1
|
Sutton P, Saunier J, Mason KA, Pearcy AC, Lao KU, Samy El-Shall M. Formation of complex organics by covalent and non-covalent interactions of the sequential reactions of 1-4 acrylonitrile molecules with the benzonitrile radical cation. Phys Chem Chem Phys 2024; 26:29708-29717. [PMID: 39611742 DOI: 10.1039/d4cp03594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Benzonitrile molecules are present in ionizing environments including interstellar clouds and solar nebulae, where their ions can form adducts with neutral molecules such as acrylonitrile leading to the formation of a variety of nitrogen-containing complex organics. Herein, we report on the formation of complex organics by the sequential reactions of 1-4 acrylonitrile (C3NH3) molecules with the benzonitrile radical cation (C7NH5+˙). The results reveal the formation of the covalently bonded N-acrylonitrile-benzonitrile radical cation (C10N2H8+˙) with a rate coefficient of 2.2 (±0.4) × 10-11 cm3 s-1 at 423 K and a calculated collision cross-section of 73.8 Å2 in good agreement with the measured cross-section of 70.7 Å2 of the C10N2H8+˙ adduct. Subsequent reversible association of 1-3 acrylonitrile molecules with the N-acrylonitrile-benzonitrile radical cation (C10N2H8+˙) at lower temperatures (250-200 K) results in the formation of the N-rich clusters (C10N2H8+˙)(C3NH3)1-3 which can be enhanced in the very cold cores of the interstellar medium (ISM) and could offer unique potential candidates for the substantial amount of nitrogen carriers detected in the emission spectra of the ISM. The observed N-acrylonitrile-benzonitrile covalent adduct and its associated acrylonitrile clusters could have significant implications in the formation of different types of complex organics in different regions of outer space. It is anticipated that the current results would have direct implications in the search for nitrogen-containing complex organics in space.
Collapse
Affiliation(s)
- Paige Sutton
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - John Saunier
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - Kyle A Mason
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - Adam C Pearcy
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| |
Collapse
|
2
|
Sutton P, Saunier J, Lao KU, El-Shall MS. Sequential Reactions of Acetylene with the Benzonitrile Radical Cation: New Insights into Structures and Rate Coefficients of the Covalent Ion Products. J Phys Chem Lett 2024; 15:11067-11076. [PMID: 39471052 PMCID: PMC11552070 DOI: 10.1021/acs.jpclett.4c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Benzonitrile radical cations generated in ionizing environments such as solar nebulae and interstellar clouds can react with neutral molecules such as acetylene to form a variety of nitrogen-containing complex organics. Herein, we present results from mass-selected ion mobility experiments and coupled-cluster and DFT calculations for the sequential reactions of acetylene with the benzonitrile radical cation (C7NH5+•). The results reveal the formation of two covalently bonded adduct ions C9NH7+• and C11NH9+• with individual rate coefficients of 2.1(±0.4) × 10-11 cm3 s-1 and 1.1(±0.9) × 10-11 cm3 s-1, respectively measured at 334.5 K. The direct addition of acetylene onto the N atom of the benzonitrile cation results in the formation of a N-acetylene-benzonitrile+• radical cation with a calculated collision cross-section of 67.5 Å2 in perfect agreement with the measured cross-section of 67.5 Å2 of the C9NH7+• adduct. The measured collision cross-section of the second covalent adduct C11NH9+• (72.2 Å2) is also in excellent agreement with the calculated cross-section (71.2 Å2) of the lowest energy isomer of the C11NH9+• ion corresponding to the 2-phenylpyridine structure. The formation of the bicyclic 2-phenylpyridine radical cation is explained by the rapid conversion of the classical radical cation C11NH9+• into a distonic ion structure that can efficiently cyclize in an exothermic transformation to form the 2-phenylpyridine radical cation. This intriguing mechanism could explain the formation of N-containing complex organics in different regions of outer space. The current results are expected to have direct implications for the search for nitrogen-containing complex organics in space.
Collapse
Affiliation(s)
- Paige Sutton
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| | - John Saunier
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| | - Ka Un Lao
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| | - M. Samy El-Shall
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| |
Collapse
|
3
|
Zierkiewicz W, Scheiner S, Michalczyk M. From weak to strong interactions between halogen and noble gas atoms in halonium complexes. Phys Chem Chem Phys 2024; 26:25762-25766. [PMID: 39360348 DOI: 10.1039/d4cp02647k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Halonium cations can interact through a halogen bond with individual noble gas atoms. These bonds can vary widely in strength from 1 to 25 kcal mol-1. Quantum chemical analyses consider X to be attached to a propyl group, pyridine N, or Xe atom, with X = Cl, Br, and I, interacting with Ar, Kr, and Xe atoms. The most weakly bound dyads are bound primarily by electrostatics, but charge transfer takes a larger role for the more tightly held complexes.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University Logan Utah, 84322-0300, USA
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
4
|
Martins FBV, Zhelyazkova V, Merkt F. Cold reactions of He + with OCS and CO 2: competitive kinetics and the effects of the molecular multipole moments. Phys Chem Chem Phys 2024; 26:24799-24808. [PMID: 39297210 PMCID: PMC11413858 DOI: 10.1039/d4cp02871f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024]
Abstract
The reactions of He+ with OCS and CO2 have been studied at collision energies between ∼kB ⋅ 200 mK and ∼kB ⋅ 30 K by merging a beam of Rydberg He atoms with rotationally cold (∼3.5 K) seeded supersonic expansions containing either OCS or 13CO2 or a mixture of OCS (mole fraction 23.2%) and 13CO2 (76.8%). The observed product ions of the He+ + 13CO2 and He+ + OCS reactions are 13CO+, and CS+ and CO+, respectively. The He+ + OCS capture rate coefficient increases by ∼75% with decreasing collision energy over the investigated range, whereas that of He+ + 13CO2 decreases by ∼40%. The analysis of the experimental results using an adiabatic-channel capture model indicates that these opposite collision-energy dependences of the rate coefficients arise from the interaction between the charge of the ion and the electric multipole moments of OCS and 13CO2. From the relative product-ion yields observed when using the mixture of OCS and 13CO2, the He+ + OCS collisions are inferred to be ∼20% more reactive than those between He+ and 13CO2. The comparison of the calculated thermal rate coefficients with earlier experiments suggests that about half of the He+ + 13CO2 collisions are reactive.
Collapse
Affiliation(s)
- Fernanda B V Martins
- ETH Zürich, Institute of Molecular Physical Science, CH-8093 Zürich, Switzerland.
| | | | - Frédéric Merkt
- ETH Zürich, Institute of Molecular Physical Science, CH-8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Grussie F, Berger L, Grieser M, Kálosi Á, Müll D, Novotný O, Znotins A, Dayou F, Urbain X, Kreckel H. Merged-Beams Study of the Reaction of Cold HD^{+} with C Atoms Reveals a Pronounced Intramolecular Kinetic Isotope Effect. PHYSICAL REVIEW LETTERS 2024; 132:243001. [PMID: 38949364 DOI: 10.1103/physrevlett.132.243001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024]
Abstract
We present a merged-beams study of reactions between HD^{+} ions, stored in the Cryogenic Storage Ring (CSR), and laser-produced ground-term C atoms. The molecular ions are stored for up to 20 s in the extreme vacuum of the CSR, where they have time to relax radiatively until they reach their vibrational ground state (within 0.5 s of storage) and rotational states with J≤3 (after 5 s). We combine our experimental studies with quasiclassical trajectory calculations based on two reactive potential energy surfaces. In contrast to previous studies with internally excited H_{2}^{+} and D_{2}^{+} ions, our results reveal a pronounced isotope effect, favoring the production of CH^{+} over CD^{+} across all collision energies, and a significant increase in the absolute rate coefficient of the reaction. Our experimental results agree well with our theoretical calculations for vibrationally relaxed HD^{+} ions in their lowest rotational states.
