1
|
Yu X, Du Z, Zhu P, Liao B. Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol Rep 2024; 76:273-286. [PMID: 38388810 DOI: 10.1007/s43440-024-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Renal cell carcinoma (RCC) arises from the tubular epithelial cells of the nephron. It has the highest mortality rate among urological cancers. There are no effective therapeutic approaches and no non-invasive biomarkers for diagnosis and follow-up. Thus, suitable novel biomarkers and therapeutic targets are essential for improving RCC diagnosis/prognosis and treatment. Circulating exosomes such as exosomal microRNAs (Exo-miRs) provide non-invasive prognostic/diagnostic biomarkers and valuable therapeutic targets, as they can be easily isolated and quantified and show high sensitivity and specificity. Exosomes secreted by an RCC can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a ''signature'' or ''fingerprint'' of the donor cell. It has been shown that the transportation of renal-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in RCC. The present review highlights the studies reporting tumor microenvironment-derived Exo-miRs with therapeutic potential as well as circulating Exo-miRs as potential diagnostic/prognostic biomarkers in patients with RCC.
Collapse
Affiliation(s)
- Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Pingyu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Bo Liao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Qiu M, Sun Y, Tu S, Li H, Yang X, Zhao H, Yin M, Li Y, Ye W, Wang M, Wang Y. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes. MOLECULAR PLANT PATHOLOGY 2024; 25:e13425. [PMID: 38462784 PMCID: PMC10925823 DOI: 10.1111/mpp.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024]
Abstract
Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaru Sun
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Siqun Tu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Huaibo Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xin Yang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Haiyang Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Maozhu Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaning Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Ming Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Zhan F, Zhou S, Shi F, Li Q, Lin L, Qin Z. Identifying the function of the PI3K-AKT pathway during the pathogenic infection of Macrobrachium rosenbergii. JOURNAL OF FISH DISEASES 2024; 47:e13890. [PMID: 37997435 DOI: 10.1111/jfd.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The phosphoinositide-3-kinase/protein kinase b (PI3K-Akt) pathway is a signalling pathway based on protein phosphorylation and can be activated by a wide range of factors. To investigate the function of the PI3K-AKT signalling pathway in antibacterial immunity, we analysed the gene expression level of three key factors (PI3K, AKT and FoxO) and innate immune factors in immune tissues at different time points after Vibrio parahaemolyticus and Staphylococcus aureus infection. Tissues analysis showed that PI3K, AKT, and FoxO were expressed at high levels in the intestinal, hemocytes and hepatopancreas. Moreover, the expression levels of PI3K, AKT and FoxO can be regulated postinfection by different pathogens. In hemocytes and the intestine, V. parahaemolyticus infection was found to regulate the levels of PI3K, AKT, and FoxO more rapidly; however, an S. aureus infection regulated the levels of these factors more rapidly in the hepatopancreas and gills. Analysis showed that V. parahaemolyticus and S. aureus infection caused changes in the gene expression level of crustin, caspase 3 and NF-κB. Therefore, PI3K-AKT regulates the downstream immune pathway differentially in different immune tissues and participates in the regulation of cell apoptosis and the inflammatory response by activating caspase and NF-κB, respectively, following infection with V. parahaemolyticus and S. aureus.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shichun Zhou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
4
|
Kwantwi LB. Genetic alterations shape innate immune cells to foster immunosuppression and cancer immunotherapy resistance. Clin Exp Med 2023; 23:4289-4296. [PMID: 37910258 DOI: 10.1007/s10238-023-01240-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer immunotherapy, particularly immune checkpoint inhibitors, has opened a new avenue for cancer treatment following the durable clinical benefits. Despite the clinical successes across several cancer types, primary or acquired resistance might eventually lead to cancer progression in patients with clinical responses. Hence, to broaden the clinical applicability of these treatments, a detailed understanding of the mechanisms limiting the efficacy of cancer immunotherapy is needed. Evidence provided thus far has implicated immunosuppressive innate immune cells infiltrating the tumor microenvironment as key players in immunotherapy resistance. According to the available data, genetic alterations can shape the innate immune response to promote immunotherapy resistance and tumor progression. Herein, this review has discussed the current understanding of the underlying mechanisms where genetic alterations modulate the innate immune milieu to drive immunosuppression and immunotherapy resistance.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
5
|
Wu X, Zhang Y, Wang P, Li X, Song Z, Wei C, Zhang Q, Luo B, Liu Z, Yang Y, Ren Z, Liu H. Clinical and preclinical evaluation of miR-144-5p as a key target for major depressive disorder. CNS Neurosci Ther 2023; 29:3598-3611. [PMID: 37308778 PMCID: PMC10580367 DOI: 10.1111/cns.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Neuronal abnormalities are closely associated with major depressive disorder (MDD). Available evidence suggests a role for microRNAs (miRNAs) in regulating the expression of genes involved in MDD. Hence, miRNAs that can be potential therapeutic targets need to be identified. METHODS A mouse model of chronic unpredictable stress (CUS) was used to evaluate the function of miRNAs in MDD. miR-144-5p was screened from the hippocampi of CUS mice based on sequencing results. Adenovirus-associated vectors were used to overexpress or knockdown miR-144-5p in mice. BpV(pic) and LY294002 were used to determine the relationship between miR-144-5p target genes PTEN and TLR4 in neuronal impairment caused by miR-144-5p deficiency. Western blotting, immunofluorescence, ELISA immunosorbent assay, and Golgi staining were used to detect neuronal abnormalities. Serum samples from healthy individuals and patients with MDD were used to detect miR-144-5p levels in the serum and serum exosomes using qRT-PCR. RESULTS miR-144-5p expression was significantly decreased within the hippocampal dentate gyrus (DG) of CUS mice. Upregulation of miR-144-5p in the DG ameliorated depression-like behavior in CUS mice and attenuated neuronal abnormalities by directly targeting PTEN and TLR4 expression. Furthermore, miR-144-5p knockdown in normal mice led to depression-like behavior via inducing neuronal abnormalities, including abnormal neurogenesis, neuronal apoptosis, altered synaptic plasticity, and neuroinflammation. miR-144-5p deficiency-mediated neuronal impairment was mediated by PI3K/Akt/FoxO1 signaling. Furthermore, miR-144-5p levels were downregulated in the sera of patients with MDD and associated with depressive symptoms. Consistently, serum exosome-derived miR-144-5p levels were decreased in patients with MDD. CONCLUSION miR-144-5p plays a vital role in regulating neuronal abnormalities in depression. Our findings provide translational evidence that miR-144-5p is a new potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Yulong Zhang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Ping Wang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Xiaohui Li
- Department of AnatomyAnhui Medical UniversityHefeiChina
| | - Zhen Song
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Chuke Wei
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Qing Zhang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Bei Luo
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Zhichun Liu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Yingying Yang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Zhenhua Ren
- Department of AnatomyAnhui Medical UniversityHefeiChina
| | - Huanzhong Liu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Fujii J, Soma Y, Matsuda Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules 2023; 28:molecules28104085. [PMID: 37241826 DOI: 10.3390/molecules28104085] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Energy transfer to ground state triplet molecular oxygen results in the generation of singlet molecular oxygen (1O2), which has potent oxidizing ability. Irradiation of light, notably ultraviolet A, to a photosensitizing molecule results in the generation of 1O2, which is thought to play a role in causing skin damage and aging. It should also be noted that 1O2 is a dominant tumoricidal component that is generated during the photodynamic therapy (PDT). While type II photodynamic action generates not only 1O2 but also other reactive species, endoperoxides release pure 1O2 upon mild exposure to heat and, hence, are considered to be beneficial compounds for research purposes. Concerning target molecules, 1O2 preferentially reacts with unsaturated fatty acids to produce lipid peroxidation. Enzymes that contain a reactive cysteine group at the catalytic center are vulnerable to 1O2 exposure. Guanine base in nucleic acids is also susceptible to oxidative modification, and cells carrying DNA with oxidized guanine units may experience mutations. Since 1O2 is produced in various physiological reactions in addition to photodynamic reactions, overcoming technical challenges related to its detection and methods used for its generation would allow its potential functions in biological systems to be better understood.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
