1
|
Matuszkiewicz M, Święcicka M, Koter MD, Filipecki M. Identification of genes involved in the tomato root response to Globodera rostochiensis parasitism under varied light conditions. J Appl Genet 2025; 66:47-61. [PMID: 39143454 PMCID: PMC11762221 DOI: 10.1007/s13353-024-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
Understanding the intricate interplay between abiotic and biotic stresses is crucial for deciphering plant responses and developing resilient cultivars. Here, we investigate the combined effects of elevated light intensity and nematode infection on tomato seedlings. Chlorophyll fluorescence analysis revealed significant enhancements in PSII quantum yield and photochemical fluorescence quenching under high light conditions. qRT-PCR analysis of stress-related marker genes exhibited differential expression patterns in leaves and roots, indicating robust defense and antioxidant responses. Despite root protection from light, roots showed significant molecular changes, including downregulation of genes associated with oxidative stress and upregulation of genes involved in signaling pathways. Transcriptome analysis uncovered extensive gene expression alterations, with light exerting a dominant influence. Notably, light and nematode response synergistically induced more differentially expressed genes than individual stimuli. Functional categorization of differentially expressed genes upon double stimuli highlighted enrichment in metabolic pathways, biosynthesis of secondary metabolites, and amino acid metabolism, whereas the importance of specific pathogenesis-related pathways decreased. Overall, our study elucidates complex plant responses to combined stresses, emphasizing the importance of integrated approaches for developing stress-resilient crops in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Marek D Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland.
| |
Collapse
|
2
|
John C, Pedraza-González L, Betti E, Cupellini L, Mennucci B. A Computational Approach to Modeling Excitation Energy Transfer and Quenching in Light-Harvesting Complexes. J Phys Chem B 2025; 129:117-127. [PMID: 39701929 DOI: 10.1021/acs.jpcb.4c06617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Light-harvesting complexes (LHCs) play a critical role in modulating energy flux within photosynthetic organisms in response to fluctuating light. Under high light conditions, they activate quenching mechanisms to mitigate photodamage. Despite their importance, the molecular mechanisms underlying these photoprotective processes remain incomplete. Herein, we present a computational protocol to model the energy pathways in the LHC, focusing specifically on the minor CP29 antenna complex of plants. We explore the factors that modulate the switch between the light-harvesting and quenched states. The protocol includes modeling the exciton Hamiltonian of the chlorophylls/lutein aggregate and calculating population dynamics using a kinetic model based on the Redfield-Förster approach. Our analysis reveals a highly tunable excited-state lifetime for the complex, that can switch between quenched and unquenched state depending on the excitation energy of the lutein, which acts as a final quencher, in accordance with recent experiments. Moreover, we observe that the s-trans lutein conformers are more likely to exhibit characteristics of the quencher.
Collapse
Affiliation(s)
- Chris John
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Laura Pedraza-González
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Elena Betti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
3
|
Duchêne C, Bouly JP, Pierella Karlusich JJ, Vernay E, Sellés J, Bailleul B, Bowler C, Ribera d'Alcalà M, Falciatore A, Jaubert M. Diatom phytochromes integrate the underwater light spectrum to sense depth. Nature 2025; 637:691-697. [PMID: 39695224 DOI: 10.1038/s41586-024-08301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/29/2024] [Indexed: 12/20/2024]
Abstract
Aquatic life is strongly structured by the distribution of light, which, besides attenuation in intensity, exhibits a continuous change in the spectrum with depth1. The extent to which these light changes are perceived by phytoplankton through photoreceptors is still inadequately known. We addressed this issue by integrating functional studies of diatom phytochrome (DPH) photoreceptors in model species2 with environmental surveys of their distribution and activity. Here, by developing an in vivo dose-response assay to light spectral variations mediated by DPH, we show that DPH can trigger photoreversible responses across the entire light spectrum, resulting in a change in DPH photoequilibrium with depth. By generating dph mutants in the diatom Thalassiosira pseudonana, we also demonstrate that under simulated low-blue-light conditions of ocean depth, DPH regulates photosynthesis acclimation, thus linking optical depth detection with a functional response. The latitudinal distribution of DPH-containing diatoms from permanently stratified regions to seasonally mixed regions suggests an adaptive value of DPH functions in coping with vertical displacements in the water column. By establishing DPH as a detector of optical depth, this study provides a new view of how information embedded in the underwater light field can be exploited by diatoms to modulate their physiology throughout the photic zone.
Collapse
Affiliation(s)
- Carole Duchêne
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Jean-Pierre Bouly
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-Organismes (MCAM), Paris, France.
| | - Juan José Pierella Karlusich
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emeline Vernay
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
| | - Julien Sellés
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
| | - Benjamin Bailleul
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Angela Falciatore
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.
| | - Marianne Jaubert
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.
| |
Collapse
|
4
|
Tang X, Zhao J, Zhou J, Zhu Q, Sheng X, Yue C. Elevated CO 2 Shifts Photosynthetic Constraint from Stomatal to Biochemical Limitations During Induction in Populus tomentosa and Eucalyptus robusta. PLANTS (BASEL, SWITZERLAND) 2024; 14:47. [PMID: 39795307 PMCID: PMC11722825 DOI: 10.3390/plants14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO2 concentration (Ca). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO2. In this study, we experimentally investigated the influence of elevated CO2 (from 400 to 800 μmol mol-1) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, Populus tomentosa and Eucalyptus robusta. The results show that elevated CO2 increased the steady-state photosynthesis rate (A) and decreased stomatal conductance (gs) and the maximum carboxylation rate (Vcmax) in both species. While E. robusta exhibited a decrease in the linear electron transport rate (J) and the fraction of open reaction centers in photosynthesis II (qL), P. tomentosa showed a significant increase in non-photochemical quenching (NPQ). With respect to non-steady-state photosynthesis, elevated CO2 significantly reduced the induction time of A following a shift from low to high light intensity in both species. Time-integrated limitation analysis during induction revealed that elevated CO2 reduces the relative impacts of stomatal limitations in both species, consequently shifting the predominant limitation on induction efficiency from stomatal to biochemical components. Additionally, species-specific changes in qL and NPQ suggest that elevated CO2 may increase biochemical limitation by affecting energy allocation between carbon fixation and photoprotection. These findings suggest that, in a future CO2-rich atmosphere, plants productivity under fluctuating light may be primarily constrained by photochemical and non-photochemical quenching.
Collapse
Affiliation(s)
- Xianhui Tang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China;
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Jiayu Zhou
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Qingchen Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Xiyang Sheng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Chao Yue
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China;
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Miyamoto T, Morey-Yagi SR, Numata K. A Chimeric Peptide for Shielding Plant Photosynthetic Systems against Excess Light Stress via Chloroplast-Targeted ROS Quenching. JACS AU 2024; 4:4691-4699. [PMID: 39735917 PMCID: PMC11672152 DOI: 10.1021/jacsau.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 12/31/2024]
Abstract
The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress. The chimeric peptide was strategically designed by combining cell-penetrating and chloroplast-targeting sequences, each with antioxidant ability against destructive ROS such as hydroxyl radical (•OH) and singlet oxygen (1O2). Our analyses involving various cell-penetrating peptides and a chloroplast-targeting peptide revealed that the •OH-scavenging ability predominantly relied on side chain oxidation in tryptophan residues, while the 1O2-quenching capacity was attributed to the oxidation of cysteine and methionine side chains. We further demonstrated that the chimeric peptide could traverse the cell wall and membranes to reach chloroplasts, where it scavenged •OH and 1O2 and alleviated light-stress-induced chlorophyll degradation in leaves. Foliar spraying of the peptide successfully protected photosynthetic activity in leaves exposed to excessive light, highlighting its potential for practical agricultural applications. This work can offer a promising approach for managing abiotic stress without genetic modifications and provide valuable insights into the design of effective peptide-based ROS quenchers specifically targeting plant chloroplasts.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, Saitama 351-0198, Japan
| | - Shamitha Rao Morey-Yagi
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, Saitama 351-0198, Japan
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute
for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
6
|
Devkota S, Durnford DG. Photoacclimation strategies of Chlamydomonas reinhardtii in response to high-light stress in stationary phase. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113082. [PMID: 39693706 DOI: 10.1016/j.jphotobiol.2024.113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Under ideal conditions, Chlamydomonas reinhardtii can photoacclimate to excess light through various short- and long-term mechanisms. However, how microalgae handle excess light stress once they exit exponential growth, and especially in stationary phase, is less understood. Our study explored C. reinhardtii's photoprotection capacity and acclimation strategies during high-light stress once batch culture growth reached stationary phase. We monitored cultures of wildtype strain (CC125) over five days once they reached stationary phase under both low-light (LL) and high-light (HL) conditions. Under HL, many photosynthetic proteins were degraded but the stress-related light harvesting complex protein (LHCSR) was rapidly induced and contributed to the rapid activation of nonphotochemical quenching (NPQ). However, the LHCSR3-defective mutant (CC4614, npq4) lacked the rapid induction of quenching typical of post-exponential cultures, indicating that LHCSR3 is required for this response in stationary phase. Collectively, the main strategy for photoacclimation in stationary phase appears to be a dramatic reduction of photosystems while maintaining LHCII-LHCSR antenna complexes that prime the antenna for rapid activation of quenching upon light exposure. Part of this response to HL involves a resumption of cell growth after two days, that we hypothesized is due to the stimulation of growth-regulating pathways due to increased metabolite pools from the HL-induced protein turnover in the cell, something that remains to be tested. These findings demonstrate how C. reinhardtii manages high-light stress during stationary phases to maximize longevity.