Collapse
Affiliation(s)
- Florian Grussie
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lukas Berger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Manfred Grieser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Ábel Kálosi
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027, USA
| | - Damian Müll
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Oldřich Novotný
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Aigars Znotins
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Fabrice Dayou
- Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-92195 Meudon, France
| | - Xavier Urbain
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Holger Kreckel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Selvaraj M, Subramani A, Ramanathan K, Richter R, Pal N, Bolognesi P, Avaldi L, Kadhane UR. Fragmentation dynamics of the doubly charged aniline: the source of kinetically excited C nH 3+ ions. Phys Chem Chem Phys 2024; 26:16540-16549. [PMID: 38828709 DOI: 10.1039/d3cp05882d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The goals of this work are to attempt to decipher if an aniline dication can isomerize to a picoline dication in a given astrochemical environment and if the dissociation of such dications could be a source of kinetically hot fragment ions, some of which could be of significance in the interstellar medium. Toward this purpose, the VUV-induced dication dissociation was investigated experimentally using ion-ion coincidence and computationally by optimizing various pathways. Contrary to previous reports, we show here that the dication of aniline is structurally too weak to retain its ring structure while following the dissociation pathways. A fragile open ring structure could lead to all the experimentally observed pathways of noticeable intensity. The significance of this, especially in terms of molecular dynamics, can be assessed by the fact that all the transformations were facilitated by specific hydrogen migration. A clear selectivity is seen where the dication of aniline was found to prefer a rearrangement of hydrogen within the ring rather than transferring from nitrogen to the ring, which is conventionally expected and has to do with the charge state and charge localization.
Collapse
Affiliation(s)
| | - Arun Subramani
- Indian Institute of Space Science and Technology, Trivandrum, Kerala, India.
| | - Karthick Ramanathan
- Indian Institute of Space Science and Technology, Trivandrum, Kerala, India.
| | | | | | | | | | - Umesh R Kadhane
- Indian Institute of Space Science and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
7
|
Krohn OA, Lewandowski HJ. Cold Ion-Molecule Reactions in the Extreme Environment of a Coulomb Crystal. J Phys Chem A 2024. [PMID: 38359783 DOI: 10.1021/acs.jpca.3c07546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Coulomb crystals provide a unique environment in which to study ion-neutral gas-phase reactions. In these cold, trapped ensembles, we are able to study the kinetics and dynamics of small molecular systems. These measurements have connections to chemistry in the Interstellar Medium (ISM) and planetary atmospheres. This Feature Article will describe recent work in our laboratory that uses Coulomb crystals to study translationally cold, ion-neutral reactions. We provide a description of how the various affordances of our experimental system allow for detailed studies of the reaction mechanisms and the corresponding products. In particular, we will describe quantum-state resolved reactions, isomer-dependent reactions, and reactions with a rarely studied, astrophysically relevant ion, CCl+.
Collapse
Affiliation(s)
- O A Krohn
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - H J Lewandowski
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Heo J, Kim D, Segalina A, Ki H, Ahn DS, Lee S, Kim J, Cha Y, Lee KW, Yang J, Nunes JPF, Wang X, Ihee H. Capturing the generation and structural transformations of molecular ions. Nature 2024; 625:710-714. [PMID: 38200317 PMCID: PMC10808067 DOI: 10.1038/s41586-023-06909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Molecular ions are ubiquitous and play pivotal roles1-3 in many reactions, particularly in the context of atmospheric and interstellar chemistry4-6. However, their structures and conformational transitions7,8, particularly in the gas phase, are less explored than those of neutral molecules owing to experimental difficulties. A case in point is the halonium ions9-11, whose highly reactive nature and ring strain make them short-lived intermediates that are readily attacked even by weak nucleophiles and thus challenging to isolate or capture before they undergo further reaction. Here we show that mega-electronvolt ultrafast electron diffraction (MeV-UED)12-14, used in conjunction with resonance-enhanced multiphoton ionization, can monitor the formation of 1,3-dibromopropane (DBP) cations and their subsequent structural dynamics forming a halonium ion. We find that the DBP+ cation remains for a substantial duration of 3.6 ps in aptly named 'dark states' that are structurally indistinguishable from the DBP electronic ground state. The structural data, supported by surface-hopping simulations15 and ab initio calculations16, reveal that the cation subsequently decays to iso-DBP+, an unusual intermediate with a four-membered ring containing a loosely bound17,18 bromine atom, and eventually loses the bromine atom and forms a bromonium ion with a three-membered-ring structure19. We anticipate that the approach used here can also be applied to examine the structural dynamics of other molecular ions and thereby deepen our understanding of ion chemistry.
Collapse
Affiliation(s)
- Jun Heo
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alekos Segalina
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hosung Ki
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Foundry Business, Samsung Electronics Inc., Hwasung, Gyeonggi, Republic of Korea
| | - Seonggon Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jungmin Kim
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yongjun Cha
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyung Won Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - J Pedro F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Bogot A, Lioubashevski O, Heber O, Zajfman D, Strasser D. Simultaneous electrostatic trapping of merged cation & anion beams. Phys Chem Chem Phys 2023; 25:25701-25710. [PMID: 37721452 DOI: 10.1039/d3cp03633b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Simultaneous trapping of merged cation and anion beams in the hybrid electrostatic ion beam trap (HEIBT) opens new opportunities for the study of the interactions of isolated atomic molecular or cluster ions with oppositely charged ionic species. Application of the trapped merged beams requires a detailed understanding of the trapping dynamics and the effect of the Coulombic attractive and repulsive forces between the ions on their motion in the trap. The simultaneous trapping regime is explored experimentally for SF6- anion and SF5+ cation beams and compared to realistic ion trajectory simulations. The respective stability of the simultaneously trapped cation and anion beams is experimentally tracked by nondestructive and mass sensitive image charge monitoring. An approximate analytical potential model is presented for modeling the dynamics of trapped ions, providing insight into the role of ion-ion interactions, and suggesting a simplified mirror design.