7
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
8
|
Li F, Chen X, Yang R, Zhang K, Shan W, Joosten MHAJ, Du Y. Potato protein tyrosine phosphatase StPTP1a is activated by StMKK1 to negatively regulate plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:646-661. [PMID: 36519513 PMCID: PMC9946141 DOI: 10.1111/pbi.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Phytophthora infestans causes severe losses in potato production. The MAPK kinase StMKK1 was previously found to negatively regulate potato immunity to P. infestans. Our results showed that StMKK1 interacts with a protein tyrosine phosphatase, referred to as StPTP1a, and StMKK1 directly phosphorylates StPTP1a at residues Ser-99, Tyr-223 and Thr-290. StPTP1a is a functional phosphatase and the phosphorylation of StPTP1a at these three residues enhances its stability and catalytic activity. StPTP1a negatively regulates potato immunity and represses SA-related gene expression. Furthermore, StPTP1a interacts with, and dephosphorylates, the StMKK1 downstream signalling targets StMPK4 and -7 at their Tyr-203 residue resulting in the repression of salicylic acid (SA)-related immunity. Silencing of NbPTP1a + NbMPK4 or NbPTP1a + NbMPK7 abolished the plant immunity to P. infestans caused by NbPTP1a silencing, indicating that PTP1a functions upstream of NbMPK4 and NbMPK7. StMKK1 requires StPTP1a to negatively regulate SA-related immunity and StPTP1a is phosphorylated and stabilized during immune activation to promote the de-phosphorylation of StMPK4 and -7. Our results reveal that potato StMKK1 activates and stabilizes the tyrosine phosphatase StPTP1a that in its turn de-phosphorylates StMPK4 and -7, thereby repressing plant SA-related immunity.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruixin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Kun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | | | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
9
|
Pexophagy suppresses ROS-induced damage in leaf cells under high-intensity light. Nat Commun 2022; 13:7493. [PMID: 36470866 PMCID: PMC9722907 DOI: 10.1038/s41467-022-35138-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Although light is essential for photosynthesis, it has the potential to elevate intracellular levels of reactive oxygen species (ROS). Since high ROS levels are cytotoxic, plants must alleviate such damage. However, the cellular mechanism underlying ROS-induced leaf damage alleviation in peroxisomes was not fully explored. Here, we show that autophagy plays a pivotal role in the selective removal of ROS-generating peroxisomes, which protects plants from oxidative damage during photosynthesis. We present evidence that autophagy-deficient mutants show light intensity-dependent leaf damage and excess aggregation of ROS-accumulating peroxisomes. The peroxisome aggregates are specifically engulfed by pre-autophagosomal structures and vacuolar membranes in both leaf cells and isolated vacuoles, but they are not degraded in mutants. ATG18a-GFP and GFP-2×FYVE, which bind to phosphatidylinositol 3-phosphate, preferentially target the peroxisomal membranes and pre-autophagosomal structures near peroxisomes in ROS-accumulating cells under high-intensity light. Our findings provide deeper insights into the plant stress response caused by light irradiation.
Collapse
|
10
|
Cao D, Su T, Wu Y, Jia Z, Fu Y, Sun Y, Jin M, Wang Y, Yi J, Cui Y, Zhang Y, Lv H, Qu L, Jiang J, Cao X. PTEN Expression Was Significantly Associated with PD-L1 Score but Not with EBV Infection in Gastric Cancer. Onco Targets Ther 2022; 15:1011-1020. [PMID: 36176732 PMCID: PMC9514276 DOI: 10.2147/ott.s374175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Gastric cancer (GC) remains a prevalent aggressive tumor with high morbidity and mortality globally. The identification of GC subtypes based on molecular features improved the prediction of prognosis and the selection of targeted therapies. PTEN is a characteristic tumor suppressor, while its association with different GC subtypes was unknown. Patients and Methods The cohort consisted of 248 patients diagnosed with gastric cancer who were hospitalized and received radical gastrectomy. In addition, PTEN gene expression matrix of STAD was retrieved from TCGA. The mRNA and protein levels of PTEN and PD-L1 were detected using qRT-PCR and IHC staining. Multivariate logistic regression and Kaplan–Meier analysis were used to examine the relationship between PTEN expression and clinical characteristics. Results In our study, PTEN was downregulated in gastric tumors both in mRNA and protein levels. Its inactivation was closely linked to higher histological grade (P = 0.005), neural invasion (P = 0.012), depth of invasion (P = 0.021), lymph metastasis (P = 0.026), and TNM stage (P = 0.001) of GC in the present study. Moreover, according to the molecular subtypes, high PTEN expression was related to high TPS score of PD-L1 positively (P = 0.010) but was not associated with MSI and EBV infection. Further, TCGA data validated that PTEN was indeed correlated with histological grade and invasion depth and positively related to PD-L1 expression (R = 0.29, adjusted P < 0.001). Conclusion The above results suggested that PTEN expression was a useful marker in gastric carcinogenesis and progression and in the selection of immunotherapy-based treatments for GC patients.
Collapse
Affiliation(s)
- Donghui Cao
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tongrong Su
- Department of Gastric and Colorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yanhua Wu
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhifang Jia
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yingli Fu
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Meishan Jin
- Division of Pathology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yueqi Wang
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiaxin Yi
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haiyong Lv
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Limei Qu
- Division of Pathology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jing Jiang
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
11
|
Kadri S, Nakada-Tsukui K, Watanabe N, Jeelani G, Nozaki T. PTEN differentially regulates endocytosis, migration, and proliferation in the enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2022; 18:e1010147. [PMID: 35500038 PMCID: PMC9122207 DOI: 10.1371/journal.ppat.1010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/20/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
PTEN is a lipid phosphatase that is highly conserved and involved in a broad range of biological processes including cytoskeletal reorganization, endocytosis, signal transduction, and cell migration in all eukaryotes. Although regulation of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] signaling via PTEN has been well established in model organisms and mammals, it remains elusive in the parasitic protist E. histolytica, which heavily relies on PtdIns phosphate(s)-dependent membrane traffic, migration, and phago- and trogocytosis for its pathogenesis. In this study, we characterized the major PTEN from E. histolytica, EhPTEN1, which shows the highest expression at the transcript level in the trophozoite stage among 6 possible PTENs, to understand the significance of PtdIns(3,4,5)P3 signaling in this parasite. Live imaging of GFP-EhPTEN1 expressing amebic trophozoites showed localization mainly in the cytosol with a higher concentration at pseudopods and the extending edge of the phago- and trogocytic cups. Furthermore, quantitative analysis of phago- and trogocytosis using a confocal image cytometer showed that overexpression of EhPTEN1 caused reduction in trogo- and phagocytosis while transcriptional gene silencing of EhPTEN1 gene caused opposite phenotypes. These data suggest that EhPTEN1 has an inhibitory role in these biological processes. Conversely, EhPTEN1 acts as a positive regulator for fluid-phase and receptor-mediated endocytosis in E. histolytica trophozoites. Moreover, we showed that EhPTEN1 was required for optimal growth and migration of this parasite. Finally, the phosphatase activity of EhPTEN1 towards PtdIns(3,4,5)P3 was demonstrated, suggesting that the biological roles of EhPTEN1 are likely linked to its catalytic function. Taken together, these results indicate that EhPTEN1 differentially regulates multiple cellular activities essential for proliferation and pathogenesis of the organism, via PtdIns(3,4,5)P3 signaling. Elucidation of biological roles of PTEN and PtdIns(3,4,5)P3 signaling at the molecular levels promotes our understanding of the pathogenesis of this parasite.