Collapse
Affiliation(s)
- Shilpa Devkota
- Department of Biology, University of New Brunswick, Fredericton E3B5A3, NB, Canada
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton E3B5A3, NB, Canada.
| |
Collapse
|
7
|
Schramma N, Canales GC, Jalaal M. Light-regulated chloroplast morphodynamics in a single-celled dinoflagellate. Proc Natl Acad Sci U S A 2024; 121:e2411725121. [PMID: 39546572 PMCID: PMC11588079 DOI: 10.1073/pnas.2411725121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024] Open
Abstract
Photosynthetic algae play a significant role in oceanic carbon capture. However, their performance is constantly challenged by fluctuations in environmental light conditions. While phototaxis is a common strategy to cope with such fluctuations, nonmotile species must adopt alternative mechanisms to avoid light-induced damage. Here, we show that the nonmotile, single-celled marine dinoflagellate Pyrocystis lunula contains a chloroplast network that undergoes strong deformation in response to strong light. By exposing cells to various physiologically relevant light conditions and applying temporal illumination sequences, we find that the light-induced network morphodynamics follows dynamic rules similar to temporal low-pass filtering. We develop a mathematical formalism to model the light-regulated behavior, exposing the relevant timescales of the morphodynamic response. Moreover, confocal microscopy reveals that the unusual reticulated morphology exhibits properties similar to auxetic metamaterials, facilitating the rapid and drastic deformation necessary for the light-avoidance motion, confined by the cell wall. This mechanism reduces the effective chloroplast area under high light conditions, minimizing light absorption and preventing photodamage. Our findings demonstrate that the intricate connection between the chloroplasts topologically complex structure and active dynamics enables the dinoflagellate's dynamic adaptation to changing light environments, thereby supporting essential life-sustaining processes.
Collapse
Affiliation(s)
- Nico Schramma
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Gloria Casas Canales
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1098XH, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Maziyar Jalaal
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1098XH, The Netherlands
| |
Collapse
|
8
|
Degen GE, Johnson MP. Photosynthetic control at the cytochrome b6f complex. THE PLANT CELL 2024; 36:4065-4079. [PMID: 38668079 PMCID: PMC11449013 DOI: 10.1093/plcell/koae133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 10/05/2024]
Abstract
Photosynthetic control (PCON) is a protective mechanism that prevents light-induced damage to PSI by ensuring the rate of NADPH and ATP production via linear electron transfer (LET) is balanced by their consumption in the CO2 fixation reactions. Protection of PSI is a priority for plants since they lack a dedicated rapid-repair cycle for this complex, meaning that any damage leads to prolonged photoinhibition and decreased growth. The imbalance between LET and the CO2 fixation reactions is sensed at the level of the transthylakoid ΔpH, which increases when light is in excess. The canonical mechanism of PCON involves feedback control by ΔpH on the plastoquinol oxidation step of LET at cytochrome b6f. PCON thereby maintains the PSI special pair chlorophylls (P700) in an oxidized state, which allows excess electrons unused in the CO2 fixation reactions to be safely quenched via charge recombination. In this review we focus on angiosperms, consider how photo-oxidative damage to PSI comes about, explore the consequences of PSI photoinhibition on photosynthesis and growth, discuss recent progress in understanding PCON regulation, and finally consider the prospects for its future manipulation in crop plants to improve photosynthetic efficiency.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Leonardelli M, Tissot N, Podolec R, Ares-Orpel F, Glauser G, Ulm R, Demarsy E. Photoreceptor-induced sinapate synthesis contributes to photoprotection in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1518-1533. [PMID: 38918833 PMCID: PMC11444301 DOI: 10.1093/plphys/kiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Plants must balance light capture for photosynthesis with protection from potentially harmful ultraviolet (UV) radiation. Photoprotection is mediated by concerted action of photoreceptors, but the underlying molecular mechanisms are not fully understood. In this study, we provide evidence that UV RESISTANCE LOCUS 8 (UVR8) UV-B, phytochrome red, and cryptochrome blue-light photoreceptors converge on the induction of FERULIC ACID 5-HYDROXYLASE 1 (FAH1) that encodes a key enzyme in the phenylpropanoid biosynthesis pathway, leading to the accumulation of UV-absorbing sinapate esters in Arabidopsis (Arabidopsis thaliana). FAH1 induction depends on the basic leucine zipper transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG that function downstream of all 3 photoreceptors. Noticeably, mutants with hyperactive UVR8 signaling rescue fah1 UV sensitivity. Targeted metabolite profiling suggests that this phenotypic rescue is due to the accumulation of UV-absorbing metabolites derived from precursors of sinapate synthesis, namely, coumaroyl glucose and feruloyl glucose. Our genetic dissection of the phenylpropanoid pathway combined with metabolomic and physiological analyses show that both sinapate esters and flavonoids contribute to photoprotection with sinapates playing a major role for UV screening. Our findings indicate that photoreceptor-mediated regulation of FAH1 and subsequent accumulation of sinapate "sunscreen" compounds are key protective mechanisms to mitigate damage, preserve photosynthetic performance, and ensure plant survival under UV.
Collapse
Affiliation(s)
- Manuela Leonardelli
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Ares-Orpel
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
10
|
Sun X, Kaiser E, Zhang Y, Marcelis LFM, Li T. Quantifying the Photosynthetic Quantum Yield of Ultraviolet-A1 Radiation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248578 DOI: 10.1111/pce.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Although it powers photosynthesis, ultraviolet-A1 radiation (UV-A1) is usually not defined as photosynthetically active radiation (PAR). However, the quantum yield (QY) with which UV-A1 drives net photosynthesis rate (A) is unknown, as are the kinetics of A and chlorophyll fluorescence under constant UV-A1 exposure. We measured A in leaves of six genotypes at four spectra peaking at 365, 385, 410 and 450 nm, at intensities spanning 0-300 μmol m s-1. All treatments powered near-linear increases in A in a wavelength-dependent manner. QY at 365 and 385 nm was linked to the apparent concentration of flavonoids, implicating the pigment in reductions of photosynthetic efficiency under UV-A1; in several genotypes, A under 365 and 385 nm was negative regardless of illumination intensity, suggesting very small contributions of UV-A1 radiation to CO2 fixation. Exposure to treatment spectra for 30 min caused slow increases in nonphotochemical quenching, transient reductions in A and dark-adapted maximum quantum yield of photosystem II, that depended on wavelength and intensity, but were generally stronger the lower the peak wavelength was. We conclude that UV-A1 generally powers A, but its definition as PAR requires additional evidence of its capacity to significantly increase whole-canopy carbon uptake in nature.
Collapse
Affiliation(s)
- Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Zhang L, Wang L, Fang Y, Gao Y, Yang S, Su J, Ni J, Teng Y, Bai S. Phosphorylated transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis in pear exposed to high light. THE PLANT CELL 2024; 36:3562-3583. [PMID: 38842382 PMCID: PMC11371158 DOI: 10.1093/plcell/koae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Plants are increasingly vulnerable to environmental stresses because of global warming and climate change. Stress-induced reactive oxygen species (ROS) accumulation results in plant cell damage, even cell death. Anthocyanins are important antioxidants that scavenge ROS to maintain ROS homeostasis. However, the mechanism underlying ROS-induced anthocyanin accumulation is unclear. In this study, we determined that the HD-Zip I family member transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis under high-light stress in pear (Pyrus ussuriensis). Specifically, PuHB40 induces the PuMYB123-like-PubHLH3 transcription factor complex for anthocyanin biosynthesis. The PuHB40-mediated transcriptional activation depends on its phosphorylation level, which is regulated by protein phosphatase PP2A. Elevated ROS content maintains high PuHB40 phosphorylation levels while also enhancing the PuHB40-induced PuMYB123-like transcription by decreasing the PuPP2AA2 expression, ultimately leading to increased anthocyanin biosynthesis. Our study reveals a pathway regulating the ROS-induced anthocyanin biosynthesis in pears, further clarifying the mechanism underlying the abiotic stress-induced anthocyanin biosynthesis, which may have implications for improving plant stress tolerance.