Collapse
Affiliation(s)
- Alon Bogot
- The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem 91904, Israel.
| | - Oleg Lioubashevski
- The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem 91904, Israel.
| | - Oded Heber
- Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot 7610001, Israel
| | - Daniel Zajfman
- Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot 7610001, Israel
| | - Daniel Strasser
- The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Zhelyazkova V, Martins FBV, Schilling S, Merkt F. Reaction of an Ion and a Free Radical near 0 K: He + + NO → He + N + + O. J Phys Chem A 2023; 127:1458-1468. [PMID: 36752385 PMCID: PMC9940198 DOI: 10.1021/acs.jpca.2c08221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Indexed: 02/09/2023]
Abstract
The reactions between ions and free radicals are among the fastest chemical reactions. They are predicted to proceed with large rates, even near 0 K, but so far, this prediction has not been verified experimentally. We report on measurements of the rate coefficient of the reaction between the ion He+ and the free radical NO at collision energies in the range between 0 and ∼ kB·10 K. To avoid heating of the ions by stray electric fields, the reaction is observed within the large orbit of a Rydberg electron of principal quantum number n ≥ 30, which shields the ion from external electric fields without affecting the reaction. Low collision energies are reached by merging a supersonic beam of He Rydberg atoms with a supersonic beam of NO molecules and adjusting their relative velocity using a chip-based Rydberg-Stark decelerator and deflector. We observe a strong enhancement of the reaction rate at collision energies below ∼kB·2 K. This enhancement is interpreted on the basis of adiabatic-channel capture-rate calculations as arising from the near-degenerate rotational levels of opposite parity resulting from the Λ-doubling in the X 2Π1/2 ground state of NO. With these new results, we examine the reliability of broadly used approximate analytic expressions for the thermal rate constants of ion-molecule reactions at low temperatures.
Collapse
Affiliation(s)
| | | | - Serena Schilling
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Frédéric Merkt
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
11
|
Zhelyazkova V, Martins FBV, Merkt F. Multipole-moment effects in ion-molecule reactions at low temperatures: part III - the He + + CH 4 and He + + CD 4 reactions at low collision energies and the effect of the charge-octupole interaction. Phys Chem Chem Phys 2022; 24:16360-16373. [PMID: 35762649 PMCID: PMC9258730 DOI: 10.1039/d1cp05861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
We present experimental and theoretical studies of the He+ + CH4 and He+ + CD4 reactions at collision energies in the kB·(0-10) K range. Helium atoms in a supersonic beam are excited to a low-field-seeking Rydberg-Stark state and merged with a supersonic beam of CH4 or CD4 using a curved surface-electrode deflector. The ion-molecule reactions are studied within the orbit of the helium Rydberg [He(n)] electron, which suppresses stray-electric-fields-induced heating and makes it possible to reach very low collision energies. The collision energy is varied by adjusting the velocity of the He(n) atoms with the surface deflector, keeping the velocity of the methane beam constant. The reaction product ions (C(H/D)p+ with p∈ {1,2,3}) are collected in a time-of-flight mass spectrometer and monitored as a function of the collision energy. No significant energy-dependence of the total reaction yields of either reactions is observed. The measured relative reaction rate coefficient for the He+ + CH4 reaction is approximately twice higher than the one for the He+ + CD4 reaction. The CH+, CH2+ and CH3+ (CD+, CD2+ and CD3+) ions were detected in ratios 0.28(±0.04) : 1.00(±0.11) : 0.11(±0.04) [0.35(±0.07) : 1.00(±0.16):0.04+0.09-0.04]. We also present calculations of the capture rate coefficients for the two reactions, in which the interaction between the charge of the helium ion and the octupole moment of the methane molecule is included. The rotational-state-specific capture rate coefficients are calculated for states with J = (0-3) at collision energies below kB·15 K. After averaging over the rotational states of methane populated at the rotational temperature of the supersonic beam, the calculations only predict extremely weak enhancements (in the order of ∼0.4%) of the rate coefficients compared to the Langevin rate constant kL over the collision-energy range considered.
Collapse
|
12
|
Zasimov PV, Tyurin DA, Ryazantsev SV, Feldman VI. Formation and Evolution of H 2C 3O +• Radical Cations: A Computational and Matrix Isolation Study. J Am Chem Soc 2022; 144:8115-8128. [PMID: 35487219 DOI: 10.1021/jacs.2c00295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The family of isomeric H2C3O+• radical cations is of great interest for physical organic chemistry and chemistry occurring in extraterrestrial media. In this work, we have experimentally examined a unique synthetic route to the generation of H2C3O+• from the C2H2···CO intermolecular complex and also considered the relative stability and monomolecular transformations of the H2C3O+• isomers through high-level ab initio calculations. The structures, energetics, harmonic frequencies, hyperfine coupling constants, and isomerization pathways for several of the most important H2C3O+• isomers were calculated at the UCCSD(T) level of theory. The complementary FTIR and EPR studies in argon matrices at 5 K have demonstrated that the ionized C2H2···CO complex transforms into the E-HCCHCO+• isomer, and this latter species is supposed to be the key intermediate in further chemical transformations, providing a remarkable piece of evidence for kinetic control in low-temperature chemistry. Photolysis of this species at λ = 410-465 nm results in its transformation to the thermodynamically most stable H2CCCO+• isomer. Possible implications of the results and potentiality of the proposed synthetic strategy to the preparation of highly reactive organic radical cations are discussed.
Collapse
Affiliation(s)
- Pavel V Zasimov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daniil A Tyurin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V Ryazantsev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.,Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir I Feldman
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Shiels OJ, Turner JA, Kelly PD, Blanksby S, da Silva G, Trevitt A. Modelling Reaction Kinetics of Distonic Radical Ions: A Systematic Investigation of Phenyl-type Radical Addition to Unsaturated Hydrocarbons. Faraday Discuss 2022; 238:475-490. [DOI: 10.1039/d2fd00045h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas phase ion−molecule reactions are central to chemical processes across many environments. A feature of many of these reactions is an inverse relationship between temperature and reaction rate arising from...
Collapse
|
14
|
Zhu Y, Li R, Song H. Kinetic and dynamic studies of the NH 2+ + H 2 reaction on a high-level ab initio potential energy surface. Phys Chem Chem Phys 2022; 24:25663-25672. [DOI: 10.1039/d2cp03859e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dynamics and kinetics of the NH2+ + H2 reaction are investigated on a newly developed ab initio potential energy surface using the quasi-classical trajectory method.
Collapse
Affiliation(s)
- Yongfa Zhu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
15
|
Dobulis MA, Thompson MC, Jarrold CC. Identification of Isoprene Oxidation Reaction Products via Anion Photoelectron Spectroscopy. J Phys Chem A 2021; 125:10089-10102. [PMID: 34755517 DOI: 10.1021/acs.jpca.1c08176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a study on the oxidation of isoprene under several different conditions that may model both atmospheric and combustion chemistry. Anions, formed by passing isoprene/oxidant gas mixtures through a pulsed discharge generating a range of species, are separated via mass spectrometry and characterized by anion photoelectron (PE) spectroscopy supported by computations. Specifically, a UV-irradiated isoprene/O2 mixture, which additionally produces O3, and an isoprene/O2/H2 mixture, which generates •OH when passed through the discharge, were sampled. The mass spectra of ions generated under both conditions show the production of intact molecular ions, ion-molecule complexes (e.g., O2-, O4-, and O2-·isoprene), and singly deprotonated species (e.g., deprotonated isoprene, C5H7-). In addition, both smaller and oxidized fragments are observed using both gas mixtures, though relative abundances differ. From the UV-irradiated isoprene/O2 gas mixture, additional intact molecular products of reactions initiated by ozonolysis of isoprene, methylglyoxal, and dimethylglyoxal were observed. Fragmentation and oxidation of isoprene observed in both gas mixtures included species with m/z 39, 53, 67, 69, and 83 that we attribute to a series of alkyl- and alkenoxide-based anions. The coexistence of intact molecules and complexes with fragments and reaction products demonstrates the versatility of this ion source as a simple and efficient anion formation method for studying species that may be relevant in atmospheric and combustion chemistry.
