1
|
Tian H, Zhang H, Huang H, Zhang Y, Xue Y. Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:986-1006. [PMID: 37963073 DOI: 10.1111/jipb.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF)SLF-mediated ubiquitin-proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
Collapse
Affiliation(s)
- Huayang Tian
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongkui Zhang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, National Center for Bioinformation, Beijing, 100101, China
| | - Huaqiu Huang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu'e Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongbiao Xue
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, National Center for Bioinformation, Beijing, 100101, China
| |
Collapse
|
2
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Lin H, Yao Y, Sun P, Feng L, Wang S, Ren Y, Yu X, Xi Z, Liu J. Haplotype-resolved genomes of two buckwheat crops provide insights into their contrasted rutin concentrations and reproductive systems. BMC Biol 2023; 21:87. [PMID: 37069628 PMCID: PMC10111841 DOI: 10.1186/s12915-023-01587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Two widely cultivated annual buckwheat crops, Fagopyrum esculentum and F. tataricum, differ from each other in both rutin concentration and reproductive system. However, the underlying genetic mechanisms remain poorly elucidated. RESULTS Here, we report the first haplotype-resolved chromosome-level genome assemblies of the two species. Two haplotype genomes of F. esculentum were assembled as 1.23 and 1.19 Gb with N50 = 9.8 and 12.4 Mb, respectively; the two haplotype genomes of F. tataricum were 453.7 and 446.2 Mb with N50 = 50 and 30 Mb, respectively. We further annotated protein-coding genes of each haplotype genome based on available gene sets and 48 newly sequenced transcriptomes. We found that more repetitive sequences, especially expansion of long terminal repeat retrotransposons (LTR-RTs), contributed to the large genome size of F. esculentum. Based on the well-annotated sequences, gene expressions, and luciferase experiments, we identified the sequence mutations of the promoter regions of two key genes that are likely to have greatly contributed to the high rutin concentration and selfing reproduction in F. tartaricum. CONCLUSIONS Our results highlight the importance of high-quality genomes to identify genetic mutations underlying phenotypic differences between closely related species. F. tataricum may have been experienced stronger selection than F. esculentum through choosing these two non-coding alleles for the desired cultivation traits. These findings further suggest that genetic manipulation of the non-coding promoter regions could be widely employed for breeding buckwheat and other crops.
Collapse
Affiliation(s)
- Hao Lin
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
- State Key Laboratory of Dao-Di Herbs, Beijng, 100700, People's Republic of China
| | - Yingjun Yao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Pengchuan Sun
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Shuo Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yumeng Ren
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xi Yu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Zhengxiang Xi
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Lv S, Qiao X, Zhang W, Li Q, Wang P, Zhang S, Wu J. The origin and evolution of RNase T2 family and gametophytic self-incompatibility system in plants. Genome Biol Evol 2022; 14:6609977. [PMID: 35714207 PMCID: PMC9250077 DOI: 10.1093/gbe/evac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Ribonuclease (RNase) T2 genes are found widely in both eukaryotes and prokaryotes, and genes from this family have been revealed to have various functions in plants. In particular, S-RNase is known to be the female determinant in the S-RNase-based gametophytic self-incompatibility (GSI) system. However, the origin and evolution of the RNase T2 gene family and GSI system are not well understood. In this study, 785 RNase T2 genes were identified in 81 sequenced plant genomes representing broad-scale diversity and divided into three subgroups (Class I, II, and III) based on phylogenetic and synteny network analysis. Class I was found to be of ancient origin and to emerge in green algae, Class II was shown to originate with the appearance of angiosperms, while Class III was discovered to be eudicot-specific. Each of the three major classes could be further classified into several subclasses of which some subclasses were found to be lineage-specific. Furthermore, duplication, deletion, or inactivation of the S/S-like-locus was revealed to be linked to repeated loss and gain of self-incompatibility in different species from distantly related plant families with GSI. Finally, the origin and evolutionary history of S-locus in Rosaceae species was unraveled with independent loss and gain of S-RNase occurred in different subfamilies of Rosaceae. Our findings provide insights into the origin and evolution of the RNase T2 family and the GSI system in plants.
Collapse
Affiliation(s)
- Shouzheng Lv
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
5
|
Chen Z, Zhang Z, Zhang H, Li K, Cai D, Zhao L, Liu J, Chen H. A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize. Nat Commun 2022; 13:1993. [PMID: 35422051 PMCID: PMC9010485 DOI: 10.1038/s41467-022-29729-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Maize unilateral cross-incompatibility (UCI) that causes non-Mendelian segregation ratios has been documented for more than a century. Ga1, Ga2, and Tcb1 are three major UCI systems, described but not fully understood. Here, we report comprehensive genetic studies on the Ga2 locus and map-based cloning of the tightly linked male determinant ZmGa2P and female determinant ZmGa2F that govern pollen-silk compatibility among different maize genotypes. Both determinants encode putative pectin methylesterases (PME). A significantly higher degree of methyl esterification is detected in the apical region of pollen tubes growing in incompatible silks. No direct interaction between ZmGa2P and ZmGa2F is detected in the yeast two-hybrid system implying a distinct mechanism from that of self-incompatibility (SI). We also demonstrate the feasibility of Ga2 as a reproductive barrier in commercial breeding programs and stacking Ga2 with Ga1 could strengthen the UCI market potentials. Unilaterial cross-incompatibility (UCI) systems are regulated by a male-female gene pair that are genetically linked, but no pair of the male and female determinants has been isolated so far. Here, the authors report the cloning of a pair of pectin methylesterases encoding genes at the Ga2 locus confer UCI in maize.
Collapse
|
6
|
Zhao H, Zhang Y, Zhang H, Song Y, Zhao F, Zhang Y, Zhu S, Zhang H, Zhou Z, Guo H, Li M, Li J, Gao Q, Han Q, Huang H, Copsey L, Li Q, Chen H, Coen E, Zhang Y, Xue Y. Origin, loss, and regain of self-incompatibility in angiosperms. THE PLANT CELL 2022; 34:579-596. [PMID: 34735009 PMCID: PMC8774079 DOI: 10.1093/plcell/koab266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu’e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sihui Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Hongkui Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Zhendiao Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqiu Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | | | - Yijing Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Zhou X, Zhao P, Sun MX. Autophagy in sexual plant reproduction: new insights. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7658-7667. [PMID: 34338297 DOI: 10.1093/jxb/erab366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a mechanism by which damaged or unwanted cells are degraded and their constituents recycled. Over the past decades, research focused on autophagy has expanded from yeast to mammals and plants, and the core machinery regulating autophagy appears to be conserved. In plants, autophagy has essential roles in responses to stressful conditions and also contributes to normal development, especially in the context of reproduction. Here, based on recent efforts to understand the roles and molecular mechanisms underlying autophagy, we highlight the specific roles of autophagy in plant reproduction and provide new insights for further studies.