Collapse
Affiliation(s)
- Lu Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongchen Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shulin Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
12
|
Zhang M, Ming Y, Wang HB, Jin HL. Strategies for adaptation to high light in plants. ABIOTECH 2024; 5:381-393. [PMID: 39279858 PMCID: PMC11399379 DOI: 10.1007/s42994-024-00164-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 09/18/2024]
Abstract
Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yu Ming
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hong-Bin Wang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006 China
| | - Hong-Lei Jin
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375 China
| |
Collapse
|
13
|
Harris PD, Ben Eliezer N, Keren N, Lerner E. Phytoplankton cell-states: multiparameter fluorescence lifetime flow-based monitoring reveals cellular heterogeneity. FEBS J 2024; 291:4125-4141. [PMID: 39110124 DOI: 10.1111/febs.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024]
Abstract
Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Nadav Ben Eliezer
- Department of Plant Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Nir Keren
- Department of Plant Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
14
|
Peng Y, Liang Z, Qing X, Wen M, Yuan Z, Chen Q, Du X, Gu R, Wang J, Li L. Transcriptome Analysis Revealed ZmPTOX1 Is Required for Seedling Development and Stress Tolerance in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2346. [PMID: 39273830 PMCID: PMC11397459 DOI: 10.3390/plants13172346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Plant seedling morphogenesis is considerably related to photosynthesis, pigment synthesis, and circadian periodicity during seedling development. We identified and cloned a maize zebra or crossbanding leaves mutant wk3735, which produces pale white kernels and was identified and plays a role in the equilibrium of the Redox state the in/out of ETC by active oxygen scavenging. Interestingly, it produces the zebra leaves during the production of the first seven leaves, which is apparently different from the mutation of homologs AtPTOX in Arabidopsis. It is intriguing to investigate how and why yellow crossbands (zebra leaf phenotype) emerge on leaves. As expected, chlorophyll concentration and photosynthetic efficiency both significantly declined in the yellow sector of wk3735 leaves. Meanwhile, we observed the circadian expression pattern of ZmPTOX1, which was further validated by protein interaction assays of the circadian clock protein TIM1 and ZmPTOX1. The transcriptome data of yellow (muW) and green (muG) sectors of knock-out lines and normal leaves of overexpression lines (OE) at the 5th-leaf seedling stage were analyzed. Zebra leaf etiolated sections exhibit a marked defect in the expression of genes involved in the circadian rhythm and rhythmic stress (light and cold stress) responses than green sections. According to the analysis of co-DEGs of muW vs. OE and muG vs. OE, terms linked to cell repair function were upregulated while those linked to environmental adaptability and stress response were downregulated due to the mutation of ZmPTOX1. Further gene expression level analyses of reactive oxygen species (ROS) scavenging enzymes and detection of ROS deposition indicated that ZmPTOX1 played an essential role in plant stress resistance and ROS homeostasis. The pleiotropic roles of ZmPTOX1 in plant ROS homeostasis maintenance, stress response, and circadian rhythm character may collectively explain the phenotype of zebra leaves during wk3735 seedling development.
Collapse
Affiliation(s)
- Yixuan Peng
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Cultivation and Utilization of Oil Tea Resources of Jiangxi Province, Jiangxi Academy Forestry, Nanchang 330013, China
| | - Zhi Liang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xindong Qing
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Motong Wen
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Zhipeng Yuan
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Quanquan Chen
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Riliang Gu
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jianhua Wang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
16
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
17
|
Mao BD, Vadiveloo A, Qiu J, Gao F. Artificial photosynthesis: Promising approach for the efficient production of high-value bioproducts by microalgae. BIORESOURCE TECHNOLOGY 2024; 401:130718. [PMID: 38641303 DOI: 10.1016/j.biortech.2024.130718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Recently, microalgae had received extensive attention for carbon capture and utilization. But its overall efficiency still could not reach a satisfactory degree. Artificial photosynthesis showed better efficiency in the conversion of carbon dioxide. However, artificial photosynthesis could generally only produce C1-C3 organic matters at present. Some studies showed that heterotrophic microalgae can efficiently synthesize high value organic matters by using simple organic matter such as acetate. Therefore, the combination of artificial photosynthesis with heterotrophic microalgae culture showed great potential for efficient carbon capture and high-value organic matter production. This article systematically analyzed the characteristics and challenges of carbon dioxide conversion by microalgae and artificial photosynthesis. On this basis, the coupling mode and development trend of artificial photosynthesis combined with microalgae culture were discussed. In summary, the combination of artificial photosynthesis and microalgae culture has great potential in the field of carbon capture and utilization, and deserves further study.
Collapse
Affiliation(s)
- Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
18
|
Canini D, Ceschi E, Perozeni F. Toward the Exploitation of Sustainable Green Factory: Biotechnology Use of Nannochloropsis spp. BIOLOGY 2024; 13:292. [PMID: 38785776 PMCID: PMC11117969 DOI: 10.3390/biology13050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Securing food, energy, and raw materials for a growing population is one of the most significant challenges of our century. Algae play a central role as an alternative to plants. Wastewater and flue gas can secure nutrients and CO2 for carbon fixation. Unfortunately, algae domestication is necessary to enhance biomass production and reduce cultivation costs. Nannochloropsis spp. have increased in popularity among microalgae due to their ability to accumulate high amounts of lipids, including PUFAs. Recently, the interest in the use of Nannochloropsis spp. as a green bio-factory for producing high-value products increased proportionally to the advances of synthetic biology and genetic tools in these species. In this review, we summarized the state of the art of current nuclear genetic manipulation techniques and a few examples of their application. The industrial use of Nannochloropsis spp. has not been feasible yet, but genetic tools can finally lead to exploiting this full-of-potential microalga.
Collapse
Affiliation(s)
| | | | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (D.C.); (E.C.)
| |
Collapse
|
19
|
Murakami A, Kim E, Minagawa J, Takizawa K. How much heat does non-photochemical quenching produce? FRONTIERS IN PLANT SCIENCE 2024; 15:1367795. [PMID: 38645386 PMCID: PMC11027892 DOI: 10.3389/fpls.2024.1367795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/08/2024] [Indexed: 04/23/2024]
Abstract
Non-photochemical quenching (NPQ) is a protective mechanism used by plants to safely dissipate excess absorbed light energy as heat, minimizing photo-oxidative damage. Although the importance of NPQ as a safety valve for photosynthesis is well-known, the physiological and environmental effects of the heat produced remain unclear because the amount of heat produced by NPQ is considered negligible, and its physiological effects have not been directly observed. Here, we calculated the heat produced by NPQ and evaluated its impact on the leaf and global warming based on simplified models. Our evaluation showed that the heat produced by NPQ in a given leaf area is 63.9 W m-2 under direct sunlight. Under the standard condition, NPQ warms up the leaf at less than 0.1°C, but it could be 1°C under particular conditions with low thermal conductance. We also estimated the thermal radiation of vegetation's NPQ to be 2.2 W m-2 par global averaged surface area. It is only 0.55% of the thermal radiation by the Earth's surface, but still significant in the current climate change response. We further discuss the possible function of NPQ to plant physiology besides the safety valve and provide strategies with artificial modification of the NPQ mechanism to increase food production and mitigate global warming.
Collapse
Affiliation(s)
- Aoi Murakami
- Astrobiology Center, National Institutes of Natural Sciences, Osawa, Mitaka, Tokyo, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Eunchul Kim
- National Institute for Basic Biology, National Institutes of Natural Sciences, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Jun Minagawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Kenji Takizawa
- Astrobiology Center, National Institutes of Natural Sciences, Osawa, Mitaka, Tokyo, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
20
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
21
|
Tikhonov AN. The cytochrome b 6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. PHOTOSYNTHESIS RESEARCH 2024; 159:203-227. [PMID: 37369875 DOI: 10.1007/s11120-023-01034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
22
|
Garty Y, Bussi Y, Levin-Zaidman S, Shimoni E, Kirchhoff H, Charuvi D, Nevo R, Reich Z. Thylakoid membrane stacking controls electron transport mode during the dark-to-light transition by adjusting the distances between PSI and PSII. NATURE PLANTS 2024; 10:512-524. [PMID: 38396112 DOI: 10.1038/s41477-024-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSII-LHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as 'stacked thylakoid doublets', is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plant's ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.