Collapse
Affiliation(s)
- Samia Kadri
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Wang T, Chen Z, Chen H, Yu X, Wang L, Liu X. Brusatol inhibits the growth of renal cell carcinoma by regulating the PTEN/PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:115020. [PMID: 35066068 DOI: 10.1016/j.jep.2022.115020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brucea javanica (L.) Merr. is a medicinal herb used in China for the prevention and treatment of diseases such as cancer and malaria. Brusatol was isolated from the seeds of Brucea javanica (L.) Merr, brusatol has a wide range of pharmacological effects, including anti-inflammation and anti-cancer effects. AIM OF THE STUDY Renal cell carcinoma is one of the most common urinary system tumours and seriously threatens the lives of patients. We aimed to study the mechanism by which brusatol regulates the growth of renal cancer cells through the PTEN/PI3K/AKT signalling pathway. MATERIALS AND METHODS We chose the A498, ACHN, and OSRC-2 cell lines as experimental models. After intervention with brusatol, CCK-8 experiments and plate cloning experiments were used to detect the cell proliferation ability; flow cytometry was used to detect the cell apoptosis rate; scratch and transwell invasion assays were used to detect the cell migration and invasion ability; qRT-PCR and Western blotting was used to detect PTEN, p-PI3K/PI3K, p-AKT/AKT, Bax, Bcl2, E-cadherin, N-cadherin, and vimentin relative expression. Then, we knocked down the PTEN gene in the three cell lines and again tested the proliferation, apoptosis, migration, and invasion capabilities of each group of cells. RESULTS Brusatol significantly inhibited the proliferation, migration and invasion and increased the rate of apoptosis of the A498, ACHN, and OSRC-2 cell lines, and brusatol significantly increased the expression of PTEN mRNA and protein, and inhibited the expression of p-PI3K and p-AKT. Moreover, knockdown of PTEN significantly reduced the inhibitory effect of brusatol on the growth of renal cancer cells. CONCLUSION Our research results show that brusatol has an effective inhibitory effect on the growth of A498, ACHN, and OSRC-2 renal cancer cell lines, and this effect is likely to be produced by regulating the PTEN/PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Homma Y, Inui T, Kayukawa T, Toga K, Shinoda T, Togawa T. The Mitochondrial Phosphatase PTPMT1 is Required for the Proper Growth Rate in the Red Flour Beetle, Tribolium castaneum. Zoolog Sci 2022; 39:236-241. [DOI: 10.2108/zs210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Yuri Homma
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
| | - Tomohiro Inui
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634, Japan
| | - Takumi Kayukawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634, Japan
| | - Kouhei Toga
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
| | - Tetsuro Shinoda
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan
| | - Toru Togawa
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
14
|
Abstract
The distinct movements of macropinosome formation and maturation have corresponding biochemical activities which occur in a defined sequence of stages and transitions between those stages. Each stage in the process is regulated by variously phosphorylated derivatives of phosphatidylinositol (PtdIns) which reside in the cytoplasmic face of the membrane lipid bilayer. PtdIns derivatives phosphorylated at the 3' position of the inositol moiety, called 3' phosphoinositides (3'PIs), regulate different stages of the sequence. 3'PIs are synthesized by numerous phosphoinositide 3'-kinases (PI3K) and other lipid kinases and phosphatases, which are themselves regulated by small GTPases of the Ras superfamily. The combined actions of these enzymes localize four principal species of 3'PI to distinct domains of the plasma membrane or to discrete organelles, with distinct biochemical activities confined to those domains. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol (3,4)-bisphosphate (PtdIns(3,4)P2) regulate the early stages of macropinosome formation, which include cell surface ruffling and constrictions of circular ruffles which close into macropinosomes. Phosphatidylinositol 3-phosphate (PtdIns3P) regulates macropinosome fusion with other macropinosomes and early endocytic organelles. Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) mediates macropinosome maturation and shrinkage, through loss of ions and water, and subsequent traffic to lysosomes. The different characteristic rates of macropinocytosis in different cell types indicate levels of regulation which may be governed by the cell's capacity to generate 3'PIs.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
15
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
16
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
17
|
Kato T, Igarashi A, Sesaki H, Iijima M. Generating a new mouse model for nuclear PTEN deficiency by a single K13R mutation. Genes Cells 2021; 26:1014-1022. [PMID: 34661323 DOI: 10.1111/gtc.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022]
Abstract
Many human diseases, including cancer and neurological abnormalities, are linked to deficiencies of phosphatase and tensin homolog deleted on chromosome ten (PTEN), a dual phosphatase that dephosphorylates both lipids and proteins. PTEN functions in multiple intracellular locations, including the plasma membrane and nucleus. Therefore, a critical challenge to understand the pathogenesis of PTEN-associated diseases is to determine the specific role of PTEN at different locations. Toward this goal, the current study generated a mouse line in which lysine 13, which is critical for the nuclear localization of PTEN, is changed to arginine in the lipid-binding domain using the CRISPR-Ca9 gene-editing system. We found that PTENK13R mice show a strong decrease in the localization of PTEN in the nucleus without affecting the protein stability, phosphatase activity, and phosphorylation in the C-terminal tail region. PTENK13R mice are viable but produce smaller neurons and develop microcephaly. These data demonstrate that PTENK13R mice provide a useful animal model to study the role of PTEN in the nucleus in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Gurbuz V, Sozen S, Bilen CY, Konac E. miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncol Lett 2021; 22:805. [PMID: 34630712 PMCID: PMC8488332 DOI: 10.3892/ol.2021.13066] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) modulate the expression of target genes in the signal pathway on transcriptome level. The present study investigated the ‘epigenetic-based miRNA (epi-miRNA)-mRNA’ regulatory network of miR-34b, miR-34c, miR-148a, miR-152, miR-200a and miR-200b epi-miRNAs and their target genes, DNA methyltransferase (DNMT1, 3a and 3b), phosphate and tensin homolog (PTEN) and NK3 Homeobox 1 (NKX3.1), in prostate cancer (PCa) using reverse transcription-quantitative PCR. The expression level of NKX3.1 were not significantly different between the PCa, Met-PCa and control groups. However, in the PCa and Met-PCa groups, the expression level of DNMT1 was upregulated, while DNMT3a, DNMT3b and PTEN were downregulated. Overexpression of DNMT1 (~5 and ~6-fold increase in the PCa and Met-PCa groups respectively) was accompanied by a decreased expression in PTEN, indicating a potential negative association. Both groups indicated that a high level of DNMT1 is associated with the aggressiveness of cancer, and there is a a directly proportional relationship between this gene and PSA, GS and TNM staging. A significant ~2 to ~5-fold decrease in the expression levels of DNMT3a and DNMT3b was found in both groups. In the PCa group, significant associations were identified between miR-34b and DNMT1/DNMT3b; between miR-34c/miR-148a and all target genes; between miR-152 and DNMT1/DNMT3b and PTEN; and between miR-200a/b and DNMT1. In the Met-PCa group, miR-148a, miR-152 and miR-200b exhibited a significant association with all target genes. A significant negative association was identified between PTEN and DNMT1 in the Met-PCa group. It was also revealed that that miR-148a, miR-152 and miR-200b increased the expression of DNMT1 and suppressed PTEN. Furthermore, the ‘epi-miRNA-mRNA’ bidirectional feedback loop was emphasised and the methylation pattern in PCa anti-cancer therapeutics was highlighted.
Collapse
Affiliation(s)
- Venhar Gurbuz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Sinan Sozen
- Department of Urology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
19
|
The structural basis of PTEN regulation by multi-site phosphorylation. Nat Struct Mol Biol 2021; 28:858-868. [PMID: 34625746 PMCID: PMC8549118 DOI: 10.1038/s41594-021-00668-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a phosphatidylinositol-3,4,5-triphosphate (PIP3) phospholipid phosphatase that is commonly mutated or silenced in cancer. PTEN's catalytic activity, cellular membrane localization and stability are orchestrated by a cluster of C-terminal phosphorylation (phospho-C-tail) events on Ser380, Thr382, Thr383 and Ser385, but the molecular details of this multi-faceted regulation have remained uncertain. Here we use a combination of protein semisynthesis, biochemical analysis, NMR, X-ray crystallography and computational simulations on human PTEN and its sea squirt homolog, VSP, to obtain a detailed picture of how the phospho-C-tail forms a belt around the C2 and phosphatase domains of PTEN. We also visualize a previously proposed dynamic N-terminal α-helix and show that it is key for PTEN catalysis but disordered upon phospho-C-tail interaction. This structural model provides a comprehensive framework for how C-tail phosphorylation can impact PTEN's cellular functions.