Collapse
Affiliation(s)
- Xuemei Zhou
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Engineering Research Centre for the Protection and Utilization of Bioresource in Ethnic Area of Southern China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Zhao H, Song Y, Li J, Zhang Y, Huang H, Li Q, Zhang Y, Xue Y. Primary restriction of S-RNase cytotoxicity by a stepwise ubiquitination and degradation pathway in Petunia hybrida. THE NEW PHYTOLOGIST 2021; 231:1249-1264. [PMID: 33932295 PMCID: PMC8361771 DOI: 10.1111/nph.17438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 05/15/2023]
Abstract
In self-incompatible Petunia species, the pistil S-RNase acts as cytotoxin to inhibit self-pollination but is polyubiquitinated by the pollen-specific nonself S-locus F-box (SLF) proteins and subsequently degraded by the ubiquitin-proteasome system (UPS), allowing cross-pollination. However, it remains unclear how S-RNase is restricted by the UPS. Using biochemical analyses, we first show that Petunia hybrida S3 -RNase is largely ubiquitinated by K48-linked polyubiquitin chains at three regions, R I, R II and R III. R I is ubiquitinated in unpollinated, self-pollinated and cross-pollinated pistils, indicating its occurrence before PhS3 -RNase uptake into pollen tubes, whereas R II and R III are exclusively ubiquitinated in cross-pollinated pistils. Transgenic analyses showed that removal of R II ubiquitination resulted in significantly reduced seed sets from cross-pollination and that of R I and R III to a lesser extent, indicating their increased cytotoxicity. Consistent with this, the mutated R II of PhS3 -RNase resulted in a marked reduction of its degradation, whereas that of R I and R III resulted in less reduction. Taken together, we demonstrate that PhS3 -RNase R II functions as a major ubiquitination region for its destruction and R I and R III as minor ones, revealing that its cytotoxicity is primarily restricted by a stepwise UPS mechanism for cross-pollination in P. hybrida.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huaqiu Huang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Yu’e Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute of GenomicsChinese Academy of Sciences and National Centre for BioinformationBeijing100101China
- Jiangsu Co‐Innovation Centre for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009China
| |
Collapse
|
9
|
Genome-wide identification and expression profile of the MADS-box gene family in Erigeron breviscapus. PLoS One 2019; 14:e0226599. [PMID: 31860684 PMCID: PMC6924644 DOI: 10.1371/journal.pone.0226599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
The MADS-box gene family encodes transcription factors with many biological functions that extensively regulate plant growth, development and reproduction. Erigeron breviscapus is a medicinal herb used widely in traditional Chinese medicine, and is believed to improve blood circulation and ameliorate platelet coagulation. In order to gain a detailed understanding of how transcription factor expression may regulate the growth of this potentially important medicinal plant, a genome-wide analysis of the MADS-box gene family of E. breviscapus is needed. In the present study, 44 MADS-box genes were identified in E. breviscapus and categorized into five subgroups (MIKC, Mα, Mβ, Mγ and Mδ) according to their phylogenetic relationships with the Arabidopsis MADS-box genes. Additionally, the functional domain, subcellular location and motif compositions of the E. breviscapus MADS-box gene products were characterized. The expression levels for each of the E. breviscapus MADS-box (EbMADS) genes were analyzed in flower, leaf, stem and root organs, and showed that the majority of EbMADS genes were expressed in flowers. Meanwhile, some MADS genes were found to express high levels in leaf, stem and root, indicating that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the E. breviscapus. The results from gene expression analysis under different pollination treatments revealed that the MADS-box genes were highly expressed after non-pollinated treatment. To the best of our knowledge, this study describes the first genome-wide analysis of the E. breviscapus MADS-box gene family, and the results provide valuable information for understanding of the classification, cloning and putative functions of the MADS-box family.
Collapse
|
10
|
Zeng B, Wang J, Hao Q, Yu Z, Abudukayoumu A, Tang Y, Zhang X, Ma X. Identification of a Novel SBP1-Containing SCF SFB Complex in Wild Dwarf Almond ( Prunus tenella). Front Genet 2019; 10:1019. [PMID: 31708966 PMCID: PMC6823244 DOI: 10.3389/fgene.2019.01019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
S-RNase-based gametophytic self-incompatibility (SI), in which specificities of pistil and pollen are determined by S-RNase and the S locus F-box protein, respectively, has been discovered in the Solanaceae, Plantaginaceae, and Rosaceae families, but some underlying molecular mechanisms remain elusive and controversial. Previous studies discovered SI in wild dwarf almond (Prunus tenella), and pistil S (S-RNase) and pollen S (SFB) determinant genes have been investigated. However, the SCF (SKP1–Cullin1–F-box-Rbx1) complex, which serves as an E3 ubiquitin ligase on non-self S-RNase, has not been investigated. In the current study, PetSSK1 (SLF-interacting-SKP1-like1), SBP1 (S-RNase binding protein 1), CUL1, and SFB genes (S-haplotype-specific F-box) were identified in an accession (ZB1) of P. tenella. Yeast two-hybrid assays revealed interactions between PetSBP1 and PetCUL1 and between PetSBP1 and PetSFBs (SFB16 and SFB17), and subsequent pull-down assays confirmed these interactions, suggesting a novel SBP1-containing SCFSFB complex in wild dwarf almond. Moreover, despite a putative interaction between PetSSK1 and PetCUL1, we revealed that PetSSK1 does not interact with PetSFB16 or PetSFB17, and thus the canonical SSK1-containing SCFSFB complex could not be identified. This suggests a novel molecular mechanism of gametophytic SI in Prunus species.
Collapse
Affiliation(s)
- Bin Zeng
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Jianyou Wang
- Department of Horticultural Crops, Xinjiang Branch of China Academy of Forestry Sciences, Urumqi, China
| | - Qing Hao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenfan Yu
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Ayimaiti Abudukayoumu
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Yilian Tang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Xiangfei Zhang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Xinxin Ma
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| |
Collapse
|
11
|
Guo H, Halitschke R, Wielsch N, Gase K, Baldwin IT. Mate Selection in Self-Compatible Wild Tobacco Results from Coordinated Variation in Homologous Self-Incompatibility Genes. Curr Biol 2019; 29:2020-2030.e5. [PMID: 31178322 DOI: 10.1016/j.cub.2019.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
In flowering plants, intraspecific mate preference is frequently related to mating systems: the rejection of self pollen in self-incompatible (SI) plants that prevents inbreeding is one of the best described examples. However, in other mating systems, more nuanced patterns of pollen rejection occur. In the self-compatible (SC) Nicotiana attenuata, in which SI is not found and all crosses are compatible, certain pollen genotypes are consistently selected in mixed pollinations. However, the molecular mechanisms of this polyandrous mate selection remain unknown. Style-expressed NaS-like-RNases and pollen-expressed NaSLF-like genes, homologous to SI factors in Solanaceae, were identified and examined for a role in N. attenuata's mate selection. A comparison of two NaS-like-RNases and six NaSLF-like genes among 26 natural accessions revealed specific combinations of co-expression and direct protein-protein interactions. To evaluate their role in mate selection, we silenced the expression of specific NaS-like-RNases and NaSLF-like proteins and conducted diagnostic binary mixed pollinations and mixed pollinations with 14 different non-self pollen donors. Styles expressing particular combinations of NaS-like-RNases selected mates from plants with corresponding NaS-like-RNase expression patterns, while styles lacking NaS-like-RNase expression were non-selective in their fertilizations, which reflected the genotype ratios of pollen mixtures deposited on the stigmas. DNA methylation could account for some of the observed variation in stylar NaS-like-RNase patterns. We conclude that the S-RNase-SLF recognition mechanism plays a central role in polyandrous mate selection in this self-compatible species. These results suggest that after the SI-SC transition, natural variation of SI homologous genes was repurposed to mediate intraspecific mate selection.