Collapse
Affiliation(s)
- Yuval Garty
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Bussi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Dana Charuvi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Muino JM, Großmann C, Kleine T, Kaufmann K. Natural genetic variation in GLK1-mediated photosynthetic acclimation in response to light. BMC PLANT BIOLOGY 2024; 24:87. [PMID: 38311744 PMCID: PMC10840168 DOI: 10.1186/s12870-024-04741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.
Collapse
Affiliation(s)
- Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Current Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Christopher Großmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Munich, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
24
|
Degen GE, Pastorelli F, Johnson MP. Proton Gradient Regulation 5 is required to avoid photosynthetic oscillations during light transitions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:947-961. [PMID: 37891008 DOI: 10.1093/jxb/erad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
The production of ATP and NADPH by the light reactions of photosynthesis and their consumption by the Calvin-Benson-Bassham (CBB) cycle and other downstream metabolic reactions requires careful regulation. Environmental shifts perturb this balance, leading to photo-oxidative stress and losses in CO2 assimilation. Imbalances in the production and consumption of ATP and NADPH manifest themselves as transient instability in the chlorophyll fluorescence, P700, electrochromic shift, and CO2 uptake signals recorded on leaves. These oscillations can be induced in wild-type plants by sudden shifts in CO2 concentration or light intensity; however, mutants exhibiting increased oscillatory behaviour have yet to be reported. This has precluded an understanding of the regulatory mechanisms employed by plants to suppress oscillations. Here we show that the Arabidopsis pgr5 mutant, which is deficient in Proton Gradient Regulation 5 (PGR5)-dependent cyclic electron transfer (CET), exhibits increased oscillatory behaviour. In contrast, mutants lacking the NADH-dehydrogenase-like-dependent CET are largely unaffected. The absence of oscillations in the hope2 mutant which, like pgr5, lacks photosynthetic control and exhibits high ATP synthase conductivity, ruled out loss of these photoprotective mechanisms as causes. Instead, we observed slower formation of the proton motive force and, by inference, ATP synthesis in pgr5 following environmental perturbation, leading to the transient reduction of the electron transfer chain and photosynthetic oscillations. PGR5-dependent CET therefore plays a major role in damping the effect of environmental perturbations on photosynthesis to avoid losses in CO2 fixation.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Federica Pastorelli
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matthew P Johnson
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Murik O, Geffen O, Shotland Y, Fernandez-Pozo N, Ullrich KK, Walther D, Rensing SA, Treves H. Genomic imprints of unparalleled growth. THE NEW PHYTOLOGIST 2024; 241:1144-1160. [PMID: 38072860 DOI: 10.1111/nph.19444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination. This included the genome of its close relative, but slower growing and photodamage sensitive, C. sorokiniana UTEX 1663. A larger number of ribosome-encoding genes, high intron abundance, increased codon bias and unique genes potentially involved in metabolic flexibility and resistance to photodamage are all consistent with the faster growth of C. ohadii. Some of these characteristics highlight general trends in Chlorophyta and Chlorella spp. evolution, and others open new broad avenues for mechanistic exploration of their relationship with growth. This work entails a unique case study for the genomic adaptations and costs of exceptionally fast growth and sheds light on the genomic signatures of fast growth in photosynthetic cells. It also provides an important resource for future studies leveraging the unique properties of C. ohadii for photosynthesis and stress response research alongside their utilization for synthetic biology and biotechnology aims.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Medical Genetics Institute, Shaare Zedek Medical Center, 93722, Jerusalem, Israel
| | - Or Geffen
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
| | - Yoram Shotland
- Chemical Engineering, Shamoon College of Engineering, 84100, Beer-Sheva, Israel
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
| | - Kristian Karsten Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Dirk Walther
- Max-Planck Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stefan Andreas Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, 79098, Freiburg, Germany
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
26
|
Li S, Baldwin G, Yang C, Lu R, Meng S, Huang J, Wang M, Baldwin IT. Field-work reveals a novel function for MAX2 in a native tobacco's high-light adaptions. PLANT, CELL & ENVIRONMENT 2024; 47:230-245. [PMID: 37750501 DOI: 10.1111/pce.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Laboratory studies have revealed that strigolatone (SL) and karrikin (KAR) signalling mediate responses to abiotic and biotic stresses, and reshape branching architecture that could increase reproductive performance and crop yields. To understand the ecological function of SL and KAR signalling, transgenic lines of wild tobacco Nicotiana attenuata, silenced in SL/KAR biosynthesis/signalling were grown in the glasshouse and in two field plots in the Great Basin Desert in Utah over four field seasons. Of the lines silenced in SL and KAR signalling components (irMAX2, irD14, irKAI2 and irD14 × irKAI2 plants), which exhibited the expected increases in shoot branching, only irMAX2 plants showed a strong leaf-bleaching phenotype when grown in the field. In the field, irMAX2 plants had lower sugar and higher leaf amino acid contents, lower lifetime fitness and were more susceptible to herbivore attack compared to wild-type plants. These irMAX2 phenotypes were not observed in glasshouse-grown plants. Transcriptomic analysis revealed dramatic responses to high-light intensity in irMAX2 leaves in the field: lutein contents decreased, and transcriptional responses to high-intensity light, singlet oxygen and hydrogen peroxide increased. PAR and UV-B manipulations in the field revealed that the irMAX2 bleaching phenotype is reversed by decreasing PAR, but not UV-B fluence. We propose that NaMAX2 functions in high-light adaptation and fitness optimisation by regulating high-light responses independently of its roles in the SL and KAR signalling pathways. The work provides another example of the value of studying the function of genes in the complex environments in which plants evolved, namely nature.
Collapse
Affiliation(s)
- Suhua Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ruirui Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuaishuai Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
27
|
Mallén-Ponce MJ, Pérez-Pérez ME. Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 194:359-375. [PMID: 37772945 PMCID: PMC10756753 DOI: 10.1093/plphys/kiad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Autophagy is one of the main degradative pathways used by eukaryotic organisms to eliminate useless or damaged intracellular material to maintain cellular homeostasis under stress conditions. Mounting evidence indicates a strong interplay between the generation of reactive oxygen species and the activation of autophagy. Although a tight redox regulation of autophagy has been shown in several organisms, including microalgae, the molecular mechanisms underlying this control remain poorly understood. In this study, we have performed an in-depth in vitro and in vivo redox characterization of ATG3, an E2-activating enzyme involved in ATG8 lipidation and autophagosome formation, from 2 evolutionary distant unicellular model organisms: the green microalga Chlamydomonas (Chlamydomonas reinhardtii) and the budding yeast Saccharomyces cerevisiae. Our results indicated that ATG3 activity from both organisms is subjected to redox regulation since these proteins require reducing equivalents to transfer ATG8 to the phospholipid phosphatidylethanolamine. We established the catalytic Cys of ATG3 as a redox target in algal and yeast proteins and showed that the oxidoreductase thioredoxin efficiently reduces ATG3. Moreover, in vivo studies revealed that the redox state of ATG3 from Chlamydomonas undergoes profound changes under autophagy-activating stress conditions, such as the absence of photoprotective carotenoids, the inhibition of fatty acid synthesis, or high light irradiance. Thus, our results indicate that the redox-mediated activation of ATG3 regulates ATG8 lipidation under oxidative stress conditions in this model microalga.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| |
Collapse
|
28
|
Baker CR, Cocuron JC, Alonso AP, Niyogi KK. Time-resolved systems analysis of the induction of high photosynthetic capacity in Arabidopsis during acclimation to high light. THE NEW PHYTOLOGIST 2023; 240:2335-2352. [PMID: 37849025 DOI: 10.1111/nph.19324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Induction of high photosynthetic capacity is a key acclimation response to high light (HL) for many herbaceous dicot plants; however, the signaling pathways that control this response remain largely unknown. Here, a systems biology approach was utilized to characterize the induction of high photosynthetic capacity in strongly and weakly acclimating Arabidopsis thaliana accessions. Plants were grown for 5 wk in a low light (LL) regime, and time-resolved photosynthetic physiological, metabolomic, and transcriptomic responses were measured during subsequent exposure to HL. The induction of high nitrogen (N) assimilation rates early in the HL shift was strongly predictive of the induction of photosynthetic capacity later in the HL shift. Accelerated N assimilation rates depended on the mobilization of existing organic acid (OA) reserves and increased de novo OA synthesis during the induction of high photosynthetic capacity. Enhanced sucrose biosynthesis capacity increased in tandem with the induction of high photosynthetic capacity, and increased starch biosynthetic capacity was balanced by increased starch catabolism. This systems analysis supports a model in which the efficient induction of N assimilation early in the HL shift begins the cascade of events necessary for the induction of high photosynthetic capacity acclimation in HL.
