripheral OR, suggesting foveal/peri-foveal OR and peripheral OR differ in how they age.
Collapse
Affiliation(s)
- John Kruper
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Noah C. Benson
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Sendy Caffarra
- Graduate School of Education, Stanford University and Division of Developmental‐Behavioral Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Julia Owen
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Yue Wu
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Aaron Y. Lee
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Cecilia S. Lee
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Jason D. Yeatman
- Graduate School of Education, Stanford University and Division of Developmental‐Behavioral Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Ariel Rokem
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | | |
Collapse
|
8
|
Oletto CM, Contemori G, Bertamini M, Battaglini L. The Role of Foveal Cortex in Discriminating Peripheral Stimuli: The Sketchpad Hypothesis. NEUROSCI 2023; 4:9-17. [PMID: 39484295 PMCID: PMC11523757 DOI: 10.3390/neurosci4010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 11/03/2024] Open
Abstract
Foveal (central) and peripheral vision are strongly interconnected to provide an integrated experience of the world around us. Recently, it has been suggested that there is a feedback mechanism that links foveal and peripheral vision. This peripheral-to-foveal feedback differs from other feedback mechanisms in that during visual processing a novel representation of a stimulus is formed in a different cortical region than that of the feedforward representation. The functional role of foveal feedback is not yet completely understood, but some evidence from neuroimaging studies suggests a link with peripheral shape processing. Behavioural and transcranial magnetic stimulation studies show impairment in peripheral shape discrimination when the foveal retinotopic cortex is disrupted post stimulus presentation. This review aims to link these findings to the visual sketchpad hypothesis. According to this hypothesis, foveal retinotopic cortex stores task-relevant information to aid identification of peripherally presented objects. We discuss how the characteristics of foveal feedback support this hypothesis and rule out other possible explanations. We also discuss the possibility that the foveal feedback may be independent of the sensory modality of the stimulation.
Collapse
Affiliation(s)
| | | | | | - Luca Battaglini
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
9
|
Revsine C, Gonzalez-Castillo J, Merriam EP, Bandettini PA, Ramírez FM. A unifying model for discordant and concordant results in human neuroimaging studies of facial viewpoint selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527219. [PMID: 36945636 PMCID: PMC10028835 DOI: 10.1101/2023.02.08.527219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Our ability to recognize faces regardless of viewpoint is a key property of the primate visual system. Traditional theories hold that facial viewpoint is represented by view-selective mechanisms at early visual processing stages and that representations become increasingly tolerant to viewpoint changes in higher-level visual areas. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest an additional intermediate processing stage invariant to mirror-symmetric face views. Consistent with traditional theories, human studies combining neuroimaging and multivariate pattern analysis (MVPA) methods have provided evidence of view-selectivity in early visual cortex. However, contradictory results have been reported in higher-level visual areas concerning the existence in humans of mirror-symmetrically tuned representations. We believe these results reflect low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two popular face databases. Analyses of mean image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across human neuroimaging studies of viewpoint selectivity, we constructed a network model that incorporates three biological constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network layers is sufficient to replicate findings of mirror-symmetry in high-level processing stages, as well as view-tuning in early processing stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the variable observation of mirror-symmetry in late processing stages. The model provides a unifying explanation of MVPA studies of viewpoint selectivity. We also show how common analysis choices can lead to erroneous conclusions.
Collapse
Affiliation(s)
- Cambria Revsine
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Department of Psychology, University of Chicago, Chicago, IL
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Functional MRI Core, National Institutes of Health, Bethesda, MD
| | - Fernando M Ramírez
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Reproducible protocol to obtain and measure first-order relay human thalamic white-matter tracts. Neuroimage 2022; 262:119558. [PMID: 35973564 DOI: 10.1016/j.neuroimage.2022.119558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
The "primary" or "first-order relay" nuclei of the thalamus feed the cerebral cortex with information about ongoing activity in the environment or the subcortical motor systems. Because of the small size of these nuclei and the high specificity of their input and output pathways, new imaging protocols are required to investigate thalamocortical interactions in human perception, cognition and language. The goal of the present study was twofold: I) to develop a reconstruction protocol based on in vivo diffusion MRI to extract and measure the axonal fiber tracts that originate or terminate specifically in individual first-order relay nuclei; and, II) to test the reliability of this reconstruction protocol. In left and right hemispheres, we investigated the thalamocortical/corticothalamic axon bundles linking each of the first-order relay nuclei and their main cortical target areas, namely, the lateral geniculate nucleus (optic radiation), the medial geniculate nucleus (acoustic radiation), the ventral posterior nucleus (somatosensory radiation) and the ventral lateral nucleus (motor radiation). In addition, we examined the main subcortical input pathway to the ventral lateral posterior nucleus, which originates in the dentate nucleus of the cerebellum. Our protocol comprised three components: defining regions-of-interest; preprocessing diffusion data; and modeling white-matter tracts and tractometry. We then used computation and test-retest methods to check whether our protocol could reliably reconstruct these tracts of interest and their profiles. Our results demonstrated that the protocol had nearly perfect computational reproducibility and good-to-excellent test-retest reproducibility. This new protocol may be of interest for both basic human brain neuroscience and clinical studies and has been made publicly available to the scientific community.