Collapse
Affiliation(s)
- Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany.
| |
Collapse
|
12
|
Claessen H, Keulemans W, Van de Poel B, De Storme N. Finding a Compatible Partner: Self-Incompatibility in European Pear ( Pyrus communis); Molecular Control, Genetic Determination, and Impact on Fertilization and Fruit Set. FRONTIERS IN PLANT SCIENCE 2019; 10:407. [PMID: 31057563 PMCID: PMC6477101 DOI: 10.3389/fpls.2019.00407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/18/2019] [Indexed: 05/25/2023]
Abstract
Pyrus species display a gametophytic self-incompatibility (GSI) system that actively prevents fertilization by self-pollen. The GSI mechanism in Pyrus is genetically controlled by a single locus, i.e., the S-locus, which includes at least two polymorphic and strongly linked S-determinant genes: a pistil-expressed S-RNase gene and a number of pollen-expressed SFBB genes (S-locus F-Box Brothers). Both the molecular basis of the SI mechanism and its functional expression have been widely studied in many Rosaceae fruit tree species with a particular focus on the characterization of the elusive SFBB genes and S-RNase alleles of economically important cultivars. Here, we discuss recent advances in the understanding of GSI in Pyrus and provide new insights into the mechanisms of GSI breakdown leading to self-fertilization and fruit set. Molecular analysis of S-genes in several self-compatible Pyrus cultivars has revealed mutations in both pistil- or pollen-specific parts that cause breakdown of self-incompatibility. This has significantly contributed to our understanding of the molecular and genetic mechanisms that underpin self-incompatibility. Moreover, the existence and development of self-compatible mutants open new perspectives for pear production and breeding. In this framework, possible consequences of self-fertilization on fruit set, development, and quality in pear are also reviewed.
Collapse
Affiliation(s)
- Hanne Claessen
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Laboratory for Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Qu H, Guan Y, Wang Y, Zhang S. PLC-Mediated Signaling Pathway in Pollen Tubes Regulates the Gametophytic Self-incompatibility of Pyrus Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1164. [PMID: 28729872 PMCID: PMC5498517 DOI: 10.3389/fpls.2017.01164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 06/16/2017] [Indexed: 05/27/2023]
Abstract
Among the Rosaceae species, the gametophytic self-incompatibility (GSI) is controlled by a single multi-allelic S locus, which is composed of the pistil-S and pollen-S genes. The pistil-S gene encodes a polymorphic ribonuclease (S-RNase), which is essential for identifying self-pollen. However, the S-RNase system has not been fully characterized. In this study, the self-S-RNase inhibited the Ca2+-permeable channel activity at pollen tube apices and the selectively decreased phospholipase C (PLC) activity in the plasma membrane of Pyrus pyrifolia pollen tubes. Self-S-RNase decreased the Ca2+ influx through a PLC-mediated signaling pathway. Phosphatidylinositol-specific PLC has a 26-amino acid insertion in pollen tubes of the 'Jinzhuili' cultivar, which is a spontaneous self-compatible mutant of the 'Yali' cultivar. 'Yali' plants exhibit a typical S-RNase-based GSI. Upon self-pollination, PLC gene expression is significantly higher in 'Jinzhuili' pollen tubes than that in 'Yali' pollen tubes. Moreover, the PLC in pollen tubes can only interact with one of the two types of S-RNase from the style. In the Pyrus x bretschneideri Rehd, the PLC directly interacted with the S7-RNase in the pollen tube, but not with the S34-RNase. Collectively, our results reveal that the effects of S-RNase on PLC activity are required for S-specific pollen rejection, and that PLC-IP3 participates in the self-incompatibility reaction of Pyrus species.
Collapse
Affiliation(s)
- Haiyong Qu
- College of Horticulture, Qingdao Agricultural UniversityQingdao, China
| | - Yaqin Guan
- College of Horticulture, Qingdao Agricultural UniversityQingdao, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural UniversityQingdao, China
| | - Shaolin Zhang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
14
|
Broz AK, Guerrero RF, Randle AM, Baek YS, Hahn MW, Bedinger PA. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC PLANT BIOLOGY 2017; 17:81. [PMID: 28438120 PMCID: PMC5402651 DOI: 10.1186/s12870-017-1032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. RESULTS We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. CONCLUSIONS Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | | | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117 USA
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
15
|
Li J, Zhang Y, Song Y, Zhang H, Fan J, Li Q, Zhang D, Xue Y. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:45-57. [PMID: 27569591 DOI: 10.1111/tpj.13318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/04/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms.
Collapse
Affiliation(s)
- Junhui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanzhai Song
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiangbo Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
| | - Dongfen Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200433, China
| |
Collapse
|
16
|
Kubo KI, Tsukahara M, Fujii S, Murase K, Wada Y, Entani T, Iwano M, Takayama S. Cullin1-P is an Essential Component of Non-Self Recognition System in Self-Incompatibility in Petunia. PLANT & CELL PHYSIOLOGY 2016; 57:2403-2416. [PMID: 27565207 DOI: 10.1093/pcp/pcw152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Self-incompatibility (SI) in flowering plants is a genetic reproductive barrier to distinguish self- and non-self pollen to promote outbreeding. In Solanaceae, self-pollen is rejected by the ribonucleases expressed in the styles (S-RNases), via its cytotoxic function. On the other side, the male-determinant is the S-locus F-box proteins (SLFs) expressed in pollen. Multiple SLFs collaboratively detoxify non-self S-RNases, therefore, non-self recognition is the mode of self-/non-self discrimination in Solanaceae. It is considered that SLFs function as a substrate-recognition module of the Skp1-Cullin1-F-box (SCF) complex that inactivates non-self S-RNases via their polyubiquitination, which leads to degradation by 26S proteasome. In fact, PhSSK1 (Petunia hybrida SLF-interacting Skp1-like1) was identified as a specific component of SCFSLF and was shown to be essential for detoxification of S-RNase in Petunia However, different molecules are proposed as the candidate Cullin1, another component of SCFSLF, and there is as yet no definite conclusion. Here, we identified five Cullin1s from the expressed sequence tags (ESTs) derived from the male reproductive organ in Petunia Among them, only PhCUL1-P was co-immunoprecipitated with S7-SLF2. In vitro protein-binding assay suggested that PhSSK1 specifically forms a complex with PhCUL1-P in an SLF-dependent manner. Knockdown of PhCUL1-P suppressed fertility of transgenic pollen in cross-compatible pollination in the functional S-RNase-dependent manner. These results suggested that SCFSLF selectively uses PhCUL1-P. Phylogeny of Cullin1s indicates that CUL1-P is recruited into the SI machinery during the evolution of Solanaceae, suggesting that the SI components have evolved differently among species in Solanaceae and Rosaceae, despite both families sharing the S-RNase-based SI.
Collapse
Affiliation(s)
- Ken-Ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | - Mai Tsukahara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | - Sota Fujii
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | - Kohji Murase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | - Yuko Wada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | - Tetsuyuki Entani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
- Present address: The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
- Present address: The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| |
Collapse
|
17
|
Markova DN, Petersen JJ, Qin X, Short DR, Valle MJ, Tovar-Méndez A, McClure BA, Chetelat RT. Mutations in two pollen self-incompatibility factors in geographically marginal populations of Solanum habrochaites impact mating system transitions and reproductive isolation. AMERICAN JOURNAL OF BOTANY 2016; 103:1847-1861. [PMID: 27793860 DOI: 10.3732/ajb.1600208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/29/2016] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Self-incompatibility (SI) is a mechanism that prevents inbreeding in many plant species. The mutational breakdown of SI occurs frequently, yet relatively little is known about the evolutionary steps involved in the progressive loss of pistil and pollen SI function. METHODS In Solanaceae, SI is the S-RNase-based gametophytic type. We used SI and SC populations of the wild tomato species Solanum habrochaites to study natural variation for two pollen SI factors: a Cullin1 (CUL1) protein and an S-locus F-box protein (SLF-23). Pollen compatibility was assessed on an allotriploid tester line encoding an S-RNase recognized by SLF-23. Both pollen factors are required for compatibility on this tester line. Complementation tests and gene sequencing were used to identify mutations in CUL1 or SLF-23. KEY RESULTS We detected loss-of-function mutations in CUL1 and/or SLF-23 in SC populations collected near the northern and southern geographic margins of this taxon's natural range. Nonmarginal SC and all SI accessions expressed mostly functional alleles of these pollen factors. Comparison of the CUL1 sequences identified several shared deletion mutations present in both northern and southern margin SC accessions. CONCLUSIONS Loss-of-function mutations in CUL1 and SLF-23 likely became fixed relatively late during SI to SC transitions, after loss of pistil SI function. Mutations in CUL1 establish unilateral incompatibility with SI populations and strengthen reproductive isolation. Point mutations common to northern and southern SC biotypes likely derive from shared ancestral variants found in more central SI populations.