Collapse
Affiliation(s)
- Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael C Thompson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Zhelyazkova V, Martins FBV, Agner JA, Schmutz H, Merkt F. Multipole-moment effects in ion-molecule reactions at low temperatures: part I - ion-dipole enhancement of the rate coefficients of the He + + NH 3 and He + + ND 3 reactions at collisional energies Ecoll/ kB near 0 K. Phys Chem Chem Phys 2021; 23:21606-21622. [PMID: 34569565 PMCID: PMC8494273 DOI: 10.1039/d1cp03116c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
The energy dependence of the rates of the reactions between He+ and ammonia (NY3, Y = {H,D}), forming NY2+, Y and He as well as NY+, Y2 and He, and the corresponding product branching ratios have been measured at low collision energies Ecoll between 0 and kB·40 K using a recently developed merged-beam technique [Allmendinger et al., ChemPhysChem, 2016, 17, 3596]. To avoid heating of the ions by stray electric fields, the reactions are observed within the large orbit of a highly excited Rydberg electron. A beam of He Rydberg atoms was merged with a supersonic beam of ammonia using a curved surface-electrode Rydberg-Stark deflector, which is also used for adjusting the final velocity of the He Rydberg atoms, and thus the collision energy. A collision-energy resolution of about 200 mK was reached at the lowest Ecoll values. The reaction rate coefficients exhibit a sharp increase at collision energies below ∼kB·5 K and pronounced deviations from Langevin-capture behaviour. The experimental results are interpreted in terms of an adiabatic capture model describing the rotational-state-dependent orientation of the ammonia molecules by the electric field of the He+ atom. The model faithfully describes the experimental observations and enables the identification of three classes of |JKMp〉 rotational states of the ammonia molecules showing different low-energy capture behaviour: (A) high-field-seeking states with |KM| ≥ 1 correlating to the lower component of the umbrella-motion tunnelling doublet at low fields. These states undergo a negative linear Stark shift, which leads to strongly enhanced rate coefficients; (B) high-field-seeking states subject to a quadratic Stark shift at low fields and which exhibit only weak rate enhancements; and (C) low-field-seeking states with |KM| ≥ 1. These states exhibit a positive Stark shift at low fields, which completely suppresses the reactions at low collision energies. Marked differences in the low-energy reactivity of NH3 and ND3-the rate enhancements in ND3 are more pronounced than in NH3-are quantitatively explained by the model. They result from the reduced magnitudes of the tunnelling splitting and rotational intervals in ND3 and the different occupations of the rotational levels in the supersonic beam caused by the different nuclear-spin statistical weights. Thermal capture rate constants are derived from the model for the temperature range between 0 and 10 K relevant for astrochemistry. Comparison of the calculated thermal capture rate coefficients with the absolute reaction rates measured above 27 K by Marquette et al. (Chem. Phys. Lett., 1985, 122, 431) suggests that only 40% of the close collisions are reactive.
Collapse
|
17
|
Greenberg J, Schmid PC, Thorpe JH, Nguyen TL, Catani KJ, Krohn OA, Miller MI, Stanton JF, Lewandowski HJ. Using isotopologues to probe the potential energy surface of reactions of C 2H 2 ++C 3H 4. J Chem Phys 2021; 154:124310. [PMID: 33810655 DOI: 10.1063/5.0046438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigations into bimolecular reaction kinetics probe the details of the underlying potential energy surface (PES), which can help to validate high-level quantum chemical calculations. We utilize a combined linear Paul ion trap with a time-of-flight mass spectrometer to study isotopologue reactions between acetylene cations (C2H2 +) and two isomers of C3H4: propyne (HC3H3) and allene (H2C3H2). In a previous study [Schmid et al., Phys. Chem. Chem. Phys. 22, 20303 (2020)],1 we showed that the two isomers of C3H4 have fundamentally different reaction mechanisms. Here, we further explore the calculated PES by isotope substitution. While isotopic substitution of reactants is a standard experimental tool in the investigation of molecular reaction kinetics, the controlled environment of co-trapped, laser-cooled Ca+ ions allows the different isotopic reaction pathways to be followed in greater detail. We report branching ratios for all of the primary products of the different isotopic species. The results validate the previously proposed mechanism: propyne forms a bound reaction complex with C2H2 +, while allene and C2H2 + perform long-range charge exchange only.
Collapse
Affiliation(s)
- James Greenberg
- Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Philipp C Schmid
- Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - James H Thorpe
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| | - Thanh L Nguyen
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| | - Katherine J Catani
- Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Olivia A Krohn
- Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Mikhail I Miller
- Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - John F Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| | - H J Lewandowski
- Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| |
Collapse
|
18
|
Shiels OJ, Kelly PD, Bright CC, Poad BLJ, Blanksby SJ, da Silva G, Trevitt AJ. Reactivity Trends in the Gas-Phase Addition of Acetylene to the N-Protonated Aryl Radical Cations of Pyridine, Aniline, and Benzonitrile. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:537-547. [PMID: 33444019 DOI: 10.1021/jasms.0c00386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N-containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl), and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta, and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios, and reaction efficiencies are measured. The rate coefficients increase from para to ortho positions. The second-order rate coefficients can be sorted into three groups: low, between 1 and 3 × 10-12 cm3 molecule-1 s-1 (3Anl and 4Anl); intermediate, between 5 and 15 × 10-12 cm3 molecule-1 s-1 (2Bzn, 3Bzn, and 4Bzn); and high, between 8 and 31 × 10-11 cm3 molecule-1 s-1 (2Anl, 2Pyr, 3Pyr, and 4Pyr); and 2Anl is the only radical cation with a rate coefficient distinctly different from its isomers. Quantum chemical calculations, using M06-2X-D3(0)/6-31++G(2df,p) geometries and DSD-PBEP86-NL/aug-cc-pVQZ energies, are deployed to rationalize reactivity trends based on the stability of prereactive complexes. The G3X-K method guides the assignment of product ions following adduct formation. The rate coefficient trend can be rationalized by a simple model based on the prereactive complex forward barrier height.
Collapse
Affiliation(s)
- Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - P D Kelly
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Cameron C Bright
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
19
|
Simbizi R, Gahungu G, Nguyen MT. Theoretical investigation of protonated thiophene and two of its nitrile substituted derivatives (2-cyanothiophene and 3-cyanothiophene). Phys Chem Chem Phys 2020; 22:24735-24743. [PMID: 33107518 DOI: 10.1039/d0cp03154b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical and experimental spectroscopic data for protonated cyano-thiophenes (R-CNH+ with R = C4H3S), which are needed for their interstellar search and/or detection, are still lacking in the literature. Considering the high abundance and reactivity of H3+ in the interstellar medium (ISM), a quantum chemical investigation on protonated thiophene and two of its nitrile-substituted derivatives (2-cyanothiophene and 3-cyanothiophene) is undertaken for their characterization. The geometrical structures for the title species are calculated at the M06-2X/6-31G(d,p) level of theory, followed by an empirical correction for systematic errors. At the same level of theory, IR and Raman spectra are explored and the rotational parameters are calculated. The proton affinity (PA) of R-CN and the enthalpy, entropy and Gibbs free energy changes (ΔrH, ΔrS and ΔrG) of the reactions producing R-CNH+ are computed at the G2(MP2) and G3B3 levels of theory and at different temperatures. The PA calculations show that the protonation favors the nitrogen atom, while ΔrH, ΔrS, and ΔrG reveal the spontaneous reactions producing R-CNH+ and their neutral forms. In addition, quadrupole hyperfine structures are predicted, while the region where the brightest lines fall at different temperatures is discussed. These results are expected to assist astrophysicists and astrochemists in the search for new species in the ISM.