Collapse
|
11
|
Dual counterstream architecture may support separation between vision and predictions. Conscious Cogn 2022; 103:103375. [DOI: 10.1016/j.concog.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/03/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
12
|
Javadzadeh M, Hofer SB. Dynamic causal communication channels between neocortical areas. Neuron 2022; 110:2470-2483.e7. [PMID: 35690063 PMCID: PMC9616801 DOI: 10.1016/j.neuron.2022.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/26/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Processing of sensory information depends on the interactions between hierarchically connected neocortical regions, but it remains unclear how the activity in one area causally influences the activity dynamics in another and how rapidly such interactions change with time. Here, we show that the communication between the primary visual cortex (V1) and high-order visual area LM is context-dependent and surprisingly dynamic over time. By momentarily silencing one area while recording activity in the other, we find that both areas reliably affected changing subpopulations of target neurons within one hundred milliseconds while mice observed a visual stimulus. The influence of LM feedback on V1 responses became even more dynamic when the visual stimuli predicted a reward, causing fast changes in the geometry of V1 population activity and affecting stimulus coding in a context-dependent manner. Therefore, the functional interactions between cortical areas are not static but unfold through rapidly shifting communication subspaces whose dynamics depend on context when processing sensory information. Optogenetic perturbations reveal the causal structure of long-range cortical influences How visual areas influence each other changes dynamically over tens of milliseconds Feedback to V1 improves visual stimulus encoding required for behavior The dynamics of feedback influences depend on the behavioral context
Collapse
Affiliation(s)
- Mitra Javadzadeh
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
13
|
Shah S, Mancarella M, Hembrook-Short JR, Mock VL, Briggs F. Attention differentially modulates multiunit activity in the lateral geniculate nucleus and V1 of macaque monkeys. J Comp Neurol 2022; 530:1064-1080. [PMID: 33950555 PMCID: PMC8568737 DOI: 10.1002/cne.25168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
Attention promotes the selection of behaviorally relevant sensory signals from the barrage of sensory information available. Visual attention modulates the gain of neuronal activity in all visual brain areas examined, although magnitudes of gain modulations vary across areas. For example, attention gain magnitudes in the dorsal lateral geniculate nucleus (LGN) and primary visual cortex (V1) vary tremendously across fMRI measurements in humans and electrophysiological recordings in behaving monkeys. We sought to determine whether these discrepancies are due simply to differences in species or measurement, or more nuanced properties unique to each visual brain area. We also explored whether robust and consistent attention effects, comparable to those measured in humans with fMRI, are observable in the LGN or V1 of monkeys. We measured attentional modulation of multiunit activity in the LGN and V1 of macaque monkeys engaged in a contrast change detection task requiring shifts in covert visual spatial attention. Rigorous analyses of LGN and V1 multiunit activity revealed robust and consistent attentional facilitation throughout V1, with magnitudes comparable to those observed with fMRI. Interestingly, attentional modulation in the LGN was consistently negligible. These findings demonstrate that discrepancies in attention effects are not simply due to species or measurement differences. We also examined whether attention effects correlated with the feature selectivity of recorded multiunits. Distinct relationships suggest that attentional modulation of multiunit activity depends upon the unique structure and function of visual brain areas.