Collapse
Affiliation(s)
- Dragomira N Markova
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Jennifer J Petersen
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Xiaoqiong Qin
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Daniel R Short
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Matthew J Valle
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Alejandro Tovar-Méndez
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211 USA
| | - Bruce A McClure
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211 USA
| | - Roger T Chetelat
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| |
Collapse
|
18
|
Zhang CC, Wang LY, Wei K, Wu LY, Li HL, Zhang F, Cheng H, Ni DJ. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 2016; 17:359. [PMID: 27183979 PMCID: PMC4869358 DOI: 10.1186/s12864-016-2703-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. RESULTS The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self-pollinated versus cross-pollinated tissues at 24 h post-pollination. CONCLUSIONS The present study reports the transcriptome of styles after cross- and self-pollination in tea and offers novel insights into the molecular mechanism behind SI in C. sinensis. We believe that this RNA-seq dataset will be useful for improvement in C. sinensis as well as other plants in the Theaceae family.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Li-Yuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Li-Yun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Hai-Lin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Fen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China.
| | - De-Jiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
19
|
Liu J, Zhang H, Lian X, Converse R, Zhu L. Identification of Interacting Motifs Between Armadillo Repeat Containing 1 (ARC1) and Exocyst 70 A1 (Exo70A1) Proteins in Brassica oleracea. Protein J 2015; 35:34-43. [DOI: 10.1007/s10930-015-9644-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Khaket TP, Dhanda S, Jodha D, Singh J. Purification and biochemical characterization of dipeptidyl peptidase-II (DPP7) homologue from germinated Vigna radiata seeds. Bioorg Chem 2015; 63:132-41. [PMID: 26524724 DOI: 10.1016/j.bioorg.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022]
Abstract
Dipeptidyl peptidases (DPPs) are potent exopeptidases, which possess central role in proteolysis. As compared to other members of DPP family, proline containing dipeptide hydrolysing activity of DPP-II (Dipeptidyl peptidase II) is unique as it hydrolyses imino group and plays a key role in protein metabolism. In present study, DPP-II was purified from germinated moong bean seeds using acid and ammonium sulphate precipitation followed by successive chromatographies on gel filtration (pH 7.4) and cation exchanger (pH 5.9). Native PAGE and in-situ gel assay confirmed the apparent homogeneity. Purified plant DPP-II is an oligomeric enzyme with molecular weight of 97.3kDa. Highest DPP-II activity was observed at pH 7.5 and 37°C, with stability in the range of neutral to alkaline pH. Substrate specificity showed consequent activity for proline containing dipeptide followed by Lys-Ala and other hydrophobic dipeptides, but none of the studied endopeptidase and monopeptidase substrate was hydrolysed. Catalytic characterization with modifier studies revealed the involvement of Ser and His residues in its catalytic mechanism. Its dipeptidyl peptidase activity for proline containing dipeptide supported its role in the bioactive peptide generation and food industry. Functional studies of DPP-II revealed the significant involvement of this glycoproteinous enzyme in protein mobilization during germination. Further studies on industrial applications exploring physiological role are in progress.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, India; Department of Biotechnology, Maharishi Markandeshwar University, Ambala, Haryana, India
| | - Suman Dhanda
- Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Druksakshi Jodha
- Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Jasbir Singh
- Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, India.
| |
Collapse
|
21
|
Li P, Miao H, Ma Y, Wang L, Hu G, Ye Z, Zhao J, Qin Y. CrWSKP1, an SKP1-like Gene, Is Involved in the Self-Incompatibility Reaction of "Wuzishatangju" (Citrus reticulata Blanco). Int J Mol Sci 2015; 16:21695-710. [PMID: 26370985 PMCID: PMC4613275 DOI: 10.3390/ijms160921695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022] Open
Abstract
Plant S-phase kinase-associated protein 1 (SKP1) genes play crucial roles in plant development and differentiation. However, the role of SKP1 in citrus is unclear. Herein, we described a novel SKP1-like gene, designated as CrWSKP1, from "Wuzishatangju" (Citrus reticulata Blanco). The cDNA sequence of CrWSKP1 is 779 base pairs (bp) and contains an open reading frame (ORF) of 477 bp. The genomic sequence of the CrWSKP1 gene is 1296 bp with two exons and one intron. CrWSKP1 has high identity with SKP1-like genes from other plant species within two conserved regions. Approximately 85% of pollen tubes of self-pollinated CrWSKP1 transgenic tobaccos became twisted at four days after self-pollination. Pollen tube numbers of self-pollinated CrWSKP1 transformants entering into ovules were significantly fewer than that of the control. Seed number of self-pollinated CrWSKP1 transformants was significantly reduced. These results suggested that the CrWSKP1 is involved in the self-incompatibility (SI) reaction of "Wuzishatangju".
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Hongxia Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crop Bioscience and Biotechnology, Ministry of Agriculture, Haikou 571101, China.
| | - Yuewen Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Zixing Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proc Natl Acad Sci U S A 2015; 112:4417-22. [PMID: 25831517 DOI: 10.1073/pnas.1423301112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin-proteasome pathway, a mechanism related to that which controls pollen recognition in SI.
Collapse
|
23
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
24
|
Sanabria NM, Huang JC, Dubery IA. Self/nonself perception in plants in innate immunity and defense. SELF NONSELF 2014; 1:40-54. [PMID: 21559176 DOI: 10.4161/self.1.1.10442] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022]
Abstract
The ability to distinguish 'self' from 'nonself' is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an 'altered-self' recognition mechanism.
Collapse
Affiliation(s)
- Natasha M Sanabria
- Department of Biochemistry; University of Johannesburg; Auckland Park, South Africa
| | | | | |
Collapse
|
25
|
Liu W, Fan J, Li J, Song Y, Li Q, Zhang Y, Xue Y. SCF(SLF)-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front Genet 2014; 5:228. [PMID: 25101113 PMCID: PMC4106197 DOI: 10.3389/fgene.2014.00228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCF(SLF-mediated) non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Jiangbo Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Junhui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Qun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yu'e Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| |
Collapse
|
26
|
Zhou Q, Jia J, Huang X, Yan X, Cheng L, Chen S, Li X, Peng X, Liu G. The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics 2014; 15:399. [PMID: 24886329 PMCID: PMC4045969 DOI: 10.1186/1471-2164-15-399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/09/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many Poaceae species show a gametophytic self-incompatibility (GSI) system, which is controlled by at least two independent and multiallelic loci, S and Z. Until currently, the gene products for S and Z were unknown. Grass SI plant stigmas discriminate between pollen grains that land on its surface and support compatible pollen tube growth and penetration into the stigma, whereas recognizing incompatible pollen and thus inhibiting pollination behaviors. Leymus chinensis (Trin.) Tzvel. (sheepgrass) is a Poaceae SI species. A comprehensive analysis of sheepgrass stigma transcriptome may provide valuable information for understanding the mechanism of pollen-stigma interactions and grass SI. RESULTS The transcript abundance profiles of mature stigmas, mature ovaries and leaves were examined using high-throughput next generation sequencing technology. A comparative transcriptomic analysis of these tissues identified 1,025 specifically or preferentially expressed genes in sheepgrass stigmas. These genes contained a significant proportion of genes predicted to function in cell-cell communication and signal transduction. We identified 111 putative transcription factors (TFs) genes and the most abundant groups were MYB, C2H2, C3H, FAR1, MADS. Comparative analysis of the sheepgrass, rice and Arabidopsis stigma-specific or preferential datasets showed broad similarities and some differences in the proportion of genes in the Gene Ontology (GO) functional categories. Potential SI candidate genes identified in other grasses were also detected in the sheepgrass stigma-specific or preferential dataset. Quantitative real-time PCR experiments validated the expression pattern of stigma preferential genes including homologous grass SI candidate genes. CONCLUSIONS This study represents the first large-scale investigation of gene expression in the stigmas of an SI grass species. We uncovered many notable genes that are potentially involved in pollen-stigma interactions and SI mechanisms, including genes encoding receptor-like protein kinases (RLK), CBL (calcineurin B-like proteins) interacting protein kinases, calcium-dependent protein kinase, expansins, pectinesterase, peroxidases and various transcription factors. The availability of a pool of stigma-specific or preferential genes for L. chinensis offers an opportunity to elucidate the mechanisms of SI in Poaceae.