Collapse
Affiliation(s)
- René Simbizi
- Département de Physique, Faculté des Sciences Université du Burundi, B.P. 2700 Bujumbura, Burundi.
| | | | | |
Collapse
|
20
|
Mohandas S, Ramabhadran RO, Kumar SS. Theoretical Investigation of a Vital Step in the Gas-Phase Formation of Interstellar Ammonia NH 2+ + H 2 → NH 3+ + H. J Phys Chem A 2020; 124:8373-8382. [PMID: 32870677 DOI: 10.1021/acs.jpca.0c05019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A crucial step in the gas-phase formation of ammonia in the interstellar medium (ISM) is the reaction of NH2+ with molecular hydrogen. Understanding the electronic structure of the participating species in this reaction and the evaluation of the rate coefficients at interstellar temperatures are, therefore, critical to gain new insights into the mechanisms of formation of interstellar ammonia. We present here the first theoretical results of the rate coefficients of this reaction as a function of temperatures relevant to the ISM, computed using transition-state theory. The results are in reasonable agreement with recent experimental data. This exothermic reaction features a tiny barrier which is primarily a consequence of zero-point energy corrections. The results demonstrate that quantum mechanical tunneling and core-electron correlations play significant roles in determining the rate of the reaction. The noteworthy failure of popular density functionals to describe this reaction is also highlighted.
Collapse
Affiliation(s)
- Salvi Mohandas
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India.,Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India.,Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India
| | - S Sunil Kumar
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India.,Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India
| |
Collapse
|
21
|
McDonald DC, Rittgers BM, Theis RA, Fortenberry RC, Marks JH, Leicht D, Duncan MA. Infrared spectroscopy and anharmonic theory of H 3 +Ar 2,3 complexes: The role of symmetry in solvation. J Chem Phys 2020; 153:134305. [PMID: 33032436 DOI: 10.1063/5.0023205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational spectra of H3 +Ar2,3 and D3 +Ar2,3 are investigated in the 2000 cm-1 to 4500 cm-1 region through a combination of mass-selected infrared laser photodissociation spectroscopy and computational work including the effects of anharmonicity. In the reduced symmetry of the di-argon complex, vibrational activity is detected in the regions of both the symmetric and antisymmetric hydrogen stretching modes of H3 +. The tri-argon complex restores the D3h symmetry of the H3 + ion, with a concomitant reduction in the vibrational activity that is limited to the region of the antisymmetric stretch. Throughout these spectra, additional bands are detected beyond those predicted with harmonic vibrational theory. Anharmonic theory is able to reproduce some of the additional bands, with varying degrees of success.
Collapse
Affiliation(s)
- D C McDonald
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - B M Rittgers
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - R A Theis
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia 30460, USA
| | - R C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, USA
| | - J H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - D Leicht
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - M A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
22
|
Leicht D, Rittgers BM, Douberly GE, Wagner JP, McDonald DC, Mauney DT, Tsuge M, Lee YP, Duncan MA. Infrared spectroscopy of H+(CO)2 in the gas phase and in para-hydrogen matrices. J Chem Phys 2020; 153:084305. [DOI: 10.1063/5.0019731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Leicht
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | | | - Gary E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - J. Philipp Wagner
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - David C. McDonald
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel T. Mauney
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Masashi Tsuge
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yuan-Pern Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| | - Michael A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
23
|
Abstract
We present a characterization of the ions’ translational energy distribution in a multipole ion trap. A linear mapping between the energy distribution of the trapped ions onto the ions’ time-of-flight (TOF) to a detector is demonstrated. For low ion temperatures, a deviation from linearity is observed and can be attributed to the emergence of multiple potential minima. The potential landscape of the trapped ions is modeled via the finite element method, also accounting for subtleties such as surface-charge accumulation. We demonstrate the validity of our thermometry method by simulating the energy distribution of the ion ensemble thermalized with buffer gas using a Molecular Dynamics (MD) simulation. A comparison between the energy distribution of trapped ions in different multipole trap configurations—i.e., with hyperbolic rods, cylindrical rods, and cylindrical wires—is provided. With these findings, one can map the temperature of the trapped ions down to the Kelvin regime using their TOF distributions. This enables future studies on sympathetic cooling and chemical reactions involving ions in multipole traps.
Collapse
|
24
|
Franke PR, Duncan MA, Douberly GE. Infrared photodissociation spectroscopy and anharmonic vibrational study of the HO 4 + molecular ion. J Chem Phys 2020; 152:174309. [PMID: 32384862 DOI: 10.1063/5.0005975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular cations of HO4 + and DO4 + are produced in a supersonic expansion. They are mass-selected, and infrared photodissociation spectra of these species are measured with the aid of argon-tagging. Although previous theoretical studies have modeled these systems as proton-bound dimers of molecular oxygen, infrared spectra have free OH stretching bands, suggesting other isomeric structures. As a consequence, we undertook extensive computational studies. Our conformer search used a composite method based on an economical combination of single- and multi-reference theories. Several conformers were located on the quintet, triplet, and singlet surfaces, spanning in energy of only a few thousand wavenumbers. Most of the singlet and triplet conformers have pronounced multiconfigurational character. Previously unidentified covalent-like structures (H-O-O-O-O) on the singlet and triplet surfaces likely represent the global minima. In our experiments, HO4 + is formed in a relatively hot environment, and similar experiments have been shown capable of producing multiple conformers in low-lying electronic states. None of the predicted HO4 + isomers can be ruled out a priori based on energetic arguments. We interpret our argon-tagged spectra with Second-Order Vibrational Perturbation Theory with Resonances (VPT2+K). The presence of one or more covalent-like isomers is the only reasonable explanation for the spectral features observed.
Collapse
Affiliation(s)
- Peter R Franke
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gary E Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
25
|
Mood A, Tavakoli M, Gutman E, Kadish D, Baldi P, Van Vranken DL. Methyl Anion Affinities of the Canonical Organic Functional Groups. J Org Chem 2020; 85:4096-4102. [PMID: 31995384 DOI: 10.1021/acs.joc.9b03187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calculated methyl anion affinities are known to correlate with experimentally determined Mayr E parameters for individual organic functional group classes but not between neutral and cationic organic electrophiles. We demonstrate that methyl anion affinities calculated with a solvation model (MAA*) give a linear correlation with Mayr E parameters for a broad range of functional groups. Methyl anion affinities (MAA*), plotted on the log scale of Mayr E, provide insights into the full range of electrophilicity of organic functional groups. On the Mayr E scale, the electrophilicity toward the methyl anion spans 180 orders of magnitude.