Collapse
|
20
|
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel) 2021; 13:3949. [PMID: 34439105 PMCID: PMC8394096 DOI: 10.3390/cancers13163949] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Collapse
Affiliation(s)
- Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Federica Spadaccino
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Maria Teresa Rocchetti
- Cell Biology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| |
Collapse
|
21
|
Mandal S, Chakrabarty D, Bhattacharya A, Paul J, Haldar S, Pal K. miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Wang W, Guo J, Wang Y. MicroRNA-30b-5p promotes the proliferation and migration of human airway smooth muscle cells induced by platelet-derived growth factor by targeting phosphatase and tensin homolog deleted on chromosome ten. Bioengineered 2021; 12:3662-3673. [PMID: 34251961 PMCID: PMC8806833 DOI: 10.1080/21655979.2021.1950401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dysfunction of airway smooth muscle (ASM) cells is crucial in asthma pathogenesis. Here, microRNA-30b-5p (miR-30b-5p)’s function and mechanism in ASM cells’ multiplication and migration were investigated. Microarray was utilized for identifying the differentially expressed miRNAs in the bronchial epithelial cells of the asthma patients and healthy controls. Platelet-derived growth factor (PDGF) was employed to treat ASM cells to establish an in-vitro asthma model. Quantitative real-time PCR (qRT-PCR) was conducted for detecting the expressions of miR-30b-5p and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2ʹ-deoxyuridine (BrdU) assays were used for examining cell multiplication; Transwell assay was performed for detecting cell migration; cell cycle was analyzed through flow cytometry. The targeted relationship between PTEN and miR-30b-5p was verified using a dual-luciferase reporter gene assay. Western blot was used for detecting the expressions of phosphorylated (p)-phosphatidylinositol 3-kinase (PI3K), PTEN, PI3K, protein kinase B (AKT) and p-AKT in ASM cells. We demonstrated that, miR-30b-5p expression in the bronchial epithelial cells of asthmatic patients was up-regulated. It was also increased in PDGF-stimulated ASM cells. Transfection of miR-30b-5p mimics facilitated ASM cells’ multiplication, migration and cycle progression, while inhibiting miR-30b-5p had the opposite effect. Furthermore, miR-30b-5p could target PTEN to repress PTEN expression. PTEN overexpression attenuated the effect of miR-30b-5p on ASM cells. Moreover, miR-30b-5p overexpression facilitated the expression of p-PI3K and p-AKT in PDGF-stimulated ASM cells. Collectively, miR-30b-5p activates the PI3K/AKT pathway by targeting PTEN to facilitate PDGF-induced dysfunction of ASM cells.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Jian Guo
- Department of Neonatology, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Yan Wang
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| |
Collapse
|
23
|
Redox regulation of the insulin signalling pathway. Redox Biol 2021; 42:101964. [PMID: 33893069 PMCID: PMC8113030 DOI: 10.1016/j.redox.2021.101964] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The peptide hormone insulin is a key regulator of energy metabolism, proliferation and survival. Binding of insulin to its receptor activates the PI3K/AKT signalling pathway, which mediates fundamental cellular responses. Oxidants, in particular H2O2, have been recognised as insulin-mimetics. Treatment of cells with insulin leads to increased intracellular H2O2 levels affecting the activity of downstream signalling components, thereby amplifying insulin-mediated signal transduction. Specific molecular targets of insulin-stimulated H2O2 include phosphatases and kinases, whose activity can be altered via redox modifications of critical cysteine residues. Over the past decades, several of these redox-sensitive cysteines have been identified and their impact on insulin signalling evaluated. The aim of this review is to summarise the current knowledge on the redox regulation of the insulin signalling pathway.
Collapse
|
24
|
Xing J, Yang J, Gu Y, Yi J. Research update on the anticancer effects of buparlisib. Oncol Lett 2021; 21:266. [PMID: 33717263 PMCID: PMC7885152 DOI: 10.3892/ol.2021.12527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Buparlisib is a highly efficient and selective PI3K inhibitor and a member of the 2,6-dimorpholinopyrimidine-derived family of compounds. It selectively inhibits four isomers of PI3K, PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ, by competitively binding the lipid kinase domain on adenosine 5'-triphosphate (ATP), and serves an important role in inhibiting proliferation, promoting apoptosis and blocking angiogenesis, predominantly by antagonizing the PI3K/AKT pathway. Buparlisib has been confirmed to have a clinical effect in patients with solid tumors and hematological malignancies. A global, phase II clinical trial with buparlisib and paclitaxel in head and neck squamous cell carcinoma has now been completed, with a manageable safety profile. Buparlisib currently has fast-track status with the United States Food and Drug Administration. The present review examined the biochemical structure, pharmacokinetic characteristics, preclinical data and ongoing clinical studies of buparlisib. The various mechanisms of influence of buparlisib in tumors, particularly in preclinical research, were summarized, providing a theoretical basis and direction for basic research on and clinical treatment with buparlisib.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Yang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
25
|
Xu H, Ju L, Xiong Y, Yu M, Zhou F, Qian K, Wang G, Xiao Y, Wang X. E3 ubiquitin ligase RNF126 affects bladder cancer progression through regulation of PTEN stability. Cell Death Dis 2021; 12:239. [PMID: 33664240 PMCID: PMC7933351 DOI: 10.1038/s41419-021-03521-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/31/2023]
Abstract
E3 ubiquitin ligase RNF126 (ring finger protein 126) is highly expressed in various cancers and strongly associated with tumorigenesis. However, its specific function in bladder cancer (BCa) is still debatable. Here, we found that RNF126 was significantly upregulated in BCa tissue by TCGA database, and our studies indicated that downregulation of RNF126 significantly inhibited cell proliferation and metastasis through the EGFR/PI3K/AKT signaling pathway in BCa cells. Furthermore, we identified PTEN, an inhibitor of the PI3K/AKT signaling pathway, as a novel substrate for RNF126. By co-immunoprecipitation assays, we proved that RNF126 directly interacts with PTEN. Predominantly, PTEN binds to the C-terminal containing the RING domain of RNF126. The in vivo ubiquitination assay showed that RNF126 specifically regulates PTEN stability through poly-ubiquitination. Furthermore, PTEN knockdown restored cell proliferation, metastasis, and tumor formation of BCa cells inhibited by RNF126 silencing in vitro and in vivo. In conclusion, these results identified RNF126 as an oncogene that functions through ubiquitination and degradation of PTEN in BCa.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Cai B, Liu M, Li J, Xu D, Li J. Cigarette smoke extract amplifies NADPH oxidase-dependent ROS production to inactivate PTEN by oxidation in BEAS-2B cells. Food Chem Toxicol 2021; 150:112050. [PMID: 33577944 DOI: 10.1016/j.fct.2021.112050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is widely recognized as a global public health problem and the third leading cause of mortality worldwide by 2020. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a dual-specificity protein and lipid phosphatase that plays an important role in COPD. However, the redox regulation of PTEN in the development of COPD was poorly studied. Our results showed that cigarette smoke extract (CSE) could oxidize PTEN in a time-dependent manner in BEAS-2B cells, whereas PTEN oxidation exposed to CSE was delayed compared to that of H2O2. Additionally, we found that ROS derived from DUOX1 and 2 of NADPH oxidases were mainly responsible for oxidative inactivation PTEN, also simultaneously led to Trx-1 inactivation by dimerization. Oxidative mechanism of PTEN exposed to CSE was mediated by forming a disulfide bond between Cys71and Cys124, similar to H2O2. Inactivation of PTEN resulted in the increased phosphorylation of Akt. In conclusion, CSE exposure could elevate the intracellular ROS mainly from DUOX1 and 2 to oxidize PTEN and Trx-1 resulting in Akt activation, eventually cause the occurrence of COPD, suggesting that PTEN is a potential target for new therapies in COPD.