Collapse
Affiliation(s)
- Qingyuan Zhou
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Junting Jia
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xing Huang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | | | - Liqin Cheng
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Shuangyan Chen
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xiaoxia Li
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xianjun Peng
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Gongshe Liu
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| |
Collapse
|
27
|
Minamikawa MF, Koyano R, Kikuchi S, Koba T, Sassa H. Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica). PLoS One 2014; 9:e97642. [PMID: 24847858 PMCID: PMC4029751 DOI: 10.1371/journal.pone.0097642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/22/2014] [Indexed: 12/04/2022] Open
Abstract
Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, in Petunia inflata, SBP1 (S-RNase binding protein1) was reported to play the role of Skp1 and Rbx1, and form an SCFSLF-like complex for ubiquitination of non-self S-RNases. On the other hand, in Petunia hybrida and Petunia inflata of Solanaceae, Prunus avium and Pyrus bretschneideri of Rosaceae, SSK1 (SLF-interacting Skp1-like protein1) is considered to form the SCFSLF/SFB complex. Here, we isolated pollen-expressed apple homologs of SSK1 and CUL1, and named MdSSK1, MdCUL1A and MdCUL1B. MdSSK1 was preferentially expressed in pollen, but weakly in other organs analyzed, while, MdCUL1A and MdCUL1B were almost equally expressed in all the organs analyzed. MdSSK1 transcript abundance was significantly (>100 times) higher than that of MdSBP1. In vitro binding assays showed that MdSSK1 and MdSBP1 interacted with MdSFBB1-S9 and MdCUL1, and MdSFBB1-S9 interacted more strongly with MdSSK1 than with MdSBP1. The results suggest that both MdSSK1-containing SCFSFBB1 and MdSBP1-containing SCFSFBB1-like complexes function in pollen of apple, and the former plays a major role.
Collapse
Affiliation(s)
- Mai F. Minamikawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Ruriko Koyano
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Takato Koba
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
28
|
Meng D, Gu Z, Yuan H, Wang A, Li W, Yang Q, Zhu Y, Li T. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. PLANT & CELL PHYSIOLOGY 2014; 55:977-89. [PMID: 24503865 DOI: 10.1093/pcp/pcu031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
S-RNase is the female determinant of gametophytic self-incompatibility in apple and is usually considered to be the reason for rejection of pollen. In this study, we investigated the role of microtubules (MTs) in internalization of S-RNases by pollen tubes cultured in vitro. The results showed that S-RNase was imported into the pollen tube where it inhibits pollen tube growth, and that S-RNase is co-localized with the Golgi vesicle during the internalization process. Moreover, MT depolymerization is observed following accumulation of S-RNases in the pollen cytosol. On the other hand, S-RNase was prevented from entering the pollen tube when the pollen was treated with the actin filament (AF) inhibitor latrunculin A (LatA), the MT inhibitor oryzalin, or the MT stabilizer taxol at subtoxic concentrations. These hindered the construction of the MT, with pollen tubes capable of growth under these conditions. Pollen tubes showed improved growth in self-pollinated styles that were pre-treated with taxol. This suggests that cytoskeleton antagonists can prevent S-RNase-mediated inhibition of pollen tubes in vivo by blocking S-RNase internalization. These results suggest that an intact and dynamic cytoskeleton is required for the in vitro internalization of S-RNase, as shown by the effects of various cytoskeleton inhibitors. S-RNase internalization takes place via a membrane/cytoskeleton-based Golgi vesicle system, which can also affect self-incompatibility in apple.
Collapse
Affiliation(s)
- Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chong K, Xu Z. Investment in plant research and development bears fruit in China. PLANT CELL REPORTS 2014; 33:541-50. [PMID: 24615161 PMCID: PMC3976507 DOI: 10.1007/s00299-014-1587-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 05/15/2023]
Abstract
Recent rapid progress in plant science and biotechnology in China demonstrates that China's stronger support for funding in plant research and development (R&D) has borne fruit. Chinese groups have contributed major advances in a range of fields, such as rice biology, plant hormone and developmental biology, genomics and evolution, plant genetics and epigenetics, as well as plant biotechnology. Strigolactone studies including those identifying its receptor and dissecting its complex structure and signaling are representative of the recent researches from China at the forefront of the field. These advances are attributable in large part to interdisciplinary studies among scientists from plant science, chemistry, bioinformatics, structural biology, and agronomy. The platforms provided by national facilities facilitate this collaboration. As well, efficient restructuring of the top-down organization of state programs and free exploration of scientists' interests have accelerated achievements by Chinese researchers. Here, we provide a general outline of China's progress in plant R&D to highlight fields in which Chinese research has made significant contributions.
Collapse
Affiliation(s)
- Kang Chong
- CAS Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhihong Xu
- College of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
30
|
Wang L, Peng H, Ge T, Liu T, Hou X, Li Y. Identification of differentially accumulating pistil proteins associated with self-incompatibility of non-heading Chinese cabbage. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:49-57. [PMID: 23581423 DOI: 10.1111/plb.12016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/19/2013] [Indexed: 05/09/2023]
Abstract
Non-heading Chinese cabbage (Brassica campestris L. ssp. chinensis Makino), an important vegetable crop in China, exhibits a typical sporophytic self-incompatibility (SI) system. To better understand the mechanism of SI response and identify potential candidate proteins involved in the SI system of this vegetable crop, the proteomic approach was taken to identify differential accumulating pistil proteins. Pistils were collected at 0 h and 2 h after self-pollination at anthesis in self-incompatible and compatible lines of non-heading Chinese cabbage, and total proteins were extracted and separated by two-dimensional gel electrophoresis (2-DE). A total of 25 protein spots that displayed differential abundance were identified by matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/TOF MS) and peptide mass fingerprinting (PMF). Among them, 22 protein spots were confidently established. The mRNA levels of the corresponding genes were detected by quantitative RT-PCR. The 22 identified protein spots are involved in energy metabolism (four), protein biosynthesis (three), photosynthesis (six), stress response and defence (five), and protein degradation (four). Among these potential candidate proteins, UDP-sugar pyrophosphorylase could be involved in sucrose degradation to influence pollen germination and growth. Glutathione S-transferases could be involved in pollen maturation, and affect pollen fertility. Senescence-associated cysteine protease, which is related to programmed cell death, could be mainly related to self pollen recognition of non-heading Chinese cabbage. The study will contribute to further investigations of molecular mechanism of sporophytic SI in Brassicaceae.