Collapse
Affiliation(s)
- Aaron Mood
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Mohammadamin Tavakoli
- Department of Computer Science, University of California Irvine, Irvine, California 92697, United States
| | - Eugene Gutman
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Dora Kadish
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Pierre Baldi
- Department of Computer Science, University of California Irvine, Irvine, California 92697, United States
| | - David L Van Vranken
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Chatterjee K, Dopfer O. Protonation of Naphthalene–(Water)n Nanoclusters: Intracluster Proton Transfer to Hydration Shell Revealed by Infrared Photodissociation Spectroscopy. J Phys Chem A 2020; 124:1134-1151. [DOI: 10.1021/acs.jpca.9b11779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
27
|
Schmid PC, Greenberg J, Nguyen TL, Thorpe JH, Catani KJ, Krohn OA, Miller MI, Stanton JF, Lewandowski HJ. Isomer-selected ion–molecule reactions of acetylene cations with propyne and allene. Phys Chem Chem Phys 2020; 22:20303-20310. [DOI: 10.1039/d0cp03953e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and quantum chemistry study between sympathetically cooled acetylene cations and propyne or allene explains the dramatically different reaction mechanisms.
Collapse
Affiliation(s)
- P. C. Schmid
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
- I. Physikalisches Institut
| | - J. Greenberg
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - T. L. Nguyen
- Quantum Theory Project
- Departments of Chemistry and Physics
- University of Florida
- Gainesville
- USA
| | - J. H. Thorpe
- Quantum Theory Project
- Departments of Chemistry and Physics
- University of Florida
- Gainesville
- USA
| | - K. J. Catani
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - O. A. Krohn
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - M. I. Miller
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - J. F. Stanton
- Quantum Theory Project
- Departments of Chemistry and Physics
- University of Florida
- Gainesville
- USA
| | | |
Collapse
|
28
|
Shiels OJ, Kelly PD, Blanksby SJ, da Silva G, Trevitt AJ. Barrierless Reactions of Three Benzonitrile Radical Cations with Ethylene. Aust J Chem 2020. [DOI: 10.1071/ch19606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reactions of three protonated benzonitrile radical cations with ethylene are investigated. Product branching ratios and reaction kinetics, measured using ion-trap mass spectrometry, are reported and mechanisms are developed with support from quantum chemical calculations. Reactions proceed via pre-reactive van der Waals complexes with no energy barrier (above the reactant energy) and form radical addition and addition–elimination product ions. Rate coefficients are 4-dehydrobenzonitrilium: 1.72±0.01×10−11 cm3 molecule−1 s−1, 3-dehydrobenzonitrilium: 1.85±0.01×10−11 cm3 molecule−1 s−1, and 2-dehydrobenzonitrilium: 5.96±0.06×10−11 cm3 molecule−1 s−1 (with±50% absolute uncertainty). A ring-closure mechanism involving the protonated nitrile substituent is proposed for the 2-dehydrobenzonitrilium case and suggests favourable formation of the protonated indenimine cation.
Collapse
|
29
|
Nichols CM, Wang ZC, Lineberger WC, Bierbaum VM. Gas-Phase Reactions of Deprotonated Nucleobases with H, N, and O Atoms. J Phys Chem Lett 2019; 10:4863-4867. [PMID: 31407903 DOI: 10.1021/acs.jpclett.9b01997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex organic molecules, the hallmark of terrestrial life, are increasingly detected in exotic environments throughout the universe. Our studies probe the ion chemistry of these biomolecules. We report gas-phase reaction rate constants for five deprotonated nucleobases (adenine, cytosine, guanine, thymine, and uracil) reacting with the atomic species H, N, and O. Hydrogen atoms react at moderate rates via associative electron detachment. Oxygen atom reactions occur more rapidly, generating complex product distributions; reaction pathways include associative electron detachment, substitution of the hydrogen atom by an oxygen atom, and generation of OCN-. Nitrogen atoms do not react with the nucleobase anions. The reaction thermodynamics were investigated computationally, and reported product channels are exothermic. Many of the proposed products have been observed in various astrochemical environments. These reactions provide insight into chemical processes that may occur at the boundaries between diffuse and dense interstellar clouds and in complex extraterrestrial ionospheres.
Collapse
Affiliation(s)
- Charles M Nichols
- Department of Chemistry and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Zhe-Chen Wang
- Department of Chemistry and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - W Carl Lineberger
- Department of Chemistry and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Veronica M Bierbaum
- Department of Chemistry and JILA, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
30
|
Chen GK, Xie C, Yang T, Li A, Suits AG, Hudson ER, Campbell WC, Guo H. Isotope-selective chemistry in the Be +( 2S 1/2) + HOD → BeOD +/BeOH + + H/D reaction. Phys Chem Chem Phys 2019; 21:14005-14011. [PMID: 30620013 DOI: 10.1039/c8cp06690f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low temperature reactions between laser-cooled Be+(2S1/2) ions and partially deuterated water (HOD) molecules have been investigated using an ion trap and interpreted with zero-point corrected quasi-classical trajectory calculations on a highly accurate global potential energy surface for the ground electronic state. Both product channels have been observed for the first time, and the branching to BeOD+ + H is found to be 0.58 ± 0.14. The experimental observation is reproduced by both quasi-classical trajectory and statistical calculations. Theoretical analyses reveal that the branching to the two product channels is largely due to the availability of open states in each channel.
Collapse
Affiliation(s)
- Gary K Chen
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wagner JP, Giles SM, Duncan MA. Gas phase infrared spectroscopy of the H2C NH2+ methaniminium cation. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Moore Tibbetts K. Coherent Vibrational and Dissociation Dynamics of Polyatomic Radical Cations. Chemistry 2019; 25:8431-8439. [DOI: 10.1002/chem.201900363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 01/26/2023]
|
33
|
Joalland B, Jamal-Eddine N, Papanastasiou D, Lekkas A, Carles S, Biennier L. A mass-selective ion transfer line coupled with a uniform supersonic flow for studying ion–molecule reactions at low temperatures. J Chem Phys 2019; 150:164201. [DOI: 10.1063/1.5086386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- B. Joalland
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| | - N. Jamal-Eddine
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| | - D. Papanastasiou
- Fasmatech Science and Technology SA, TESPA Lefkippos, NCSR Demokritos, 15310 Athens, Greece
| | - A. Lekkas
- Fasmatech Science and Technology SA, TESPA Lefkippos, NCSR Demokritos, 15310 Athens, Greece
| | - S. Carles
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| | - L. Biennier
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| |
Collapse
|
34
|
Effects of diffusional constraints on lifetime and selectivity in methanol-to-olefins catalysis on HSAPO-34. J Catal 2019. [DOI: 10.1016/j.jcat.2018.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Miyazaki M, Washio N, Fujii M. Electron-proton transfer mechanism of excited-state hydrogen transfer in phenol−(NH3) (n = 5) studied by delayed ionization detected femtosecond time-resolved NIR spectroscopy. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Naz EG, Godara S, Paranjothy M. Direct Chemical Dynamics Simulations of H3+ + CO Bimolecular Reaction. J Phys Chem A 2018; 122:8497-8504. [DOI: 10.1021/acs.jpca.8b08671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Erum Gull Naz
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Sumitra Godara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| |
Collapse
|
37
|
|
38
|
Puri P, Mills M, West EP, Schneider C, Hudson ER. High-resolution collision energy control through ion position modulation in atom-ion hybrid systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:083112. [PMID: 30184618 DOI: 10.1063/1.5031145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate an ion shuttling technique for high-resolution control of atom-ion collision energy by translating an ion held within a radio-frequency trap through a magneto-optical atom trap. The technique is demonstrated both experimentally and through numerical simulations, with the experimental results indicating control of ion kinetic energies from 0.05 to 1 K with a fractional resolution of ∼10 and the simulations demonstrating that kinetic energy control up to 120 K with a maximum predicted resolution of ∼100 is possible, offering order-of-magnitude improvements over most alternative techniques. Finally, we perform a proof-of-principle chemistry experiment using this technique and outline how the method may be refined in the future and applied to the study of molecular ion chemistry.