Collapse
Affiliation(s)
- Christopher R Baker
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | | | - Ana Paula Alonso
- BioAnalytical Facility, University of North Texas, Denton, TX, 76201, USA
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76201, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
29
|
Miyagishima SY. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems. Commun Biol 2023; 6:1150. [PMID: 37952050 PMCID: PMC10640588 DOI: 10.1038/s42003-023-05544-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
30
|
Gerle C, Misumi Y, Kawamoto A, Tanaka H, Kubota-Kawai H, Tokutsu R, Kim E, Chorev D, Abe K, Robinson CV, Mitsuoka K, Minagawa J, Kurisu G. Three structures of PSI-LHCI from Chlamydomonas reinhardtii suggest a resting state re-activated by ferredoxin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148986. [PMID: 37270022 DOI: 10.1016/j.bbabio.2023.148986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Photosystem I (PSI) from the green alga Chlamydomonas reinhardtii, with various numbers of membrane bound antenna complexes (LHCI), has been described in great detail. In contrast, structural characterization of soluble binding partners is less advanced. Here, we used X-ray crystallography and single particle cryo-EM to investigate three structures of the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. An X-ray structure demonstrates the absence of six chlorophylls from the luminal side of the LHCI belts, suggesting these pigments were either physically absent or less stably associated with the complex, potentially influencing excitation transfer significantly. CryoEM revealed extra densities on luminal and stromal sides of the supercomplex, situated in the vicinity of the electron transfer sites. These densities disappeared after the binding of oxidized ferredoxin to PSI-LHCI. Based on these structures, we propose the existence of a PSI-LHCI resting state with a reduced active chlorophyll content, electron donors docked in waiting positions and regulatory binding partners positioned at the electron acceptor site. The resting state PSI-LHCI supercomplex would be recruited to its active form by the availability of oxidized ferredoxin.
Collapse
Affiliation(s)
- Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Hyogo, Japan; Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Yuko Misumi
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akihiro Kawamoto
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Hideaki Tanaka
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Hisako Kubota-Kawai
- Faculty of Science, Department of Science, Yamagata University, Yamagata, Japan; National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Ryutaro Tokutsu
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Eunchul Kim
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Dror Chorev
- Chemistry Research Laboratory, South Parks Road, Oxford University, United Kingdom
| | - Kazuhiro Abe
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Carol V Robinson
- Chemistry Research Laboratory, South Parks Road, Oxford University, United Kingdom
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| | - Jun Minagawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan; Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, Sokendai, Okazaki, Japan
| | - Genji Kurisu
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
31
|
Baker CR, Patel‐Tupper D, Cole BJ, Ching LG, Dautermann O, Kelikian AC, Allison C, Pedraza J, Sievert J, Bilbao A, Lee J, Kim Y, Kyle JE, Bloodsworth KJ, Paurus V, Hixson KK, Hutmacher R, Dahlberg J, Lemaux PG, Niyogi KK. Metabolomic, photoprotective, and photosynthetic acclimatory responses to post-flowering drought in sorghum. PLANT DIRECT 2023; 7:e545. [PMID: 37965197 PMCID: PMC10641490 DOI: 10.1002/pld3.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in replicated control and terminal post-flowering drought field plots in California's Central Valley. Photosynthetic, photoprotective, and water dynamics traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during control and drought conditions. Physiological and metabolomic data were then compared to longitudinal RNA sequencing data collected from these two genotypes. The unique metabolic and transcriptomic response to post-flowering drought in sorghum supports a role for the metabolite galactinol in controlling photosynthetic activity through regulating stomatal closure in post-flowering drought. Additionally, in the functional stay-green genotype BTx642, photoprotective responses were specifically induced in post-flowering drought, supporting a role for photoprotection in the molecular response associated with the functional stay-green trait. From these insights, new pathways are identified that can be targeted to maximize yields under growth conditions with limited water.
Collapse
Affiliation(s)
- Christopher R. Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Dhruv Patel‐Tupper
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Benjamin J. Cole
- DOE‐Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Lindsey G. Ching
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Oliver Dautermann
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Armen C. Kelikian
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Cayci Allison
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Julie Pedraza
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Julie Sievert
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Aivett Bilbao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Joon‐Yong Lee
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Young‐Mo Kim
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Kent J. Bloodsworth
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Vanessa Paurus
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Robert Hutmacher
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Jeffery Dahlberg
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Peggy G. Lemaux
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
32
|
Sommer SG, Castro-Alves V, Hyötyläinen T, Strid Å, Rosenqvist E. The light spectrum differentially influences morphology, physiology and metabolism of Chrysanthemum × morifolium without affecting biomass accumulation. PHYSIOLOGIA PLANTARUM 2023; 175:e14080. [PMID: 38148199 DOI: 10.1111/ppl.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 12/28/2023]
Abstract
The development of light emitting diodes (LED) gives new possibilities to use the light spectrum to manipulate plant morphology and physiology in plant production and research. Here, vegetative Chrysanthemum × morifolium were grown at a photosynthetic photon flux density of 230 μmol m-2 s-1 under monochromatic blue, cyan, green, and red, and polychromatic red:blue or white light with the objective to investigate the effect on plant morphology, gas exchange and metabolic profile. After 33 days of growth, branching and leaf number increased from blue to red light, while area per leaf, leaf weight fraction, flavonol index, and stomatal density and conductance decreased, while dry matter production was mostly unaffected. Plants grown under red light had decreased photosynthesis performance compared with blue or white light-grown plants. The primary and secondary metabolites, such as organic acids, amino acids and phenylpropanoids (measured by non-targeted metabolomics of polar metabolites), were regulated differently under the different light qualities. Specifically, the levels of reduced ascorbic acid and its oxidation products, and the total ascorbate pool, were significantly different between blue light-grown plants and plants grown under white or red:blue light, which imply photosynthesis-driven alterations in oxidative pressure under different light regimens. The overall differences in plant phenotype, inflicted by blue, red:blue or red light, are probably due to a shift in balance between regulatory pathways controlled by blue light receptors and/or phytochrome. Although morphology, physiology, and metabolism differed substantially between plants grown under different qualities of light, these changes had limited effects on biomass accumulation.
Collapse
Affiliation(s)
- Søren Gjedde Sommer
- Department of Plant and Environmental Sciences, Crop Sciences, University of Copenhagen, Taastrup, Denmark
| | - Victor Castro-Alves
- School of Science and Technology, MTM Research Center, Örebro University, Örebro, Sweden
| | - Tuulia Hyötyläinen
- School of Science and Technology, MTM Research Center, Örebro University, Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro Life Science Centre, Örebro University, Örebro, Sweden
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, Crop Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
33
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
34
|
Smith EN, van Aalst M, Tosens T, Niinemets Ü, Stich B, Morosinotto T, Alboresi A, Erb TJ, Gómez-Coronado PA, Tolleter D, Finazzi G, Curien G, Heinemann M, Ebenhöh O, Hibberd JM, Schlüter U, Sun T, Weber APM. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives. MOLECULAR PLANT 2023; 16:1547-1563. [PMID: 37660255 DOI: 10.1016/j.molp.2023.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Photosynthesis in crops and natural vegetation allows light energy to be converted into chemical energy and thus forms the foundation for almost all terrestrial trophic networks on Earth. The efficiency of photosynthetic energy conversion plays a crucial role in determining the portion of incident solar radiation that can be used to generate plant biomass throughout a growth season. Consequently, alongside the factors such as resource availability, crop management, crop selection, maintenance costs, and intrinsic yield potential, photosynthetic energy use efficiency significantly influences crop yield. Photosynthetic efficiency is relevant to sustainability and food security because it affects water use efficiency, nutrient use efficiency, and land use efficiency. This review focuses specifically on the potential for improvements in photosynthetic efficiency to drive a sustainable increase in crop yields. We discuss bypassing photorespiration, enhancing light use efficiency, harnessing natural variation in photosynthetic parameters for breeding purposes, and adopting new-to-nature approaches that show promise for achieving unprecedented gains in photosynthetic efficiency.