Collapse
Affiliation(s)
- L Wang
- Horticultural Department, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics, Germplasm Enhancement, Nanjing, China
| | - H Peng
- Horticultural Department, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics, Germplasm Enhancement, Nanjing, China
| | - T Ge
- Horticultural Department, Nanjing Agricultural University, Nanjing, China
| | - T Liu
- Horticultural Department, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics, Germplasm Enhancement, Nanjing, China
| | - X Hou
- Horticultural Department, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics, Germplasm Enhancement, Nanjing, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, China
| | - Y Li
- Horticultural Department, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics, Germplasm Enhancement, Nanjing, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
31
|
The role of a pollen-expressed Cullin1 protein in gametophytic self-incompatibility in Solanum. Genetics 2013; 196:439-42. [PMID: 24240530 DOI: 10.1534/genetics.113.158279] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously isolated a pollen factor, ui6.1, which encodes a Cullin1 protein (CUL1) that functions in unilateral interspecific incompatibility (UI) in Solanum. Here we show that CUL1 is also required for pollen function in self-incompatibility (SI). We used RNA interference (RNAi) to reduce CUL1 expression in pollen of Solanum arcanum, a wild SI tomato relative. Hemizygous T0 plants showed little or no transmission of the transfer DNA (T-DNA) through pollen when crossed onto nontransgenic SI plants, indicating that CUL1-deficient pollen are selectively eliminated. When crossed onto a related self-compatible (SC) accession lacking active S-RNase, pollen transmission of the T-DNA followed Mendelian ratios. These results provide further evidence for functional overlap between SI and UI on the pollen side and suggest that CUL1 mutations will reinforce SI-to-SC transitions in natural populations only if preceded by loss of pistil S-RNase expression.
Collapse
|
32
|
Xu C, Li M, Wu J, Guo H, Li Q, Zhang Y, Chai J, Li T, Xue Y. Identification of a canonical SCF(SLF) complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). PLANT MOLECULAR BIOLOGY 2013; 81:245-57. [PMID: 23263858 DOI: 10.1007/s11103-012-9995-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/05/2012] [Indexed: 05/10/2023]
Abstract
S-RNase-based self-incompatibility (SI) is an intraspecific reproductive barrier to prevent self-fertilization found in many species of the Solanaceae, Plantaginaceae and Rosaceae. In this system, S-RNase and SLF/SFB (S-locus F-box) genes have been shown to control the pistil and pollen SI specificity, respectively. Recent studies have shown that the SLF functions as a substrate receptor of a SCF (Skp1/Cullin1/F-box)-type E3 ubiquitin ligase complex to target S-RNases in Solanaceae and Plantaginaceae, but its role in Rosaceae remains largely undefined. Here we report the identification of two pollen-specific SLF-interacting Skp1-like (SSK) proteins, PbSSK1 and PbSSK2, in Pyrus bretschneideri from the tribe Pyreae of Rosaceae. Both yeast two-hybrid and pull-down assays demonstrated that they could connect PbSLFs to PbCUL1 to form a putative canonical SCF(SLF) (SSK/CUL1/SLF) complex in Pyrus. Furthermore, pull-down assays showed that the SSK proteins could bind SLF and CUL1 in a cross-species manner between Pyrus and Petunia. Additionally, phylogenetic analysis revealed that the SSK-like proteins from Solanaceae, Plantaginaceae and Rosaceae form a monoclade group, hinting their shared evolutionary origin. Taken together, with the recent identification of a canonical SCF(SFB) complex in Prunus of the tribe Amygdaleae of Rosaceae, our results show that a conserved canonical SCF(SLF/SFB) complex is present in Solanaceae, Plantaginaceae and Rosaceae, implying that S-RNase-based self-incompatibility shares a similar molecular and biochemical mechanism.
Collapse
Affiliation(s)
- Chi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
García-Valencia LE, Bravo-Alberto CE, Cruz-García F. Evitando el incesto en las plantas: control genético y bioquímico. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2013. [DOI: 10.1016/s1405-888x(13)72078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Zhang SW, Huang GX, Ding F, He XH, Pan JC. Mechanism of seedlessness in a new lemon cultivar ‘Xiangshui’ [Citrus limon (L.) Burm. F.]. ACTA ACUST UNITED AC 2012; 25:337-45. [DOI: 10.1007/s00497-012-0201-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 10/21/2012] [Indexed: 11/30/2022]
|
35
|
Roldán JA, Rojas HJ, Goldraij A. Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata. ANNALS OF BOTANY 2012; 110:787-95. [PMID: 22782242 PMCID: PMC3423811 DOI: 10.1093/aob/mcs153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/03/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. METHODS The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. KEY RESULTS Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. CONCLUSIONS The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also suggest that the large pool of S-RNases released from vacuoles acts late in pollen rejection, after significant subcellular changes in incompatible pollen tubes.
Collapse
Affiliation(s)
| | | | - Ariel Goldraij
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC–CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
36
|
Matsumoto D, Yamane H, Abe K, Tao R. Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. PLANT PHYSIOLOGY 2012; 159:1252-62. [PMID: 22548785 PMCID: PMC3387707 DOI: 10.1104/pp.112.197343] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 05/23/2023]
Abstract
Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCF(SLF) in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus.
Collapse
|
37
|
De Franceschi P, Dondini L, Sanzol J. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4015-32. [PMID: 22563122 DOI: 10.1093/jxb/ers108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molecular bases of the gametophytic self-incompatibility (GSI) system of species of the subtribe Pyrinae (Rosaceae), such as apple and pear, have been widely studied in the last two decades. The characterization of S-locus genes and of the mechanisms underlying pollen acceptance or rejection have been topics of major interest. Besides the single pistil-side S determinant, the S-RNase, multiple related S-locus F-box genes seem to be involved in the determination of pollen S specificity. Here, we collect and review the state of the art of GSI in the Pyrinae. We emphasize recent genomic data that have contributed to unveiling the S-locus structure of the Pyrinae, and discuss their consistency with the models of self-recognition that have been proposed for Prunus and the Solanaceae. Experimental data suggest that the mechanism controlling pollen-pistil recognition specificity of the Pyrinae might fit well with the collaborative 'non-self' recognition system proposed for Petunia (Solanaceae), whereas it presents relevant differences with the mechanism exhibited by the species of the closely related genus Prunus, which uses a single evolutionarily divergent F-box gene as the pollen S determinant. The possible involvement of multiple pollen S genes in the GSI system of Pyrinae, still awaiting experimental confirmation, opens up new perspectives to our understanding of the evolution of S haplotypes, and of the evolution of S-RNase-based GSI within the Rosaceae family. Whereas S-locus genes encode the players determining self-recognition, pollen rejection in the Pyrinae seems to involve a complex cascade of downstream cellular events with significant similarities to programmed cell death.
Collapse
Affiliation(s)
- Paolo De Franceschi
- Dipartimento di Colture Arboree (DCA), Università degli Studi di Bologna, Via Giuseppe Fanin 46, 40127 Bologna, Italy.
| | | | | |
Collapse
|
38
|
Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC PLANT BIOLOGY 2012; 12:20. [PMID: 22333138 PMCID: PMC3305554 DOI: 10.1186/1471-2229-12-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/14/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC) isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'). RESULTS The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich) protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. CONCLUSION The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non-homologous genes located in a restricted genome region. Also, we hypothesize that the Asp-rich protein genes may act as Ca2+ "entrapping" proteins, potentially regulating Ca2+ homeostasis during self-pollen recognition.