Collapse
Affiliation(s)
- Bangrong Cai
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China; Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengya Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinxing Li
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Dujuan Xu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| |
Collapse
|
27
|
Feng P, Li Z, Li Y, Zhang Y. Phosphatase and Tensin Homolog Mutation in Immune Cell Infiltration and Clinicopathological Features of Low-Grade Gliomas. Front Mol Biosci 2020; 7:562416. [PMID: 33363203 PMCID: PMC7758504 DOI: 10.3389/fmolb.2020.562416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022] Open
Abstract
The mutation of phosphatase and tensin homolog (PTEN) genes frequently occur in low-grade gliomas (LGGs) and are deeply associated with a poor prognosis and survival rate. In order to identify the crucial signaling pathways and genes associated with the PTEN mutation, we performed bioinformatics analysis on the RNA sequencing results, which were obtained from The Cancer Genome Atlas database. A total of 352 genes were identified as differentially expressed genes (DEGs). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the DEGs were significantly enriched in categories associated with cell division and multiple metabolic progressions. The histological stage was significantly associated with PTEN expression levels. In addition, the PTEN mutation was associated with an abundance of B cells, neutrophils, macrophages, dendritic cells, and CD8+ T cells during tumor infiltration. The results showed that patients with LGGs harboring the PTEN mutation had a poor prognosis and more serious immune cell infiltration occurred depending on the mRNA expression level. These results demonstrated that multiple genes and signaling pathways play a key role in LGG from low grade to high grade, and are associated with PTEN mutations. In this study, we outlined an approach to assess the influence of PTEN mutations on prognosis, overall survival, and messenger RNA (mRNA) expression. Our results provided alternative strategies for the personalized treatment of patients with LGGs harboring the PTEN mutation.
Collapse
Affiliation(s)
- Peng Feng
- Xi'an Medical University, Xi'an, China
| | - Zhenqing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuchen Li
- Hengyang Medical College, University of South China, Hengyang, China
| | | |
Collapse
|
28
|
Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int J Mol Sci 2020; 22:E173. [PMID: 33375317 PMCID: PMC7796017 DOI: 10.3390/ijms22010173] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a serious health problem worldwide, representing the second cause of death through malignancies among women in developed countries. Population, endogenous and exogenous hormones, and physiological, genetic and breast-related factors are involved in breast cancer pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is a signaling pathway involved in cell proliferation, survival, invasion, migration, apoptosis, glucose metabolism and DNA repair. In breast tumors, PIK3CA somatic mutations have been reported, located in exon 9 and exon 20. Up to 40% of PIK3CA mutations are estrogen receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) -negative in primary and metastatic breast cancer. HER2 is overexpressed in 20-30% of breast cancers. HER1, HER2, HER3 and HER4 are membrane receptor tyrosine kinases involved in HER signaling to which various ligands can be attached, leading to PI3K/AKT activation. Currently, clinical studies evaluate inhibitors of the PI3K/AKT/mTOR axis. The main purpose of this review is to present general aspects of breast cancer, the components of the AKT signaling pathway, the factors that activate this protein kinase B, PI3K/AKT-breast cancer mutations, PI3K/AKT/mTOR-inhibitors, and the relationship between everolimus, temsirolimus and endocrine therapy.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| |
Collapse
|
29
|
Activation of PAR2 by tissue factor induces the release of the PTEN from MAGI proteins and regulates PTEN and Akt activities. Sci Rep 2020; 10:20908. [PMID: 33262514 PMCID: PMC7708427 DOI: 10.1038/s41598-020-77963-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Tissue factor (TF) signalling has been associated with alterations in Akt activity influencing cellular survival and proliferation. TF is also shown to induce signalling through activation of the protease activated receptor (PAR)2. Seven cell lines were exposed to recombinant-TF (rec-TF), or activated using a PAR2-agonist peptide and the phosphorylation state of PTEN, and the activities of PTEN and Akt measured. Furthermore, by measuring the association of PTEN with MAGI proteins a mechanism for the induction of signalling by TF was proposed. Short term treatment of cells resulted in de-phosphorylation of PTEN, increased lipid-phosphatase activity and reduced Akt kinase activity in most of the cell lines examined. In contrast, continuous exposure to rec-TF up to 14 days, resulted in lower PTEN antigen levels, enhanced Akt activity and increased rate of cell proliferation. To explore the mechanism of activation of PTEN by TF, the association of "membrane-associated guanylate kinase-with inverted configuration" (MAGI)1–3 proteins with PTEN was assessed using the proximity ligation assay and by co-immunoprecipitation. The interaction of PTEN with all three MAGI proteins was transiently reduced following PAR2 activation and explains the changes in PTEN activity. Our data is first to show that PAR2 activation directly, or through exposure of cells to TF releases PTEN from MAGI proteins and is concurrent with increases in PTEN phosphatase activity. However, prolonged exposure to TF results in the reduction in PTEN antigen with concurrent increase in Akt activity which may explain the aberrant cell survival, proliferation and invasion associated with TF during chronic diseases.
Collapse
|
30
|
Lee MF, Trotman LC. PTEN: Bridging Endocytosis and Signaling. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036103. [PMID: 31818848 DOI: 10.1101/cshperspect.a036103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transduction of signals in the PTEN/PI3-kinase (PI3K) pathway is built around a phosphoinositide (PIP) lipid messenger, phosphatidylinositol trisphosphate, PI(3,4,5)P3 or PIP3 Another, more ancient role of this family of messengers is the control of endocytosis, where a handful of separate PIPs act like postal codes. Prominent among them is PI(3)P, which helps to ensure that endocytic vesicles, their cargo, and membranes themselves reach their correct destinations. Traditionally, the cancer and the endocytic functions of the PI3K signaling pathway have been studied by cancer and membrane biologists, respectively, with some notable but overall minimal overlap. Modern microscopy has enabled monitoring of the PTEN/PI3K pathway in action. Here, we explore the flurry of groundbreaking concepts emerging from those efforts. The discovery that PTEN contains an autonomous PI(3)P reader domain, fused to the catalytic PIP3 eraser domain has prompted us to explore the relationship between PI3K signaling and endocytosis. This revealed how PTEN can achieve signal termination in a precisely controlled fashion, because endocytosis can package the PIP3 signal into discrete units that PTEN will erase. We explore how PTEN can bridge the worlds of endocytosis and PI3K signaling and discuss progress on how PI3K/AKT signaling can be acting from internal membranes. We discuss how the PTEN/PI3K system for growth control may have emerged from principles of endocytosis, and how this development could have affected the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Matthew F Lee
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
31
|
The anti-inflammatory protein MCPIP1 inhibits the development of ccRCC by maintaining high levels of tumour suppressors. Eur J Pharmacol 2020; 888:173591. [PMID: 32971087 DOI: 10.1016/j.ejphar.2020.173591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer. It is highly vascularized and largely resistant to traditional chemo- and radiotherapy. Decreases in tumour suppressors and low levels of the anti-inflammatory Monocyte Chemoattractant Protein-Induced Protein 1 (MCPIP1) play important roles in the development and progression of ccRCC. MCPIP1, also called Regnase-1, possesses endonuclease activity and degrades the mRNA of proinflammatory cytokines such as IL-6, IL-1β, IL-12 and IL-2. We previously showed that the level of MCPIP1 decreases with ccRCC progression. In this study, we explored the role of MCPIP1 in regulating the levels of tumour suppressors. We found low levels of the suppressors PTEN, RECK and TIMP3 and high levels of MMPs in patients with ccRCC who had already been shown to have low MCPIP1 expression. We demonstrated that MCPIP1 regulates the expression levels of PTEN, RECK and TIMP3 in ccRCC cell lines as well as in vivo models of ccRCC. MCPIP1 overexpression increased the expression of tumour suppressors. Moreover, we observed that the RNase activity of MCPIP1 is responsible for the modulation of apoptosis and activation of prometastatic signalling pathways. Furthermore, we found a negative correlation between high levels of IL6, a direct target of MCPIP1 RNase activity, and TIMP3 in patients, indicating that MCPIP1 and TIMP3 might collectively cause the high levels of IL6 in ccRCC patients. Taken together, our results show the importance of MCPIP1 in regulating the level of tumour suppressors and, consequently, in ccRCC development and progression.