Collapse
Affiliation(s)
- Prateek Puri
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Michael Mills
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Elizabeth P West
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Christian Schneider
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Eric R Hudson
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
39
|
McDonald DC, Wagner JP, Duncan MA. Communication: Infrared photodissociation spectroscopy of the H 6+ cation in the gas phase. J Chem Phys 2018; 149:031105. [PMID: 30037249 DOI: 10.1063/1.5043425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The H6+ cation was generated in a pulsed-discharge supersonic expansion of hydrogen and mass-selected in a time-of-flight spectrometer. Its vibrational spectrum was measured in the region of 2050-4550 cm-1 using infrared photodissociation with a tunable OPO/OPA laser system. The H6+ photodissociates, producing H5+, H4+, and H3+ fragments; each of these fragment channels has a different spectrum. Computational studies identify two low-lying isomers described in previous work, whose energies were evaluated at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ level of theory. A D2d species having an H2+ cation bridging between two perpendicular H2 molecules is the global minimum structure. A Cs structure with an H3+ core ion bound to both H2 and an H atom lies 4.0 kcal mol-1 higher in energy. Anharmonic vibrational spectra were computed for each of these isomers with second-order vibrational perturbation theory (VPT2) in combination with density functional theory at the B2PLYP/cc-pVTZ level. The comparison between experimental and predicted spectra confirms the presence of both the D2d and Cs structures and explains the spectra in different fragmentation channels. Although we find reasonable agreement between the experiment and the spectra predicted by VPT2 computations, a more sophisticated computational approach is needed to better understand this complex system.
Collapse
Affiliation(s)
- David C McDonald
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - J Philipp Wagner
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
40
|
Yang T, Li A, Chen GK, Xie C, Suits AG, Campbell WC, Guo H, Hudson ER. Optical Control of Reactions between Water and Laser-Cooled Be + Ions. J Phys Chem Lett 2018; 9:3555-3560. [PMID: 29893569 DOI: 10.1021/acs.jpclett.8b01437] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate reactions between laser-cooled Be+ ions and room-temperature water molecules using an integrated ion trap and high-resolution time-of-flight mass spectrometer. This system allows simultaneous measurement of individual reaction rates that are resolved by reaction product. The rate coefficient of the Be+(2S1/2) + H2O → BeOH+ + H reaction is measured for the first time and is found to be approximately two times smaller than predicted by an ion-dipole capture model. Zero-point-corrected quasi-classical trajectory calculations on a highly accurate potential energy surface for the ground electronic state reveal that the reaction is capture-dominated, but a submerged barrier in the product channel lowers the reactivity. Furthermore, laser excitation of the ions from the 2S1/2 ground state to the 2P3/2 state opens new reaction channels, and we report the rate and branching ratio of the Be+(2P3/2) + H2O → BeOH+ + H and H2O+ + Be reactions. The excited-state reactions are nonadiabatic in nature.
Collapse
Affiliation(s)
- Tiangang Yang
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science , Northwest University , 710127 Xi'an , P. R. China
| | - Gary K Chen
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Changjian Xie
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Arthur G Suits
- Department of Chemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Wesley C Campbell
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eric R Hudson
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
41
|
Wagner JP, McDonald DC, Duncan MA. Spectroscopy of Proton Coordination with Ethylenediamine. J Phys Chem A 2018; 122:5168-5176. [PMID: 29771517 DOI: 10.1021/acs.jpca.8b03592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protonated ethylenediamine monomer, dimer, and trimer were produced in the gas phase by an electrical discharge/supersonic expansion of argon seeded with ethylenediamine (C2H8N2, en) vapor. Infrared spectra of these ions were measured in the region from 1000 to 4000 cm-1 using laser photodissociation and argon tagging. Computations at the CBS-QB3 level were performed to explore possible isomers and understand the infrared spectra. The protonated monomer exhibits a gauche conformation and an intramolecular hydrogen bond. Its parallel shared proton vibration occurs as a broad band around 2785 cm-1, despite the formally equivalent proton affinities of the two amino groups involved, which usually leads to low frequency bands. The barrier to intramolecular proton transfer is 2.2 kcal mol-1 and does not vanish upon addition of the zero-point energy, unlike the related protonated ammonia dimer. The structure of the dimer is formed by chelation of the monomer's NH3+ group, thereby localizing the excess proton and increasing the frequency of the intramolecular shared proton vibration to 3157 cm-1. Other highly fluxional dimer structures with facile intermolecular proton transfer and concomitant structural reorganization were computed to lie within 2 kcal mol-1 of the experimentally observed structure. The spectrum of the trimer is rather diffuse, and a clear assignment is not possible. However, an isomer with an intramolecular proton transfer like that of the monomer is most consistent with the experimental spectrum.
Collapse
Affiliation(s)
- J Philipp Wagner
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| | - David C McDonald
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| | - Michael A Duncan
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| |
Collapse
|
42
|
Sauer SPA, Sabin JR, Oddershede J. Z-dependence of mean excitation energies for second and third row atoms and their ions. J Chem Phys 2018; 148:174307. [PMID: 29739214 DOI: 10.1063/1.5027708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
All mean excitation energies for second and third row atoms and their ions are calculated in the random-phase approximation using large basis sets. To a very good approximation, it turns out that mean excitation energies within an isoelectronic series are a quadratic function of the nuclear charge. It is demonstrated that this behavior is linked to the fact that the contributions from continuum electronic states give the dominate contributions to the mean excitation energies and that these contributions for atomic ions appear hydrogen-like. We argue that this finding may present a method to get a first estimate of mean excitation energies also for other non-relativistic atomic ions.
Collapse
Affiliation(s)
- Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - John R Sabin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jens Oddershede
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
43
|
Tenewitz JE, Lê T, Martinez O, Ard SG, Shuman NS, Sanchez JC, Viggiano AA, Melko JJ. Kinetics of CO + and CO 2+ with N and O atoms. J Chem Phys 2018; 148:084305. [PMID: 29495785 DOI: 10.1063/1.5011195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have measured reaction rate constants for CO+ and CO2+ reacting with N and O atoms using a selected ion flow tube apparatus equipped with a microwave discharge atom source. Experimental work was supplemented by molecular structure calculations. Calculated pathways show the sensitivity of kinetic barriers to theoretical methods and imply that high-level ab initio methods are required for accurate energetics. We report room-temperature rate constants of 1.0 ± 0.4 × 10-11 cm3 s-1 and 4.0 ± 1.6 × 10-11 cm3 s-1 for the reactions of CO+ with N and O atoms, respectively, and 8.0 ± 3.0 × 10-12 cm3 s-1 and 2.0 ± 0.8 × 10-11 cm3 s-1 for the reactions of CO2+ with N and O atoms, respectively. The reaction of CO2+ + O is observed to yield O2+ exclusively. These values help resolve discrepancies in the literature and are important for modeling of the Martian atmosphere.