Collapse
Affiliation(s)
- Edward N Smith
- Faculty of Science and Engineering, Molecular Systems Biology - Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marvin van Aalst
- Institute of Quantitative and Theoretical Biology, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry & Synthetic Metabolism, 35043 Marburg, Germany
| | - Paul A Gómez-Coronado
- Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry & Synthetic Metabolism, 35043 Marburg, Germany
| | - Dimitri Tolleter
- Interdisciplinary Research Institute of Grenoble, IRIG-LPCV, Grenoble Alpes University, CNRS, CEA, INRAE, 38000 Grenoble, France
| | - Giovanni Finazzi
- Interdisciplinary Research Institute of Grenoble, IRIG-LPCV, Grenoble Alpes University, CNRS, CEA, INRAE, 38000 Grenoble, France
| | - Gilles Curien
- Interdisciplinary Research Institute of Grenoble, IRIG-LPCV, Grenoble Alpes University, CNRS, CEA, INRAE, 38000 Grenoble, France
| | - Matthias Heinemann
- Faculty of Science and Engineering, Molecular Systems Biology - Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Julian M Hibberd
- Molecular Physiology, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Urte Schlüter
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Tianshu Sun
- Molecular Physiology, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Ji D, Luo M, Guo Y, Li Q, Kong L, Ge H, Wang Q, Song Q, Zeng X, Ma J, Wang Y, Meurer J, Chi W. Efficient scavenging of reactive carbonyl species in chloroplasts is required for light acclimation and fitness of plants. THE NEW PHYTOLOGIST 2023; 240:676-693. [PMID: 37545368 DOI: 10.1111/nph.19156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Reactive carbonyl species (RCS) derived from lipid peroxides can act as critical damage or signaling mediators downstream of reactive oxygen species by modifying target proteins. However, their biological effects and underlying mechanisms remain largely unknown in plants. Here, we have uncovered the mechanism by which the RCS 4-hydroxy-(E)-2-nonenal (HNE) participates in photosystem II (PSII) repair cycle of chloroplasts, a crucial process for maintaining PSII activity under high and changing light conditions. High Light Sensitive 1 (HLT1) is a potential NADPH-dependent reductase in chloroplasts. Deficiency of HLT1 had no impact on the growth of Arabidopsis plants under normal light conditions but increased sensitivity to high light, which resulted from a defective PSII repair cycle. In hlt1 plants, the accumulation of HNE-modified D1 subunit of PSII was observed, which did not affect D1 degradation but hampered the dimerization of repaired PSII monomers and reassembly of PSII supercomplexes on grana stacks. HLT1 is conserved in all photosynthetic organisms and has functions in overall growth and plant fitness in both Arabidopsis and rice under naturally challenging field conditions. Our work provides the mechanistic basis underlying RCS scavenging in light acclimation and suggests a potential strategy to improve plant productivity by manipulating RCS signaling in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinjie Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingxi Kong
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Qiulai Song
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiannan Zeng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jinfang Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, D-82152, Planegg-Martinsried, Munich, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
36
|
Patel AK, Vadrale AP, Singhania RR, Chen CW, Chang JS, Dong CD. Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16. BIORESOURCE TECHNOLOGY 2023; 386:129477. [PMID: 37437816 DOI: 10.1016/j.biortech.2023.129477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The current work aims to isolate high lutein-producing microalgae and maximize lutein production under a sustainable lutein-lipid biorefinery scheme. Lutein reduces retinitis, macular degeneration risk and improves eye health. An effective bioprocess design optimized nutrients, temperature, light, and salinity for biomass and lutein yield enhancement. 3X macro/micronutrients maximally enhanced biomass and lutein yields, 5.2 g/Land 71.13 mg/L. Temperature 32 °C exhibited maximum 17.4 mg/g lutein content and 10 k lux was most favorable for growth and lutein yield (15.47 mg/g). A 25% seawater addition led maximum of 21-27% lipid that could be used for biodiesel. Isolate was identified as Chlorella sorokiniana C16, which exhibited one of the highest lutein yields reported among recent studies, positioning it as a promising candidate for commercial lutein production. This study provides valuable insights into an effective bioprocess design and highlights the C16 strain potential as a sustainable platform for high-value lutein production under a biorefinery scheme.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta-Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Jo Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
37
|
Shehzad J, Khan I, Zaheer S, Farooq A, Chaudhari SK, Mustafa G. Insights into heavy metal tolerance mechanisms of Brassica species: physiological, biochemical, and molecular interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108448-108476. [PMID: 37924172 DOI: 10.1007/s11356-023-29979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
Heavy metal (HM) contamination of soil due to anthropogenic activities has led to bioaccumulation and biomagnification, posing toxic effects on plants by interacting with vital cellular biomolecules such as DNA and proteins. Brassica species have developed complex physiological, biochemical, and molecular mechanisms for adaptability, tolerance, and survival under these conditions. This review summarizes the HM tolerance strategies of Brassica species, covering the role of root exudates, microorganisms, cell walls, cell membranes, and organelle-specific proteins. The first line of defence against HM stress in Brassica species is the avoidance strategy, which involves metal ion precipitation, root sorption, and metal exclusion. The use of plant growth-promoting microbes, Pseudomonas, Psychrobacter, and Rhizobium species effectively immobilizes HMs and reduces their uptake by Brassica roots. The roots of Brassica species efficiently detoxify metals, particularly by flavonoid glycoside exudation. The composition of the cell wall and callose deposition also plays a crucial role in enhancing HMs resistance in Brassica species. Furthermore, plasma membrane-associated transporters, BjCET, BjPCR, BjYSL, and BnMTP, reduce HM concentration by stimulating the efflux mechanism. Brassica species also respond to stress by up-regulating existing protein pools or synthesizing novel proteins associated with HM stress tolerance. This review provides new insights into the HM tolerance mechanisms of Brassica species, which are necessary for future development of HM-resistant crops.
Collapse
Affiliation(s)
- Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saira Zaheer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop growth and Development, Ministry of Agri-culture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Tikhonov AN. Electron Transport in Chloroplasts: Regulation and Alternative Pathways of Electron Transfer. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1438-1454. [PMID: 38105016 DOI: 10.1134/s0006297923100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. Main focus of the article is on bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems II and I. Electron transport along the chains of non-cyclic, cyclic, and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and pH-dependent mechanisms of regulation of the cytochrome b6f complex are considered. Redox reactions with participation of molecular oxygen and ascorbate, alternative mediators of electron transport in chloroplasts, have also been discussed.
Collapse
|
39
|
Bethmann S, Haas AK, Melzer M, Jahns P. The impact of long-term acclimation to different growth light intensities on the regulation of zeaxanthin epoxidase in different plant species. PHYSIOLOGIA PLANTARUM 2023; 175:e13998. [PMID: 37882279 DOI: 10.1111/ppl.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.