Collapse
Affiliation(s)
- Shraddha Shah
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Marc Mancarella
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | | | - Vanessa L. Mock
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester NY 14627 USA
- Center for Visual Science, University of Rochester, Rochester NY 14627 USA
| |
Collapse
|
14
|
Rockland KS. Notes on Visual Cortical Feedback and Feedforward Connections. Front Syst Neurosci 2022; 16:784310. [PMID: 35153685 PMCID: PMC8831541 DOI: 10.3389/fnsys.2022.784310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
|
15
|
Kirchgessner MA, Franklin AD, Callaway EM. Distinct "driving" versus "modulatory" influences of different visual corticothalamic pathways. Curr Biol 2021; 31:5121-5137.e7. [PMID: 34614389 PMCID: PMC8665059 DOI: 10.1016/j.cub.2021.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/25/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
Higher-order (HO) thalamic nuclei interact extensively and reciprocally with the cerebral cortex. These corticothalamic (CT) interactions are thought to be important for sensation and perception, attention, and many other important brain functions. CT projections to HO thalamic nuclei, such as the visual pulvinar, originate from two different excitatory populations in cortical layers 5 and 6, whereas first-order nuclei (such as the dorsolateral geniculate nucleus; dLGN) only receive layer 6 CT input. It has been proposed that these layer 5 and layer 6 CT pathways have different functional influences on the HO thalamus, but this has never been directly tested. By optogenetically inactivating different CT populations in the primary visual cortex (V1) and recording single-unit activity from V1, dLGN, and pulvinar of awake mice, we demonstrate that layer 5, but not layer 6, CT projections drive visual responses in the pulvinar, even while both pathways provide retinotopic, baseline excitation to their thalamic targets. Inactivating the superior colliculus also suppressed visual responses in the same subregion of the pulvinar, demonstrating that cortical layer 5 and subcortical inputs both contribute to HO visual thalamic activity-even at the level of putative single neurons. Altogether, these results indicate a functional division of "driver" and "modulator" CT pathways from V1 to the visual thalamus in vivo.
Collapse
Affiliation(s)
- Megan A Kirchgessner
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis D Franklin
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Morphological evidence for multiple distinct channels of corticogeniculate feedback originating in mid-level extrastriate visual areas of the ferret. Brain Struct Funct 2021; 226:2777-2791. [PMID: 34636984 PMCID: PMC9845063 DOI: 10.1007/s00429-021-02385-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/11/2021] [Indexed: 01/19/2023]
Abstract
Complementary reciprocal feedforward and feedback circuits connecting the visual thalamus with the visual cortex are essential for visual perception. These circuits predominantly connect primary and secondary visual cortex with the dorsal lateral geniculate nucleus (LGN). Although there are direct geniculocortical inputs to extrastriate visual cortex, whether reciprocal corticogeniculate neurons exist in extrastriate cortex is not known. Here we utilized virus-mediated retrograde tracing to reveal the presence of corticogeniculate neurons in three mid-level extrastriate visual cortical areas in ferrets: PMLS, PLLS, and 21a. We observed corticogeniculate neurons in all three extrastriate areas, although the density of virus-labeled corticogeniculate neurons in extrastriate cortex was an order of magnitude less than that in areas 17 and 18. A cluster analysis of morphological metrics quantified following reconstructions of the full dendritic arborizations of virus-labeled corticogeniculate neurons revealed six distinct cell types. Similar corticogeniculate cell types to those observed in areas 17 and 18 were also observed in PMLS, PLLS, and 21a. However, these unique cell types were not equally distributed across the three extrastriate areas. The majority of corticogeniculate neurons per cluster originated in a single area, suggesting unique parallel organizations for corticogeniculate feedback from each extrastriate area to the LGN. Together, our findings demonstrate direct feedback connections from mid-level extrastriate visual cortex to the LGN, supporting complementary reciprocal circuits at multiple processing stages along the visual hierarchy. Importantly, direct reciprocal connections between the LGN and extrastriate cortex, that bypass V1, could provide a substrate for residual vision following V1 damage.
Collapse
|
17
|
Quinn KR, Seillier L, Butts DA, Nienborg H. Decision-related feedback in visual cortex lacks spatial selectivity. Nat Commun 2021; 12:4473. [PMID: 34294703 PMCID: PMC8298450 DOI: 10.1038/s41467-021-24629-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Feedback in the brain is thought to convey contextual information that underlies our flexibility to perform different tasks. Empirical and computational work on the visual system suggests this is achieved by targeting task-relevant neuronal subpopulations. We combine two tasks, each resulting in selective modulation by feedback, to test whether the feedback reflected the combination of both selectivities. We used visual feature-discrimination specified at one of two possible locations and uncoupled the decision formation from motor plans to report it, while recording in macaque mid-level visual areas. Here we show that although the behavior is spatially selective, using only task-relevant information, modulation by decision-related feedback is spatially unselective. Population responses reveal similar stimulus-choice alignments irrespective of stimulus relevance. The results suggest a common mechanism across tasks, independent of the spatial selectivity these tasks demand. This may reflect biological constraints and facilitate generalization across tasks. Our findings also support a previously hypothesized link between feature-based attention and decision-related activity. Feedback modulates visual neurons, thought to help achieve flexible task performance. Here, the authors show decision-related feedback is not only relayed to task-relevant neurons, suggesting a broader mechanism and supporting a previously hypothesized link to feature-based attention.
Collapse
Affiliation(s)
| | | | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|