Collapse
|
32
|
Luo H, Cong S, Dong J, Jin L, Jiang D, Wang X, Chen Q, Li F. Paired‑related homeobox 1 overexpression promotes multidrug resistance via PTEN/PI3K/AKT signaling in MCF‑7 breast cancer cells. Mol Med Rep 2020; 22:3183-3190. [PMID: 32945446 PMCID: PMC7453582 DOI: 10.3892/mmr.2020.11414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance (MDR) is a major cause of disease relapse and mortality in breast cancer. Paired‑related homeobox 1 (PRRX1) is associated with the epithelial‑mesenchymal transition (EMT), which is involved in tumor development, including cell invasion and MDR. However, the effect of PRRX1 on MDR had not clearly established. The present study investigated the influence of PRRX1 on MDR and the underlying molecular mechanisms in MCF‑7 breast cancer cells. MCF‑7 cells were divided into PRRX1+ group (cells transfected with a recombinant plasmid carrying the PRRX1 gene), negative control group (cells transfected with a blank vector) and blank group (untreated cells). It was found that the relative protein and mRNA expression levels of PRRX1, N‑cadherin, vimentin and P‑glycoprotein were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. The half‑maximal inhibitory concentration of three groups after treatment with docetaxel and cis‑platinum complexes were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. Furthermore, relative PTEN expression decreased significantly and levels of phosphorylated PI3K and AKT increased substantially in PRRX1‑overexpressing MCF‑7 cells. These results indicated that PRRX1 overexpression may induce MDR via PTEN/PI3K/AKT signaling in breast cancer. It is highly recommended that PRRX1 gene expression detection should be performed in patients with breast cancer to aid the selection of more appropriate treatments, which will lead to an improved prognosis in clinical practice.
Collapse
Affiliation(s)
- Haoyue Luo
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shaobo Cong
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Jiaojiao Dong
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Litao Jin
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dandan Jiang
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xingang Wang
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qingfeng Chen
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Funian Li
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
33
|
Hermawan A, Putri H. Integrative Bioinformatics Analysis Reveals Potential Target Genes and TNFα Signaling Inhibition by Brazilin in Metastatic Breast Cancer Cells. Asian Pac J Cancer Prev 2020; 21:2751-2762. [PMID: 32986377 PMCID: PMC7779440 DOI: 10.31557/apjcp.2020.21.9.2751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Metastasis is the most significant cause of morbidity and mortality in breast cancer patients. Previously, a combination of brazilin and doxorubicin has been shown to inhibit metastasis in HER2-positive breast cancer cells. This present study used an integrative bioinformatics approach to identify new targets and the molecular mechanism of brazilin in inhibiting metastasis in breast cancer. METHODS Cytotoxicity and mRNA arrays data were retreived from the DTP website, whereas genes that regulate metastatic breast cancer cells were retreived from PubMed with keywords "breast cancer metastasis". Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and Drug association analysis were carried out by using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). Construction of protein-protein interaction (PPI) network analysis was performed by STRING-DB v11.0 and Cytoscape, respectively. The genetic alterations of the potential therapeutic target genes of brazilin (PB) were analyzed using cBioPortal. RESULTS Analysis of cytotoxicity with the public database of COMPARE showed that brazilin exerts almost the same cytotoxicity in the NCI-60 cells panel showing by similar GI50 value, in which the lowest GI50 value was observed in MDA-MB 231, a metastatic breast cancer cells. KEGG enrichment indicated several pathways regulated by brazilin such as TNF signaling pathway, cellular senescence, and pathways in cancer. We found ten drugs that are associated with PB, including protein kinase inhibitors, TNFα inhibitors, enzyme inhibitors, and anti-inflammatory agents. CONCLUSION In conclusion, this study identified eight PB, including MMP14, PTGS2, ADAM17, PTEN, CCL2, PIK3CB, MAP3K8, and CXCL3. In addition, brazilin possibly inhibits metastatic breast cancer through inhibition of TNFα signaling. The study results study need to be validated with in vitro and in vivo studies to strengthen scientific evidence of the use of brazilin in breast cancer metastasis inhibition.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
34
|
Templeton GW, Johnson JJ, Sieben NA, Moorhead GB. GL2 EXPRESSION MODULATOR, a plant specific protein phosphatase one interactor that binds phosphoinositides. Biochem Biophys Res Commun 2020; 528:607-611. [DOI: 10.1016/j.bbrc.2020.05.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023]
|
35
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Okano H, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (Ldlrad4) in the liver of rats treated with nongenotoxic hepatocarcinogen to induce transforming growth factor β signaling promoting cell proliferation and suppressing apoptosis in early hepatocarcinogenesis. J Appl Toxicol 2020; 40:1467-1479. [PMID: 32596862 DOI: 10.1002/jat.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 11/07/2022]
Abstract
We previously found downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4), a negative regulator of transforming growth factor (TGF)-β signaling, in glutathione S-transferase placental form (GST-P) expressing (+ ) pre-neoplastic lesions produced by treatment with nongenotoxic hepatocarcinogens for up to 90 days in rats. Here, we investigated the relationship between LDLRAD4 downregulation and TGFβ signaling in nongenotoxic hepatocarcinogenesis. The transcripts of Tgfb and Hb-egf increased after ≥28 days of treatment. After 84 or 90 days, Snai1 increased transcripts and the subpopulation of GST-P+ foci downregulating LDLRAD4 co-expressed TGFβ1, phosphorylated EGFR, or phosphorylated AKT2, and downregulated PTEN, showing higher incidences than those in GST-P+ foci expressing LDLRAD4. The subpopulation of GST-P+ foci downregulating LDLRAD4 also co-expressed caveolin-1 or TACE/ADAM17, suggesting that disruptive activation of TGFβ signaling through a loss of LDLRAD4 enhances EGFR and PTEN/AKT-dependent pathways via caveolin-1-dependent activation of TACE/ADAM17 during nongenotoxic hepatocarcinogenesis. The numbers of c-MYC+ cells and PCNA+ cells were higher in LDLRAD4-downregulated GST-P+ foci than in LDLRAD4-expressing GST-P+ foci, suggesting a preferential proliferation of pre-neoplastic cells by LDLRAD4 downregulation. Nongenotoxic hepatocarcinogens markedly downregulated Nox4 after 28 days and later decreased cleaved caspase 3+ cells in LDLRAD4-downregulated GST-P+ foci, suggesting an attenuation of apoptosis by LDLRAD4 downregulation through activation of the EGFR pathway. At the late hepatocarcinogenesis stage in a two-stage model, LDLRAD4 downregulation was higher in adenoma and carcinoma than in pre-neoplastic cell foci, suggesting a role of LDLRAD4 downregulation in tumor development. Our results suggest that nongenotoxic hepatocarcinogens cause disruptive activation of TGFβ signaling through downregulating LDLRAD4 toward carcinogenesis in the rat liver.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Tokyo, Japan.,Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, Chongqing, China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
36
|
Dias F, Teixeira AL, Nogueira I, Morais M, Maia J, Bodo C, Ferreira M, Silva A, Vilhena M, Lobo J, Sequeira JP, Maurício J, Oliveira J, Kok K, Costa-Silva B, Medeiros R. Extracellular Vesicles Enriched in hsa-miR-301a-3p and hsa-miR-1293 Dynamics in Clear Cell Renal Cell Carcinoma Patients: Potential Biomarkers of Metastatic Disease. Cancers (Basel) 2020; 12:cancers12061450. [PMID: 32498409 PMCID: PMC7352268 DOI: 10.3390/cancers12061450] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most aggressive subtype of kidney cancer and up to 40% of patients submitted to surgery with a curative intent will relapse. Thus, the aim of this study was to analyze the applicability of an Extracellular vesicle (EV) derived miRNA profile as potential prognosis biomarkers in ccRCC patients. We analyzed a nine-miRNA profile in plasma EVs from 32 ccRCC patients with localized disease (before and after surgery) and in 37 patients with metastatic disease. We observed that the levels of EV-derived hsa-miR-25-3p, hsa-miR-126-5p, hsa-miR-200c-3p, and hsa-miR-301a-3p decreased after surgery, whereas hsa-miR-1293 EV-levels increased. Furthermore, metastatic patients presented higher levels of hsa-miR-301a-3p and lower levels of hsa-miR-1293 when compared to patients with localized disease after surgery. Functional enrichment analysis of the targets of the four miRNAs that decreased after surgery resulted in an enrichment of terms related to cell cycle, proliferation, and metabolism, suggesting that EV-miRNA enrichment in the presence of the tumor could represent an epigenetic mechanism to sustain tumor development. Taken together, these results suggest that EVs content varies depending on the presence or absence of the disease and that an increase of EV-derived hsa-miR-301a-3p, and decrease of EV-derived hsa-miR-1293, may be potential biomarkers of metastatic ccRCC.
Collapse
Affiliation(s)
- Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Correspondence: ; Tel.: +351-225084000 (ext. 5410)
| | - Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-135 Porto, Portugal
| | - Cristian Bodo
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
| | - Marta Ferreira
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.F.); (J.M.)
| | - Alexandra Silva
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - Manuela Vilhena
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB3, F Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB3, F Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.F.); (J.M.)