Collapse
Affiliation(s)
- Jake E Tenewitz
- University of North Florida, Jacksonville, Florida 32224, USA
| | - Trí Lê
- University of North Florida, Jacksonville, Florida 32224, USA
| | - Oscar Martinez
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Jenny C Sanchez
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Joshua J Melko
- University of North Florida, Jacksonville, Florida 32224, USA
| |
Collapse
|
44
|
Tsuge M, Tseng CY, Lee YP. Spectroscopy of prospective interstellar ions and radicals isolated in para-hydrogen matrices. Phys Chem Chem Phys 2018; 20:5344-5358. [DOI: 10.1039/c7cp05680j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The p-H2 matrix-isolation technique coupled with photolysis in situ or electron bombardment produces protonated or hydrogenated species important in astrochemistry.
Collapse
Affiliation(s)
- Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Chih-Yu Tseng
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Institute of Atomic and Molecular Sciences
| |
Collapse
|
45
|
Wagner JP, McDonald DC, Duncan MA. Infrared Spectroscopy of the Astrochemically Relevant Protonated Formaldehyde Dimer. J Phys Chem A 2017; 122:192-198. [DOI: 10.1021/acs.jpca.7b10573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Philipp Wagner
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - David C. McDonald
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Michael A. Duncan
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
46
|
Li YK, Wang ZC, He SG, Bierbaum VM. Reactions of Sulfur- and Oxygen-Containing Anions with Hydrogen Atoms: A Comparative Study. J Phys Chem Lett 2017; 8:5725-5729. [PMID: 29116795 DOI: 10.1021/acs.jpclett.7b02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reactions of hydrogen atoms with small sulfur-containing anions, SCN-, CH3COS-, C6H5COS-, -SCH2COOH, C6H5S-, 2-HOOCC6H4S-, and related oxygen-containing anions, OCN-, CH3COO-, C6H5COO-, HOCH2COO-, C6H5O-, 2-HOOCC6H4O-, have been studied both experimentally and computationally. The experimental results show that associative electron detachment (AED) is the only channel for the reactions. The rate constants for reactions between sulfur-containing anions and H atoms are generally higher than for the related oxygen-containing anions with the exception of the reaction of SCN-. The generally higher reactivity of the sulfur anions contrasts with previous results where AED reactivity was found to correlate with reaction exothermicity. Density functional theory calculations indicate that the reaction enthalpies, the characteristics of the reaction potential energy surfaces, and other structural and electronic factors can influence the reaction rate constants. This study indicates that organic sulfur anions can be more reactive than related oxygen anions in the interstellar medium where hydrogen atoms are abundant.
Collapse
Affiliation(s)
- Ya-Ke Li
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhe-Chen Wang
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Veronica M Bierbaum
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
47
|
Mauney DT, Maner JA, Duncan MA. IR Spectroscopy of Protonated Acetylacetone and Its Water Clusters: Enol-Keto Tautomers and Ion→Solvent Proton Transfer. J Phys Chem A 2017; 121:7059-7069. [PMID: 28853889 DOI: 10.1021/acs.jpca.7b07180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protonated ions of acetylacetone, H+(Hacac), and their argon-tagged analogues are produced via a pulsed discharge and cooled in a supersonic expansion. These ions are mass analyzed, selected in a time-of-flight spectrometer, and studied with infrared laser photodissociation spectroscopy using the method of rare-gas atom tagging. Computational studies at the DFT/B3LYP level are employed to elucidate the structures and spectra of these ions, which are expected to exist as either enol- or keto-based tautomers. The protonated acetylacetone ion is found to form a single enol-based isomer. Adding one or two water molecules to this ion, for example, H+(Hacac)(H2O)1,2, produces primarily enol-based structures, although a small concentration of keto structures also contribute to the spectra. The vibrational patterns resulting from hydrogen bonding in these systems are not well-described by theory. Addition of a third water molecule to form the H+(Hacac)(H2O)3 ion causes a significant change in the spectroscopy, attributed to proton transfer from the H+(Hacac) ion into the water solvent.
Collapse
Affiliation(s)
- Daniel T Mauney
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Jonathon A Maner
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
48
|
Peverati R, Platt SP, Attah IK, Aziz SG, El-Shall MS, Head-Gordon M. Nucleophilic Aromatic Addition in Ionizing Environments: Observation and Analysis of New C–N Valence Bonds in Complexes between Naphthalene Radical Cation and Pyridine. J Am Chem Soc 2017; 139:11923-11932. [PMID: 28759221 DOI: 10.1021/jacs.7b05756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Peverati
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sean P. Platt
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Isaac K. Attah
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Saaudallah G. Aziz
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M. Samy El-Shall
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
McDonald DC, Mauney DT, Leicht D, Marks JH, Tan JA, Kuo JL, Duncan MA. Communication: Trapping a proton in argon: Spectroscopy and theory of the proton-bound argon dimer and its solvation. J Chem Phys 2017; 145:231101. [PMID: 28010076 DOI: 10.1063/1.4972581] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ion-molecule complexes of the form H+Arn are produced in pulsed-discharge supersonic expansions containing hydrogen and argon. These ions are analyzed and mass-selected in a reflectron spectrometer and studied with infrared laser photodissociation spectroscopy. Infrared spectra for the n = 3-7 complexes are characterized by a series of strong bands in the 900-2200 cm-1 region. Computational studies at the MP2/aug-cc-pVTZ level examine the structures, binding energies, and infrared spectra for these systems. The core ion responsible for the infrared bands is the proton-bound argon dimer, Ar-H+-Ar, which is progressively solvated by the excess argon. Anharmonic vibrational theory is able to reproduce the vibrational structure, identifying it as arising from the asymmetric proton stretch in combination with multiple quanta of the symmetric argon stretch. Successive addition of argon shifts the proton vibration to lower frequencies, as the charge is delocalized over more ligands. The Ar-H+-Ar core ion has a first solvation sphere of five argons.
Collapse
Affiliation(s)
- D C McDonald
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - D T Mauney
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - D Leicht
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - J H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - J A Tan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, People's Republic of China
| | - J-L Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, People's Republic of China
| | - M A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
50
|
Markus CR, Perry AJ, Hodges JN, McCall BJ. Improving cavity-enhanced spectroscopy of molecular ions in the mid-infrared with up-conversion detection and Brewster-plate spoilers. OPTICS EXPRESS 2017; 25:3709-3721. [PMID: 28241583 DOI: 10.1364/oe.25.003709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The performance of sensitive spectroscopic methods in the mid-IR is often limited by fringing due to parasitic etalons and the background noise in mid-infrared detectors. In particular, the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS), which is capable of determining the frequencies of strong rovibrational transitions of molecular ions with sub-MHz uncertainty, needs improved sensitivity in order to probe weaker transitions. In this work, we have implemented up-conversion detection with NICE-OHVMS in the 3.2 - 3.9 µm region to enable the use of faster and more sensitive detectors which cover visible wavelengths. The higher bandwidth enabled detection at optimized heterodyne frequencies, which increased the overall signal from the H3+ cation by a factor of three and was able to resolve sub-Doppler features which had previously overlapped. Also, we demonstrate the effectiveness of Brewster-plate spoilers to remove fringes due to parasitic etalons in a cavity enhanced technique. Together, these improvements reduced the instrument's noise equivalent absorption to 5.9×10-11 cm-1 Hz-1/2, which represents a factor of 34 improvement in sensitivity compared to previous implementations of NICE-OHVMS. This work will enable extended high-precision spectroscopic surveys of H3+ and other important molecular ions.
Collapse
|