Collapse
Affiliation(s)
- Marco Caruso
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Paz Merelo
- Institut Valencià d'Investigacions Agràries - Centre de Genómica, Carretera Montcada de l'Horta-Náquera Km. 4,5, 46113 Montcada de l'Horta (València), Spain
| | - Gaetano Distefano
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Stefano La Malfa
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Angela Roberta Lo Piero
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Francisco R Tadeo
- Institut Valencià d'Investigacions Agràries - Centre de Genómica, Carretera Montcada de l'Horta-Náquera Km. 4,5, 46113 Montcada de l'Horta (València), Spain
| | - Manuel Talon
- Institut Valencià d'Investigacions Agràries - Centre de Genómica, Carretera Montcada de l'Horta-Náquera Km. 4,5, 46113 Montcada de l'Horta (València), Spain
| | - Alessandra Gentile
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| |
Collapse
|
39
|
Chen G, Zhang B, Liu L, Li Q, Zhang Y, Xie Q, Xue Y. Identification of a ubiquitin-binding structure in the S-locus F-box protein controlling S-RNase-based self-incompatibility. J Genet Genomics 2012; 39:93-102. [PMID: 22361508 DOI: 10.1016/j.jgg.2012.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 01/06/2012] [Indexed: 11/28/2022]
Abstract
In flowering plants, self-incompatibility (SI) serves as an important intraspecific reproductive barrier to promote outbreeding. In species from the Solanaceae, Plantaginaceae and Rosaceae, S-RNase and SLF (S-locus F-box) proteins have been shown to control the female and male specificity of SI, respectively. However, little is known about structure features of the SLF protein apart from its conserved F-box domain. Here we show that the SLF C-terminal region possesses a novel ubiquitin-binding domain (UBD) structure conserved among the SLF protein family. By using an ex vivo system of Nicotiana benthamiana, we found that the UBD mediates the SLF protein turnover by the ubiquitin-proteasome pathway. Furthermore, we detected that the SLF protein was directly involved in S-RNase degradation. Taken together, our results provide a novel insight into the SLF structure and highlight a potential role of SLF protein stability and degradation in S-RNase-based self-incompatibility.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Dubery IA, Sanabria NM, Huang JC. Nonself Perception in Plant Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:79-107. [DOI: 10.1007/978-1-4614-1680-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Pereira KRB, Botelho-Júnior S, Domingues DP, Machado OLT, Oliveira AEA, Fernandes KVS, Madureira HC, Pereira TNS, Jacinto T. Passion fruit flowers: Kunitz trypsin inhibitors and cystatin differentially accumulate in developing buds and floral tissues. PHYTOCHEMISTRY 2011; 72:1955-1961. [PMID: 21803382 DOI: 10.1016/j.phytochem.2011.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 05/06/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
In order to better understand the physiological functions of protease inhibitors (PIs) the PI activity in buds and flower organs of passion fruit (Passiflora edulis Sims) was investigated. Trypsin and papain inhibitory activities were analyzed in soluble protein extracts from buds at different developmental stages and floral tissues in anthesis. These analyses identified high levels of inhibitory activity against both types of enzymes at all bud stages. Intriguingly, the inhibitory activity against both proteases differed remarkably in some floral tissues. While all organs tested were very effective against trypsin, only sepal and petal tissues exhibited strong inhibitory activity against papain. The sexual reproductive tissues (ovary, stigma-style and stamen) showed either significantly lower activity against papain or practically none. Gelatin-SDS-PAGE assay established that various trypsin inhibitors (TIs) homogenously accumulated in developing buds, although some were differentially present in floral organs. The N-terminal sequence analysis of purified inhibitors from stamen demonstrated they had homology to the Kunitz family of serine PIs. Western-blot analysis established presence of a ∼60 kDa cystatin, whose levels progressively increased during bud development. A positive correlation between this protein and strong papain inhibitory activity was observed in buds and floral tissues, except for the stigma-style. Differences in temporal and spatial accumulation of both types of PIs in passion fruit flowers are thus discussed in light of their potential roles in defense and development.
Collapse
Affiliation(s)
- Keitty R B Pereira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. Protein degradation - an alternative respiratory substrate for stressed plants. TRENDS IN PLANT SCIENCE 2011; 16:489-98. [PMID: 21684795 DOI: 10.1016/j.tplants.2011.05.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 05/18/2023]
Abstract
In cellular circumstances under which carbohydrates are scarce, plants can metabolize proteins and lipids as alternative respiratory substrates. Respiration of protein is less efficient than that of carbohydrate as assessed by the respiratory quotient; however, under certain adverse conditions, it represents an important alternative energy source for the cell. Significant effort has been invested in understanding the regulation of protein degradation in plants. This has included an investigation of how proteins are targeted to the proteosome, and the processes of senescence and autophagy. Here we review these events with particular reference to amino acid catabolism and its role in supporting the tricarboxylic acid cycle and direct electron supply to the ubiquinone pool of the mitochondrial electron transport chain in plants.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
43
|
McClure B, Cruz-García F, Romero C. Compatibility and incompatibility in S-RNase-based systems. ANNALS OF BOTANY 2011; 108:647-58. [PMID: 21803740 PMCID: PMC3170157 DOI: 10.1093/aob/mcr179] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 06/02/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND S-RNase-based self-incompatibility (SI) occurs in the Solanaceae, Rosaceae and Plantaginaceae. In all three families, compatibility is controlled by a polymorphic S-locus encoding at least two genes. S-RNases determine the specificity of pollen rejection in the pistil, and S-locus F-box proteins fulfill this function in pollen. S-RNases are thought to function as S-specific cytotoxins as well as recognition proteins. Thus, incompatibility results from the cytotoxic activity of S-RNase, while compatible pollen tubes evade S-RNase cytotoxicity. SCOPE The S-specificity determinants are known, but many questions remain. In this review, the genetics of SI are introduced and the characteristics of S-RNases and pollen F-box proteins are briefly described. A variety of modifier genes also required for SI are also reviewed. Mutations affecting compatibility in pollen are especially important for defining models of compatibility and incompatibility. In Solanaceae, pollen-side mutations causing breakdown in SI have been attributed to the heteroallelic pollen effect, but a mutation in Solanum chacoense may be an exception. This has been interpreted to mean that pollen incompatibility is the default condition unless the S-locus F-box protein confers resistance to S-RNase. In Prunus, however, S-locus F-box protein gene mutations clearly cause compatibility. CONCLUSIONS Two alternative mechanisms have been proposed to explain compatibility and incompatibility: compatibility is explained either as a result of either degradation of non-self S-RNase or by its compartmentalization so that it does not have access to the pollen tube cytoplasm. These models are not necessarily mutually exclusive, but each makes different predictions about whether pollen compatibility or incompatibility is the default. As more factors required for SI are identified and characterized, it will be possible to determine the role each process plays in S-RNase-based SI.
Collapse
Affiliation(s)
- Bruce McClure
- Department of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
44
|
Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. ANNALS OF BOTANY 2011; 108:677-85. [PMID: 21798860 PMCID: PMC3170160 DOI: 10.1093/aob/mcr186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/10/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND SCOPE Self-incompatibility (SI) in flowering plants ensures the maintenance of genetic diversity by ensuring outbreeding. Different genetic and mechanistic systems of SI among flowering plants suggest either multiple origins of SI or considerable evolutionary diversification. In the grasses, SI is based on two loci, S and Z, which are both polyallelic: an incompatible reaction occurs only if both S and Z alleles are matched in individual pollen with alleles of the pistil on which they alight. Such incompatibility is referred to as gametophytic SI (GSI). The mechanics of grass GSI is poorly understood relative to the well-characterized S-RNase-based single-locus GSI systems (Solanaceae, Rosaceae, Plantaginaceae), or the Papaver recognition system that triggers a calcium-dependent signalling network culminating in programmed cell death. There is every reason to suggest that the grass SI system represents yet another mechanism of SI. S and Z loci have been mapped using isozymes to linkage groups C1 and C2 of the Triticeae consensus maps in Secale, Phalaris and Lolium. Recently, in Lolium perenne, in order to finely map and identify S and Z, more closely spaced markers have been developed based on cDNA and repeat DNA sequences, in part from genomic regions syntenic between the grasses. Several genes tightly linked to the S and Z loci were identified, but so far no convincing candidate has emerged. RESEARCH AND PROGRESS From subtracted Lolium immature stigma cDNA libraries derived from S and Z genotyped individuals enriched for SI potential component genes, kinase enzyme domains, a calmodulin-dependent kinase and a peptide with several calcium (Ca(2+)) binding domains were identified. Preliminary findings suggest that Ca(2+) signalling and phosphorylation may be involved in Lolium GSI. This is supported by the inhibition of Lolium SI by Ca(2+) channel blockers lanthanum (La(3+)) and verapamil, and by findings of increased phosphorylation activity during an SI response.