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - Klaas Kok
- Department of Genetics, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| |
Collapse
|
37
|
Redox regulation of tumor suppressor PTEN in cell signaling. Redox Biol 2020; 34:101553. [PMID: 32413744 PMCID: PMC7226887 DOI: 10.1016/j.redox.2020.101553] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) is a potent tumor suppressor and often dysregulated in cancers. Cellular PTEN activity is restrained by the oxidation of active-site cysteine by reactive oxygen species (ROS). Recovery of its enzymatic activity predominantly depends on the availability of cellular thioredoxin (Trx) and peroxiredoxins (Prx), both are important players in cell signaling. Trx and Prx undergo redox-dependent conformational changes through the oxidation of cysteine residues at their active sites. Their dynamics are essential for protein functionality and regulation. In this review, we summarized the recent advances regarding the redox regulation of PTEN, with a specific focus on our current state-of-the-art understanding of the redox regulation of PTEN. We also proposed a tight association of the redox regulation of PTEN with Trx dimerization and Prx hyperoxidation, providing guidance for the identification of novel therapeutic targets.
Collapse
|
38
|
Jiang H, D'Agostino GD, Cole PA, Dempsey DR. Selective protein N-terminal labeling with N-hydroxysuccinimide esters. Methods Enzymol 2020; 639:333-353. [PMID: 32475408 DOI: 10.1016/bs.mie.2020.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In order to gain detailed insight into the biochemical behavior of proteins, researchers have developed chemical tools to incorporate new functionality into proteins beyond the canonical 20 amino acids. Important considerations regarding effective chemical modification of proteins include chemoselectivity, near stoichiometric labeling, and reaction conditions that maintain protein stability. Taking these factors into account, we discuss an N-terminal labeling strategy that employs a simple two-step "one-pot" method using N-hydroxysuccinimide (NHS) esters. The first step converts a R-NHS ester into a more chemoselective R-thioester. The second step reacts the in situ generated R-thioester with a protein that harbors an N-terminal cysteine to generate a new amide bond. This labeling reaction is selective for the N-terminus with high stoichiometry. Herein, we provide a detailed description of this method and further highlight its utility with a large protein (>100kDa) and labeling with a commonly used cyanine dye.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Gabriel D D'Agostino
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Philip A Cole
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Daniel R Dempsey
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
39
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|
40
|
Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics 2019; 47:69-83. [PMID: 32178981 DOI: 10.1016/j.jgg.2019.11.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Mass spectrometry (MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes. The metabolomes of cells, tissues, and organisms comprise a variety of molecules including lipids, amino acids, sugars, organic acids, and so on. Metabolomics mainly focus on the hydrophilic classes, while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes. The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases, but system-level understanding is largely lacking, which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies. While scientists are continuously striving to develop high-coverage omics approaches, integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation. Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape, enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology, facilitating the study of interconnection between lipids and other metabolites in disease progression. In this review, we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health. We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.
Collapse
Affiliation(s)
- Raoxu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Li
- Lipidall Technologies Company Limited, Changzhou, 213000, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Lipidall Technologies Company Limited, Changzhou, 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
41
|
Wu G, Wang F, Li K, Li S, Zhao C, Fan C, Wang J. Significance of TP53 mutation in bladder cancer disease progression and drug selection. PeerJ 2019; 7:e8261. [PMID: 31871844 PMCID: PMC6921983 DOI: 10.7717/peerj.8261] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor protein p53 (TP53) mutant is one of the most frequent mutant genes in bladder cancer. In this study, we assessed the importance of the TP53 mutation in bladder cancer progression and drug selection, and identified potential pathways and core genes associated with the underlying mechanisms. METHODS Gene expression data used in this study were downloaded from The Cancer Genome Atlas and cBioportal databases. Drug sensitivity data were obtained from the Genomics of Drug Sensitivity in Cancer. We did functional enrichment analysis by gene set enrichment analysis (GSEA) and the Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS We found the TP53 mutation in 50% of bladder cancer patients. Patients with the TP53 mutation were associated with a lower TP53 mRNA expression level, more advanced tumor stage and higher histologic grade. Three drugs, mitomycin-C, doxorubicin and gemcitabine, were especially more sensitive to bladder cancer with the TP53 mutation. As for the mechanisms, we identified 863 differentially expressed genes (DEGs). Functional enrichment analysis suggested that DEGs were primarily enriched in multiple metabolic progressions, chemical carcinogenesis and cancer related pathways. The protein-protein interaction network identified the top 10 hub genes. Our results have suggested the significance of TP53 mutation in disease progression and drug selection in bladder cancer, and identified multiple genes and pathways related in such program, offering novel basis for bladder cancer individualized treatment.
Collapse
Affiliation(s)
- Guang Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Fei Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Kai Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shugen Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chunchun Zhao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Caibin Fan
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianqing Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
42
|
Sun J, Li S, Wang F, Fan C, Wang J. Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis. BMC MEDICAL GENETICS 2019; 20:191. [PMID: 31791268 PMCID: PMC6889628 DOI: 10.1186/s12881-019-0923-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
Background Prostate cancer (Pca) remains one of the leading adult malignancies. PTEN (Phosphatase and Tensin Homolog) mutant is the top common mutated genes in prostate cancer, which makes it a promising biomarker in future individualized treatment. Methods We obtained gene expression data of prostate cancer from TCGA (The Cancer Genome Atlas) database for analysis. We analyzed the DEGs (differentially expressed genes), and used online tools or software to analyze Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis (GSEA), Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection. Results Latest TCGA data showed PTEN mutation in about 22% patients. 1736 DEGs in total were identified. Results of gene functional enrichment analyses showed that muscle contraction, negative regulation of growth and multiple metabolic progression were significantly enriched. GNG13, ACTN2, POTEE, ACTA1, MYH6, MYH3, MYH7, MYL1, TNNC1 and TNNC2 were the top ten hub genes. Patients with PTEN mutation showed relatively decreased mRNA expression level of PTEN. Survival analysis indicated the risk of disease recurrence in patients with PTEN mutation. Conclusions Our findings suggested that PTEN mutation in prostate cancer may induce changes in a variety of genes and pathways and affect disease progression, suggesting the significance of PTEN mutation in individualized treatment of prostate cancer.
Collapse
Affiliation(s)
- Jian Sun
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, China
| | - Shugen Li
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Rd, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
43
|
Peroxiredoxin III Protects Tumor Suppressor PTEN from Oxidation by 15-Hydroperoxy-eicosatetraenoic Acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2828493. [PMID: 31636803 PMCID: PMC6766106 DOI: 10.1155/2019/2828493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 08/25/2019] [Indexed: 01/21/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase that coordinates various cellular processes. Its activity is regulated by the reversible oxidation of an active-site cysteine residue by H2O2 and thioredoxin. However, the potential role of lipid peroxides in the redox regulation of PTEN remains obscure. To evaluate this, 15-hydroperoxy-eicosatetraenoic acid (15s-HpETE), a lipid peroxide, was employed to investigate its effect on PTEN using molecular and cellular-based assays. Exposure to 15s-HpETE resulted in the oxidation of recombinant PTEN. Reversible oxidation of PTEN was also observed in mouse embryonic fibroblast (MEF) cells treated with a 15s-HpETE and Lipofectamine mixture. The oxidative dimerization of thioredoxin was found simultaneously. In addition, the absence of peroxiredoxin III aggravated 15s-HpETE-induced PTEN oxidation in MEF cells. Our study provides novel insight into the mechanism linking lipid peroxidation to the etiology of tumorigenesis.