Collapse
Affiliation(s)
- Stephanie Bethmann
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ann-Kathrin Haas
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Melzer
- Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Segarra-Medina C, Pascual LS, Alseekh S, Fernie AR, Rambla JL, Gómez-Cadenas A, Zandalinas SI. Comparison of metabolomic reconfiguration between Columbia and Landsberg ecotypes subjected to the combination of high salinity and increased irradiance. BMC PLANT BIOLOGY 2023; 23:406. [PMID: 37620776 PMCID: PMC10463500 DOI: 10.1186/s12870-023-04404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions. RESULTS Here we studied the metabolomic response of two Arabidopsis ecotypes (Columbia-0 [Col] and Landsberg erecta-0 [Ler]), widely used as genetic background for Arabidopsis mutant collections, subjected to the combination of high salinity and increased irradiance. Our findings demonstrate that this stress combination results in a specific metabolic response, different than that of the individual stresses. Although both ecotypes displayed reduced growth and quantum yield of photosystem II, as well as increased foliar damage and malondialdehyde accumulation, different mechanisms to tolerate the stress combination were observed. These included a relocation of amino acids and sugars to act as potential osmoprotectants, and the accumulation of different stress-protective compounds such as polyamines or secondary metabolites. CONCLUSIONS Our findings reflect an initial identification of metabolic pathways that differentially change under stress combination that could be considered in studies of stress combination of Arabidopsis mutants that include Col or Ler as genetic backgrounds.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Lidia S Pascual
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José L Rambla
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| |
Collapse
|
41
|
Alamos S, Shih PM. How to engineer the unknown: Advancing a quantitative and predictive understanding of plant and soil biology to address climate change. PLoS Biol 2023; 21:e3002190. [PMID: 37459291 PMCID: PMC10351729 DOI: 10.1371/journal.pbio.3002190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Our basic understanding of carbon cycling in the biosphere remains qualitative and incomplete, precluding our ability to effectively engineer novel solutions to climate change. How can we attempt to engineer the unknown? This challenge has been faced before in plant biology, providing a roadmap to guide future efforts. We use examples from over a century of photosynthesis research to illustrate the key principles that will set future plant engineering on a solid footing, namely, an effort to identify the key control variables, quantify the effects of systematically tuning these variables, and use theory to account for these observations. The main contributions of plant synthetic biology will stem not from delivering desired genotypes but from enabling the kind of predictive understanding necessary to rationally design these genotypes in the first place. Only then will synthetic plant biology be able to live up to its promise.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
42
|
Solouki A, Zare Mehrjerdi M, Azimi R, Aliniaeifard S. Improving basil (Ocimum basilicum L.) essential oil yield following down-regulation of photosynthetic functionality by short-term application of abiotic elicitors. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
43
|
Brychkova G, de Oliveira CL, Gomes LAA, de Souza Gomes M, Fort A, Esteves-Ferreira AA, Sulpice R, McKeown PC, Spillane C. Regulation of Carotenoid Biosynthesis and Degradation in Lettuce ( Lactuca sativa L.) from Seedlings to Harvest. Int J Mol Sci 2023; 24:10310. [PMID: 37373458 PMCID: PMC10298985 DOI: 10.3390/ijms241210310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Lettuce (Lactuca sativa L.) is one of the commercially important leafy vegetables worldwide. However, lettuce cultivars vary widely in their carotenoid concentrations at the time of harvest. While the carotenoid content of lettuce can depend on transcript levels of key biosynthetic enzymes, genes that can act as biomarkers for carotenoid accumulation at early stages of plant growth have not been identified. Transcriptomic and metabolomic analysis was performed on the inner and outer leaves of the six cultivars at different developmental stages to identify gene-to-metabolite networks affecting the accumulation of two key carotenoids, β-carotene and lutein. Statistical analysis, including principal component analysis, was used to better understand variations in carotenoid concentration between leaf age and cultivars. Our results demonstrate that key enzymes of carotenoid biosynthesis pathway can alter lutein and β-carotene biosynthesis across commercial cultivars. To ensure high carotenoids content in leaves, the metabolites sink from β-carotene and lutein to zeaxanthin, and subsequently, abscisic acid needs to be regulated. Based on 2-3-fold carotenoids increase at 40 days after sowing (DAS) as compared to the seedling stage, and 1.5-2-fold decline at commercial stage (60 DAS) compared to the 40 DAS stage, we conclude that the value of lettuce for human nutrition would be improved by use of less mature plants, as the widely-used commercial stage is already at plant senescence stage where carotenoids and other essential metabolites are undergoing degradation.
Collapse
Affiliation(s)
- Galina Brychkova
- Genetics & Biotechnology Laboratory, Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, University Road, H91 REW4 Galway, Ireland; (C.L.d.O.)
| | - Cleiton Lourenço de Oliveira
- Genetics & Biotechnology Laboratory, Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, University Road, H91 REW4 Galway, Ireland; (C.L.d.O.)
- Department of Agriculture, Federal University of Lavras (DAG/ESAL), Aquenta Sol, Lavras 37200-000, MG, Brazil
| | | | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Institute of Genetics and Biochemistry, Campus Patos de Minas, Federal University of Uberlandia, Av. Getúlio Vargas, 230, Patos de Minas 38700-103, MG, Brazil
| | - Antoine Fort
- Genetics & Biotechnology Laboratory, Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, University Road, H91 REW4 Galway, Ireland; (C.L.d.O.)
- Department of Life & Physical Science, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Alberto Abrantes Esteves-Ferreira
- Plant Systems Biology Laboratory, Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Ronan Sulpice
- Plant Systems Biology Laboratory, Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Peter C. McKeown
- Genetics & Biotechnology Laboratory, Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, University Road, H91 REW4 Galway, Ireland; (C.L.d.O.)
| | - Charles Spillane
- Genetics & Biotechnology Laboratory, Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, University Road, H91 REW4 Galway, Ireland; (C.L.d.O.)
| |
Collapse
|
44
|
Nymark M, Finazzi G, Volpe C, Serif M, Fonseca DDM, Sharma A, Sanchez N, Sharma AK, Ashcroft F, Kissen R, Winge P, Bones AM. Loss of CpFTSY Reduces Photosynthetic Performance and Affects Insertion of PsaC of PSI in Diatoms. PLANT & CELL PHYSIOLOGY 2023; 64:583-603. [PMID: 36852859 DOI: 10.1093/pcp/pcad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/16/2023]
Abstract
The chloroplast signal recognition particle (CpSRP) receptor (CpFTSY) is a component of the CpSRP pathway that post-translationally targets light-harvesting complex proteins (LHCPs) to the thylakoid membranes in plants and green algae containing chloroplasts derived from primary endosymbiosis. In plants, CpFTSY also plays a major role in the co-translational incorporation of chloroplast-encoded subunits of photosynthetic complexes into the thylakoids. This role has not been demonstrated in green algae. So far, its function in organisms with chloroplasts derived from secondary endosymbiotic events has not been elucidated. Here, we report the generation and characterization of mutants lacking CpFTSY in the diatom Phaeodactylum tricornutum. We found that this protein is not involved in inserting LHCPs into thylakoid membranes, indicating that the post-translational part of the CpSRP pathway is not active in this group of microalgae. The lack of CpFTSY caused an increased level of photoprotection, low electron transport rates, inefficient repair of photosystem II (PSII), reduced growth, a strong decline in the PSI subunit PsaC and upregulation of proteins that might compensate for a non-functional co-translational CpSRP pathway during light stress conditions. The phenotype was highly similar to the one described for diatoms lacking another component of the co-translational CpSRP pathway, the CpSRP54 protein. However, in contrast to cpsrp54 mutants, only one thylakoid membrane protein, PetD of the Cytb6f complex, was downregulated in cpftsy. Our results point to a minor role for CpFTSY in the co-translational CpSRP pathway, suggesting that other mechanisms may partially compensate for the effect of a disrupted CpSRP pathway.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Giovanni Finazzi
- Cell & Plant Physiology Laboratory, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble 38000, France
| | - Charlotte Volpe
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Nicolas Sanchez
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Amit Kumar Sharma
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
45
|
Flannery SE, Pastorelli F, Emrich‐Mills TZ, Casson SA, Hunter CN, Dickman MJ, Jackson PJ, Johnson MP. STN7 is not essential for developmental acclimation of Arabidopsis to light intensity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1458-1474. [PMID: 36960687 PMCID: PMC10952155 DOI: 10.1111/tpj.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/17/2023]
Abstract
Plants respond to changing light intensity in the short term through regulation of light harvesting, electron transfer, and metabolism to mitigate redox stress. A sustained shift in light intensity leads to a long-term acclimation response (LTR). This involves adjustment in the stoichiometry of photosynthetic complexes through de novo synthesis and degradation of specific proteins associated with the thylakoid membrane. The light-harvesting complex II (LHCII) serine/threonine kinase STN7 plays a key role in short-term light harvesting regulation and was also suggested to be crucial to the LTR. Arabidopsis plants lacking STN7 (stn7) shifted to low light experience higher photosystem II (PSII) redox pressure than the wild type or those lacking the cognate phosphatase TAP38 (tap38), while the reverse is true at high light, where tap38 suffers more. In principle, the LTR should allow optimisation of the stoichiometry of photosynthetic complexes to mitigate these effects. We used quantitative label-free proteomics to assess how the relative abundance of photosynthetic proteins varied with growth light intensity in wild-type, stn7, and tap38 plants. All plants were able to adjust photosystem I, LHCII, cytochrome b6 f, and ATP synthase abundance with changing white light intensity, demonstrating neither STN7 nor TAP38 is crucial to the LTR per se. However, stn7 plants grown for several weeks at low light (LL) or moderate light (ML) still showed high PSII redox pressure and correspondingly lower PSII efficiency, CO2 assimilation, and leaf area compared to wild-type and tap38 plants, hence the LTR is unable to fully ameliorate these symptoms. In contrast, under high light growth conditions the mutants and wild type behaved similarly. These data are consistent with the paramount role of STN7-dependent LHCII phosphorylation in tuning PSII redox state for optimal growth in LL and ML conditions.