Collapse
Affiliation(s)
- Manfred Klaas
- National University of Ireland Maynooth, Plant Cell Laboratory, Maynooth, Ireland
| | - Bicheng Yang
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Chloe Manzanares
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ian P. Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - F. C. H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susanne Barth
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| |
Collapse
|
45
|
Abstract
The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA.
| | | |
Collapse
|
46
|
Covey PA, Kondo K, Welch L, Frank E, Sianta S, Kumar A, Nuñez R, Lopez-Casado G, van der Knaap E, Rose JKC, McClure BA, Bedinger PA. Multiple features that distinguish unilateral incongruity and self-incompatibility in the tomato clade. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:367-78. [PMID: 20804455 DOI: 10.1111/j.1365-313x.2010.04340.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wild tomato species in Solanum Section Lycopersicon often exhibit two types of reproductive barriers: self-incompatibility (SI) and unilateral incompatibility or incongruity (UI), wherein the success of an inter-specific cross depends on the direction of the cross. UI pollen rejection often follows the 'SI × SC' rule, i.e. pistils of SI species reject the pollen of SC (self-compatible) species but not vice versa, suggesting that the SI and UI pollen rejection mechanisms may overlap. In order to address this question, pollen tube growth was measured after inter-specific crosses using wild tomato species as the female parents and pollen from cultivated tomato (Solanum lycopersicum). Two modes of UI pollen rejection, early and late, were observed, and both differed from SI pollen rejection. The structure and expression of known stylar SI genes were evaluated. We found that S-RNase expression is not required for either the early or late mode of UI pollen rejection. However, two HT family genes, HT-A and HT-B, map to a UI QTL. Surprisingly, we found that a gene previously implicated in SI, HT-B, is mutated in both SI and SC S. habrochaites accessions, and no HT-B protein could be detected. HT-A genes were detected and expressed in all species examined, and may therefore function in both SI and UI. We conclude that there are significant differences between SI and UI in the tomato clade, in that pollen tube growth differs between these two rejection systems, and some stylar SI factors, including S-RNase and HT-B, are not required for UI.
Collapse
Affiliation(s)
- Paul A Covey
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fields AM, Wang N, Hua Z, Meng X, Kao TH. Functional characterization of two chimeric proteins between a Petunia inflata S-locus F-box protein, PiSLF2, and a PiSLF-like protein, PiSLFLb-S2. PLANT MOLECULAR BIOLOGY 2010; 74:279-92. [PMID: 20700627 DOI: 10.1007/s11103-010-9672-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/26/2010] [Indexed: 05/10/2023]
Abstract
Self-incompatible solanaceous species possess the S-RNase and SLF (S-locus F-box) genes at the highly polymorphic S-locus, and their products mediate S-haplotype-specific rejection of pollen tubes in the style. After a pollen tube grows into the style, the S-RNases produced in the style are taken up; however, only self S-RNase (product of the matching S-haplotype) can inhibit the subsequent growth of the pollen tube. Based on the finding that non-self interactions between PiSLF (Petunia inflata SLF) and S-RNase are stronger than self-interactions, and based on the biochemical properties of PiSLF, we previously proposed that a PiSLF preferentially interacts with its non-self S-RNases to mediate their ubiquitination and degradation, thereby only allowing self S-RNase to exert its cytotoxic function. We further divided PiSLF into three potential Functional Domains (FDs), FD1-FD3, based on sequence comparison of PiSLF and PiSLF-like proteins, and based on S-RNase-binding properties of these proteins and various truncated forms of PiSLF(2) (S(2) allelic variant of PiSLF). In this work, we examined the in vivo function of FD2, which we proposed to be responsible for strong, general interactions between PiSLF and S-RNase. We swapped FD2 of PiSLF(2) with the corresponding region of PiSLFLb-S(2) (S(2) allelic variant of a PiSLF-like protein), and expressed GFP-fused chimeric proteins, named b-2-b and 2-b-2, in S(2) S(3) transgenic plants. We showed that neither chimeric protein retained the SI function of PiSLF(2), suggesting that FD2 is necessary, but not sufficient, for the function of PiSLF. Moreover, since we previously found that b-2-b and 2-b-2 only interacted with S(3)-RNase ~50 and ~30%, respectively, as strongly as did PiSLF(2) in vitro, their inability to function as PiSLF(2) is also consistent with our model predicating on strong interaction between a PiSLF and its non-self S-RNases as part of the biochemical basis for S-haplotype-specific rejection of pollen tubes.
Collapse
Affiliation(s)
- Allison M Fields
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 403 Althouse Lab, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y. 'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2027-2037. [PMID: 20042540 DOI: 10.1093/jxb/erp381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mate choice is an essential process during sexual plant reproduction, in which self-incompatibility (SI) is widely adopted as an intraspecific reproductive barrier to inhibit self-fertilization by many flowering plants. Genetic studies show that a single polymorphic S-locus, encoding at least two components from both the pollen and pistil sides, controls the discrimination of self and non-self pollen. In the Solanaceae, Plantaginaceae, and Rosaceae, an S-RNase-based SI mechanism is involved in such a discrimination process. Recent studies have provided some important clues to how a decision is made to accept cross pollen or specifically to reject self pollen. In this review, the molecular features of the pistil and pollen S-specificity factors are briefly summarized and then our current knowledge of the molecular control of cross-pollen compatibility (CPC) and self-pollen incompatibility (SPI) responses, respectively, is presented. The possible biochemical mechanisms of the specificity determinant between the pistil and pollen S factors are discussed and a hypothetical S-RNase endosome sorting model is proposed to illustrate the distinct destinies of pollen tubes following compatible and incompatible pollination.
Collapse
Affiliation(s)
- Guang Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
50
|
Kumar A, McClure B. Pollen-pistil interactions and the endomembrane system. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2001-13. [PMID: 20363870 DOI: 10.1093/jxb/erq065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endomembrane system offers many potential points where plant mating can be effectively controlled. This results from two basic features of angiosperm reproduction: the requirement for pollen tubes to pass through sporophytic tissues to gain access to ovules and the physiology of pollen tube growth that provides it with the capacity to do so. Rapid pollen tube growth requires extravagant exocytosis and endocytosis activity as cell wall material is deposited and membrane is recovered from the actively growing tip. Moreover, recent results show that pollen tubes take up a great deal of material from the pistil extracellular matrix. Regarding the stigma and style as organs specialized for mate selection focuses attention on their complementary roles in secreting material to support the growth of compatible pollen tubes and discourage the growth of undesirable pollen. Since these processes also involve regulated activities of the endomembrane system, the potential for regulating mating by controlling endomembrane events exists in both pollen and pistil.
Collapse
Affiliation(s)
- Aruna Kumar
- Division of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|