Collapse
|
44
|
Zhao D, Shen C, Gao T, Li H, Guo Y, Li F, Liu C, Liu Y, Chen X, Zhang X, Wu Y, Yu Y, Lin M, Yuan Y, Chen X, Huang X, Yang S, Yu J, Zhang J, Zheng B. Myotubularin related protein 7 is essential for the spermatogonial stem cell homeostasis via PI3K/AKT signaling. Cell Cycle 2019; 18:2800-2813. [PMID: 31478454 DOI: 10.1080/15384101.2019.1661174] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Myotubularin related protein 7 (MTMR7), a key member of the MTMR family, depicts phosphatase activity and is involved in myogenesis and tumor growth. We have previously identified MTMR7 in the proteomic profile of mouse spermatogonial stem cell (SSC) maturation and differentiation, implying that MTMR7 is associated with neonatal testicular development. In this study, to further explore the distribution and function of MTMR7 in mouse testis, we studied the effect of Mtmr7 knockdown on neonatal testicular development by testicular and SSC culture methods. Our results revealed that MTMR7 is exclusively located in early germ cells. Deficiency of MTMR7 by morpholino in neonatal testis caused excessive SSC proliferation, which was attributable to the aberrant PI3K/AKT signaling activation. Altogether, our study demonstrates that MTMR7 maintains SSC homeostasis by inhibiting PI3K/AKT signaling activation.
Collapse
Affiliation(s)
- Dan Zhao
- Fourth Affiliated Hospital of Jiangsu University , Zhenjiang , China
| | - Cong Shen
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Tingting Gao
- Center of Clinical Reproductive Medicine, the Affiliated Changzhou Matemity and Child Health Care Hospital of Nanjing Medical University , Changzhou , China
| | - Hong Li
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China.,The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University , Wuxi , China
| | - Feng Li
- Fourth Affiliated Hospital of Jiangsu University , Zhenjiang , China.,Reproductive Medicine Center, Northern Jiangsu Province Hospital , Yangzhou , China
| | - Chenchen Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Yuanyuan Liu
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Jiangsu University , Zhenjiang , China
| | - Xi Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Yangyang Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Yi Yu
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , China
| | - Meng Lin
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Yan Yuan
- Human Reproductive and Genetic center, Affiliated Hospital of Jiangnan University , Wuxi , China
| | - Xiaofang Chen
- Fourth Affiliated Hospital of Jiangsu University , Zhenjiang , China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Jiangsu University , Zhenjiang , China
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| | - Bo Zheng
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing , China
| |
Collapse
|
45
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
46
|
Fan C, Zhao C, Wang F, Li S, Wang J. Significance of PTEN Mutation in Cellular Process, Prognosis, and Drug Selection in Clear Cell Renal Cell Carcinoma. Front Oncol 2019; 9:357. [PMID: 31139560 PMCID: PMC6518664 DOI: 10.3389/fonc.2019.00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
It is well established that the PTEN (Phosphatase and Tensin Homolog) mutant is a frequently mutated gene found in clear cell renal cell carcinoma (ccRCC), making it a potential biomarker for individualized treatment opinions. Here, in the present study, we designed a method to evaluate the significance of the PTEN mutation in the prognosis and drug selection of ccRCC, determine the potential changing pathways and genes associated with the mechanisms. The most recent TCGA data shows that the PTEN mutation is found in 5% of ccRCC patients. In total, 2,569 genes were identified as DEGs. GO and KEGG analysis suggested that DEGs were significantly enriched in categories associated with cell division and multiple metabolic progressions. The top 10 genes, ranked by degree, were identified as hub genes from the protein–protein interaction network (PPI). What is more, patients with the PTEN mutation were associated with a worsened prognosis of ccRCC. Data from the GDSC database indicated that the selective AKT inhibitor, GSK690693, is a selective inhibitor for ccRCC with the PTEN mutation. Our findings have indicated that multiple genes and pathways may play a crucial role in PTEN mutation ccRCC, offering candidate targets and strategies for PTEN mutation ccRCC individualized treatment.
Collapse
Affiliation(s)
- Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shugen Li
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
47
|
S-nitrosylation of the Peroxiredoxin-2 promotes S-nitrosoglutathione-mediated lung cancer cells apoptosis via AMPK-SIRT1 pathway. Cell Death Dis 2019; 10:329. [PMID: 30988280 PMCID: PMC6465399 DOI: 10.1038/s41419-019-1561-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/25/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Protein S-nitrosylation, the redox-based posttranslational modification of a cysteine thiol by the attachment of a nitric oxide (NO) group, is responsible for a variety of signaling effects. Dysregulation of S-nitrosylation may be directly linked to cancer apoptotic resistance and cancer therapy outcomes, emphasizing the importance of S-nitrosylation in cancer. Peroxiredoxin-2 (Prdx2), an antioxidant enzyme, plays an important role in the protection of cancer cells from oxidative radical damage caused by hydrogen dioxide (H2O2), which is a potential target for cancer therapy. Our studies showed that, as an endogenous NO carrier, S-nitrosoglutathione (GSNO) induced apoptosis in lung cancer cells via nitrosylating Prdx2. The nitrosylation of Prdx2 at Cys51 and Cys172 sites disrupted the formation of Prdx2 dimer and repressed the Prdx2 antioxidant activity, causing the accumulation of endogenous H2O2. H2O2 activated AMPK, which then phosphorylated SIRT1 and inhibited its deacetylation activity toward p53 in A549 cells or FOXO1 in NCI-H1299 cells. Taken together, our results elucidate the roles and mechanisms of Prdx2 S-nitrosylation at Cys51 and Cys172 sites in lung cancer cells apoptosis and this finding provides an effective lung cancer treatment strategy for managing aberrant Prdx2 activity in lung cancers.
Collapse
|
48
|
Florio TJ, Lokareddy RK, Gillilan RE, Cingolani G. Molecular Architecture of the Inositol Phosphatase Siw14. Biochemistry 2019; 58:534-545. [PMID: 30548067 DOI: 10.1021/acs.biochem.8b01044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Siw14 is a recently discovered inositol phosphatase implicated in suppressing prion propagation in Saccharomyces cerevisiae. In this paper, we used hybrid structural methods to decipher Siw14 molecular architecture. We found the protein exists in solution as an elongated monomer that is ∼140 Å in length, containing an acidic N-terminal domain and a basic C-terminal dual-specificity phosphatase (DSP) domain, structurally similar to the glycogen phosphatase laforin. The two domains are connected by a protease susceptible linker and do not interact in vitro. The crystal structure of Siw14-DSP reveals a highly basic phosphate-binding loop and an ∼10 Å deep substrate-binding crevice that evolved to dephosphorylate pyro-phosphate moieties. A pseudoatomic model of the full-length phosphatase generated from solution, crystallographic, biochemical, and modeling data sheds light on the interesting zwitterionic nature of Siw14, which we hypothesized may play a role in discriminating negatively charged inositol phosphates.
Collapse
Affiliation(s)
- Tyler J Florio
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , 233 South 10th Street , Philadelphia , Pennsylvania 19107 , United States
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , 233 South 10th Street , Philadelphia , Pennsylvania 19107 , United States
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS) , Cornell University , 161 Synchrotron Drive , Ithaca , New York 14853 , United States
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , 233 South 10th Street , Philadelphia , Pennsylvania 19107 , United States.,Institute of Biomembranes and Bioenergetics , National Research Council , Via Amendola 165/A , 70126 Bari , Italy
| |
Collapse
|
49
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
50
|
OKAMURA Y, OKOCHI Y. Molecular mechanisms of coupling to voltage sensors in voltage-evoked cellular signals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:111-135. [PMID: 30853698 PMCID: PMC6541726 DOI: 10.2183/pjab.95.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The voltage sensor domain (VSD) has long been studied as a unique domain intrinsic to voltage-gated ion channels (VGICs). Within VGICs, the VSD is tightly coupled to the pore-gate domain (PGD) in diverse ways suitable for its specific function in each physiological context, including action potential generation, muscle contraction and relaxation, hormone and neurotransmitter secretion, and cardiac pacemaking. However, some VSD-containing proteins lack a PGD. Voltage-sensing phosphatase contains a cytoplasmic phosphoinositide phosphatase with similarity to phosphatase and tensin homolog (PTEN). Hv1, a voltage-gated proton channel, also lacks a PGD. Within Hv1, the VSD operates as a voltage sensor, gate, and pore for both proton sensing and permeation. Hv1 has a C-terminal coiled coil that mediates dimerization for cooperative gating. Recent progress in the structural biology of VGICs and VSD proteins provides insights into the principles of VSD coupling conserved among these proteins as well as the hierarchy of protein organization for voltage-evoked cell signaling.
Collapse
Affiliation(s)
- Yasushi OKAMURA
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Yoshifumi OKOCHI
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|