Collapse
Affiliation(s)
- Sarah E. Flannery
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldFirth Court, Western BankSheffieldUK
| | - Federica Pastorelli
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldFirth Court, Western BankSheffieldUK
| | - Thomas Z. Emrich‐Mills
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldFirth Court, Western BankSheffieldUK
| | - Stuart A. Casson
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldFirth Court, Western BankSheffieldUK
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldFirth Court, Western BankSheffieldUK
| | - Mark J. Dickman
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Philip J. Jackson
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldFirth Court, Western BankSheffieldUK
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Matthew P. Johnson
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldFirth Court, Western BankSheffieldUK
| |
Collapse
|
46
|
Diaz BP, Zelzion E, Halsey K, Gaube P, Behrenfeld M, Bidle KD. Marine phytoplankton downregulate core photosynthesis and carbon storage genes upon rapid mixed layer shallowing. THE ISME JOURNAL 2023:10.1038/s41396-023-01416-x. [PMID: 37156837 DOI: 10.1038/s41396-023-01416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Marine phytoplankton are a diverse group of photoautotrophic organisms and key mediators in the global carbon cycle. Phytoplankton physiology and biomass accumulation are closely tied to mixed layer depth, but the intracellular metabolic pathways activated in response to changes in mixed layer depth remain less explored. Here, metatranscriptomics was used to characterize the phytoplankton community response to a mixed layer shallowing (from 233 to 5 m) over the course of two days during the late spring in the Northwest Atlantic. Most phytoplankton genera downregulated core photosynthesis, carbon storage, and carbon fixation genes as the system transitioned from a deep to a shallow mixed layer and shifted towards catabolism of stored carbon supportive of rapid cell growth. In contrast, phytoplankton genera exhibited divergent transcriptional patterns for photosystem light harvesting complex genes during this transition. Active virus infection, taken as the ratio of virus to host transcripts, increased in the Bacillariophyta (diatom) phylum and decreased in the Chlorophyta (green algae) phylum upon mixed layer shallowing. A conceptual model is proposed to provide ecophysiological context for our findings, in which integrated light limitation and lower division rates during transient deep mixing are hypothesized to disrupt resource-driven, oscillating transcript levels related to photosynthesis, carbon fixation, and carbon storage. Our findings highlight shared and unique transcriptional response strategies within phytoplankton communities acclimating to the dynamic light environment associated with transient deep mixing and shallowing events during the annual North Atlantic bloom.
Collapse
Affiliation(s)
- Ben P Diaz
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, 08901, USA
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Ehud Zelzion
- Office of Advanced Research Computing, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Peter Gaube
- Applied Physics Laboratory, University of Washington, Seattle, WA, 98105, USA
| | - Michael Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kay D Bidle
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
47
|
Degen GE, Jackson PJ, Proctor MS, Zoulias N, Casson SA, Johnson MP. High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control. PLANT PHYSIOLOGY 2023; 192:370-386. [PMID: 36774530 PMCID: PMC10152662 DOI: 10.1093/plphys/kiad084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The light reactions of photosynthesis couple electron and proton transfers across the thylakoid membrane, generating NADPH, and proton motive force (pmf) that powers the endergonic synthesis of ATP by ATP synthase. ATP and NADPH are required for CO2 fixation into carbohydrates by the Calvin-Benson-Bassham cycle. The dominant ΔpH component of the pmf also plays a photoprotective role in regulating photosystem II light harvesting efficiency through nonphotochemical quenching (NPQ) and photosynthetic control via electron transfer from cytochrome b6f (cytb6f) to photosystem I. ΔpH can be adjusted by increasing the proton influx into the thylakoid lumen via upregulation of cyclic electron transfer (CET) or decreasing proton efflux via downregulation of ATP synthase conductivity (gH+). The interplay and relative contributions of these two elements of ΔpH control to photoprotection are not well understood. Here, we showed that an Arabidopsis (Arabidopsis thaliana) ATP synthase mutant hunger for oxygen in photosynthetic transfer reaction 2 (hope2) with 40% higher proton efflux has supercharged CET. Double crosses of hope2 with the CET-deficient proton gradient regulation 5 and ndh-like photosynthetic complex I lines revealed that PROTON GRADIENT REGULATION 5 (PGR5)-dependent CET is the major pathway contributing to higher proton influx. PGR5-dependent CET allowed hope2 to maintain wild-type levels of ΔpH, CO2 fixation and NPQ, however photosynthetic control remained absent and PSI was prone to photoinhibition. Therefore, high CET in the absence of ATP synthase regulation is insufficient for PSI photoprotection.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 4NL, UK
| | - Matthew S Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nicholas Zoulias
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Stuart A Casson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
48
|
Zuo W, Chen Z, Zhang J, Zhan W, Yang H, Li L, Zhu W, Mao Y. The microalgae-based wastewater treatment system coupled with Cerium: A potential way for energy saving and microalgae boost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60920-60931. [PMID: 37042916 DOI: 10.1007/s11356-023-26639-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
The microalgae-based system attracts more attention in wastewater treatment for high quality effluent, low carbon emission, and resource utilization. Light is the key factor for algae growth, but the light masking in sewage will cause low efficiency of the system. This study designed laboratory scale experiments with Chlorella to investigate the influence of cerium on the nutrient removal by algae wastewater treatment system under different light intensities. The best removal rates of NH4-N, TP, and COD were 72.43%, 88.87%, and 68.08% under 50 µmol/(m 2·s) light intensity and 1 mg/L Ce. Low concentration of Ce could activate protein synthesis, electron transfer, and antioxidase, while excessive Ce might cause toxicity which could be relieved by strong light for energy supply and further activating superoxide dismutase (SOD) and catalase (CAT). Comparing to other similar experiences, this system reached an equal or greater performance on nutrients removal with better efficiency in light utilization. It might provide a new idea for microalgae-based system development.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiwei Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Huili Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weichen Zhu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuqing Mao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
49
|
Águila Ruiz-Sola M, Flori S, Yuan Y, Villain G, Sanz-Luque E, Redekop P, Tokutsu R, Küken A, Tsichla A, Kepesidis G, Allorent G, Arend M, Iacono F, Finazzi G, Hippler M, Nikoloski Z, Minagawa J, Grossman AR, Petroutsos D. Light-independent regulation of algal photoprotection by CO 2 availability. Nat Commun 2023; 14:1977. [PMID: 37031262 PMCID: PMC10082802 DOI: 10.1038/s41467-023-37800-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Collapse
Affiliation(s)
- M Águila Ruiz-Sola
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - Serena Flori
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Yizhong Yuan
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Gaelle Villain
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Emanuel Sanz-Luque
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- University of Cordoba, Department of Biochemistry and Molecular Biology, Cordoba, Spain
| | - Petra Redekop
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Ryutaro Tokutsu
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Anika Küken
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Angeliki Tsichla
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Georgios Kepesidis
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Guillaume Allorent
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Fabrizio Iacono
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universität, 48143, Münster, Germany
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Jun Minagawa
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Arthur R Grossman
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | |
Collapse
|
50
|
Holness S, Bechtold U, Mullineaux P, Serino G, Vittorioso P. Highlight Induced Transcriptional Priming against a Subsequent Drought Stress in Arabidopsis thaliana. Int J Mol Sci 2023; 24:6608. [PMID: 37047580 PMCID: PMC10095447 DOI: 10.3390/ijms24076608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In plants, priming allows a more rapid and robust response to recurring stresses. However, while the nature of plant response to a single stress can affect the subsequent response to the same stress has been deeply studied, considerably less is known on how the priming effect due to one stress can help plants cope with subsequent different stresses, a situation that can be found in natural ecosystems. Here, we investigate the potential priming effects in Arabidopsis plants subjected to a high light (HL) stress followed by a drought (D) stress. The cross-stress tolerance was assessed at the physiological and molecular levels. Our data demonstrated that HL mediated transcriptional priming on the expression of specific stress response genes. Furthermore, this priming effect involves both ABA-dependent and ABA-independent responses, as also supported by reduced expression of these genes in the aba1-3 mutant compared to the wild type. We have also assessed several physiological parameters with the aim of seeing if gene expression coincides with any physiological changes. Overall, the results from the physiological measurements suggested that these physiological processes did not experience metabolic changes in response to the stresses. In addition, we show that the H3K4me3 epigenetic mark could be a good candidate as an epigenetic mark in priming response. Overall, our results help to elucidate how HL-mediated priming can limit D-stress and enhance plant responses to stress.
Collapse
Affiliation(s)
- Soyanni Holness
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Ulrike Bechtold
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Giovanna Serino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Vittorioso
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|